
January/February 2015	 1541-1672/15/$31.00 © 2015 IEEE	 13
Published by the IEEE Computer Society

Research Directions
for Engineering
Big Data Analytics
Software
Carlos E. Otero and Adrian Peter, Florida Institute of Technology

Big data software

needs to be

delivered with

quality, on time,

and within budget.

But, given the

nature of big

data, does big

data software

engineering really

work?

at defining big data, varying based on con-
text, domain, and perspective. From the in-
frastructure’s perspective, big data has been
defined as data with high volume, velocity,
and variety (3V), and unpredictability. In
this context, it has also been defined as data
with some aspect that’s so large that cur-
rent, typical methods can’t be used to pro-
cess it.1,2 From the analytics’ perspective, big
data has been defined as data so large that
it contains significant low probability events
that would be absent from traditional sta-
tistical sampling methods.3 From the busi-
ness user’s perspective, big data represents
opportunities for gaining a competitive ad-
vantage by gaining actionable intelligence.4
Each of these definitions provides descrip-
tive and important aspects that must be sup-
ported by big data software. Borrowing from
these definitions, we propose a definition for
big data software as “software that supports
the time-constrained processing of continu-
ous information flows to provide actionable
intelligence.”

The phrase software that supports ac-
knowledges that big data software includes
both infrastructure and analytics software—
these have been referred as big throughput
and big analytics software, respectively.5 In-
frastructure software is needed to store, re-
trieve, transmit, and process big data. While
it’s essential to developing big data soft-
ware, much of the emphasis and hype has
been placed on the analytics portion of big
data software. Nonetheless, our definition of
big data software encompasses both types of
software. The term time-constrained denotes
the urgency in providing solutions. In a way,
big data software shares a similar property
with real-time software: late responses are
wrong responses. The phrase continuous in-
formation flows generalizes the input of big
data software, which has the unique proper-
ties of volume, velocity, and variety. This gen-
eralization also extends to other important
information properties of big data input, such
as continuity (data in motion versus data
at rest). Data in motion (or data streams)

W hat is big data software? How is it different than non-big-data soft-

ware? Can it be engineered? Answering these questions requires

exploration of the term big data for achieving consensus and arriving at a defi-

nition of big data software. A survey of the literature reveals numerous attempts

B i g D a t a

14		 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

B i g D a t a

can include potentially infinite data
streams, at high speeds of arrival,
with data whose density changes
over time. Finally, actionable intel-
ligence generalizes the output of big
data software—that is, big data soft-
ware exists to provide information
that’s directly useful for immediate
(strategic, operational, or tactical) use
without having to go through the full
intelligence production process.

Actionable Intelligence
Actionable intelligence means much
more than simply finding or summa-
rizing data; it stresses the discovery
of hidden (unknown and hard to find)
patterns that can be used to predict
concepts, events, trends, opinions,
and so on to support decision makers.
The expected use of actionable intel-
ligence varies from system to system,
with each variation increasing the
complexity involved when engineer-
ing such systems. For this reason, it’s
important to derive a taxonomy for
understanding actionable intelligence
and for thinking about how it af-
fects the complexity and development
of big data software. The following
three levels of actionable intelligence
are proposed:

•	Level 1 (L1), supervised actionable
intelligence;

•	Level 2 (L2), semisupervised ac-
tionable intelligence; and

•	Level 3 (L3), unsupervised action-
able intelligence.

In L1, the system serves as deci-
sion support for humans, so that
humans supervise the intelligence
produced by machines before tak-
ing action. In L2, machines are re-
lied upon to take actions based on
self-produced intelligence; how-
ever, these actions can be reversed
or corrected by humans. For exam-
ple, an L2 spam detector uses ma-
chine learning software to predict
whether email messages are spam.
Once this determination is made, the
machine takes action to send incom-
ing emails to spam or inbox folders.
Admittedly, the process isn’t perfect,
and human intervention is required
when misclassification occurs. In L3,
machines are fully relied upon to
take actions without requiring hu-
man intervention or correction. Not
many L3 systems exist today; some
recommender systems operate at L3,
but most operate at L2, for obvious
reasons.

Another important concept that
needs to be explained before exam-
ining the engineering of big data
software involves the intelligence pro-
duction process. For big data soft-
ware systems, it occurs primarily in
two ways: single- and multi-hop pro-
cessing. In single-hop processing, data
is processed directly by a single com-
ponent, and from that processing, all
required actionable intelligence is pro-
duced and prepared for its intended
consumer (human or machine), as
Figure 1 shows.

A much more difficult approach
(from the engineering perspective) in-
volves multi-hop processing, where
interdependencies between compo-
nents are necessary to extract de-
tailed actionable intelligence. In
multi-hop processing, the output of
one component is the input of an-
other. This web of components may
be necessary to extract the most
informative actionable intelligence
that can help answer questions such
as who, what, when, where, and
why. Figure 2 presents a conceptual
view of big data software executing
under multi-hop processing and ca-
pable of providing various level of
actionable intelligence. Such systems
are expected to process continuous
flows of YouTube news videos, trans-
form input via speech-to-text, and
extract sources and topics of conver-
sation via text mining. Concurrently,
the system monitors Twitter data,
employs topic extraction seeking top-
ics of interests, and uses sentiment
analysis to predict public opinion.
At each hop, the system produces ac-
tionable intelligence that’s consumed
by other components, and at the end,
aggregate and correlate data to pro-
vide intelligence that can be used to
determine who’s saying what and
the perceived public reaction to that
event.

Big Data Analytics
Software Engineering
Having discussed big data software,
its inputs, and outputs, let’s turn our
attention to the main problems en-
countered when attempting to engi-
neer big data software. This requires
the ability to specify requirements,
design and construct software to
meet those requirements, and ver-
ify through testing that the software
meets those requirements. The focus
is placed mainly on the big analytics
portion of big data software.

Figure 1. Single-hop processing of information flow. In single-hop processing,
data is processed by a single component and the output made readily available for
immediate use. If this is the case, any inconsistencies in the results can be detected
easier than in the multi-hop case.

Twitter

Continuous
information flow

Big data
software

Sentiment
analysis

Actionable
intelligence

January/February 2015	 www.computer.org/intelligent	 15

The Requirements Problem
Requirement specification is crucial
to the successful construction of soft-
ware. The requirements problem is
better presented using a simple model
for functional requirements’ specifi-
cation and verification. Consider the
simplest form of requirement speci-
fication—one that specifies a single,
verifiable function that the system
must provide:

ri ← fi(xi),

where requirement ri is a function
of some functional feature xi that
the system needs to provide. Systems
specified with such requirements are
easily verified, simply by enumerat-
ing all requirements and verifying
that the product of each individual
requirement function evaluates to 1.
That is, assuming a vector x of n
functional features that the software
needs to provide, a single require-
ment can be specified for each feature
i and verification of the software can
be modeled using the equation be-
low, where V = 1 denotes successful
verification:

∏=
=

V f x().i i

i

n

1

Although ideal and simple, the
model V for verification is inadequate
for modeling other, more demanding
software applications. For example,
consider the case of real-time soft-
ware. In these cases, software is not
only required to provide a particular
functional feature xi, but it must do so
within specified time-constraint tj. Re-
quirements for such software are func-
tions of both xi and tj, as seen below:

ri ← fi (xi ∧ ti).

In these cases, ri evaluates to 1 only
when feature xi has been met within
ti time. Thus, the proposed model

V for verification needs to be ex-
tended to account for these types of
requirements:

∏∏= ×V f x f x t() (,).real time i i j j j

j

m

i

n

-

Because big data software shares
the same time-constrained properties
as real-time software, time-constrained
requirements also apply to big data
software. At first glance, it would
seem that Vreal-time is appropriate for
verifying big data software. How-
ever, both specification and verifica-
tion of big data analytics software are
far more troublesome because a ma-
jor function expected from such sys-
tems involves making predictions on
data streams. Every big data software
product exists to process data that’s
dynamic, fast-changing, and most
crucially, subject to concept drifts.6 In
big analytics, the term concept drift
refers to changes in statistical prop-
erties of the concept to be learned.
This phenomenon applies to a host of
stochastic learning models—graphi-
cal models, Monte Carlo sampling
methodologies, naïve Bayesian clas-
sifiers, and so on7—whose learned
model parameters are directly corre-
lated to the data stream used for their
estimation. These changes occur over

time in unforeseen ways, thus causing
predictions to become less accurate
as time passes.8 This means that big
analytics software could be specified
to meet a specific accuracy threshold
(using a given test dataset) and veri-
fied over some period p.

However, due to concept drift, the
software’s performance could begin
to degrade over time—without ever
changing the software or hardware—
thus invalidating any previously ver-
ified analytics requirement! This
expiration period could be a month, a
year, or 10 years later. Clearly, Vreal-time
doesn’t capture this property of big
data software. If software engineers
are contractually bound to require-
ments, and requirements are bound
to verification, how can software en-
gineers write verifiable requirements
when faced with concept drifts? To
capture this property of big data soft-
ware, the requirements and verifi-
cation model needs to be extended
further:

ri ← fi (xi ∧ ti ∧ pi),

which mandates that the system pro-
vides a functional feature xi, within
some time constraint ti, and verifiable
during some period pi. This new form

Figure 2. Multi-hop processing of continuous information flow. In multi-hop
processing, data is processed by multiple components before making the results
available for use. If this is the case, any inconsistencies in the results would be
more difficult to detect since it will not be obvious which component produced
unreliable results. Also, any unreliable output in the multi-hop sequence will trickle
through all subsequent processing.

Sensors L3

L2

L1

Target
recognition

Topic
extraction

Speech-
to-text

Location
extraction

Sentiment
analysis

Information
extraction

Twitter

YouTube

Continuous & mixed
information flow

Big data software Actionable
intelligence

16		 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

B i g D a t a

of requirement is used to extend Vreal-time
to accurately model the specification
and verification of big data analytics
software:

∏∏

∏

= ×

×

V f x f x t

f x t p

() (,)

(, ,).

BigData i i j j j

j

m

i

n

c c c c

c

z

The model VBigData accounts for
functional, time-constrained, and
concept-drift-aware requirements.
Concept evolution,9 the emergence
of new classes, is also another data
dynamic that arises in rapidly evolv-
ing big data streams. Several algo-
rithms10 address concept drift and
concept evolution; however, our con-
cern is with the requirements and
verification modeling of the software
that could support these functional-
ities, not with the peculiarities of any
one specific methodology. If the ana-
lytics software is required to incor-
porate the detection of new classes,
the proposed VBigData verification
model captures this desire inherently
as this would be yet another time- or
periodically-constrained functional
requirement.

Although the addition of p may
seem trivial, it has significant engi-
neering implications. The most nota-
ble one is that requirements specified
for big data analytics software may
(at most) result in systems that can
only be verified reliably during some
period pi. Therefore, requirements
for such systems need to be expressed
in a way that they can be monitored
automatically against software sys-
tem events,11 such as concept drifts.
A suggested approach involves the
use of satisfaction arguments, where
the verifiability of requirements can
only be argued after assuming some-
thing about the domain.11 These new
forms of requirements might result

in additional software that needs to
be integrated into the system, which
could result in increased cost and ex-
tended schedules, since most likely
they will have significant implications
in the design, construction, testing,
and maintenance phases. The addi-
tion of p also requires a paradigm
shift in the way software contracts
are thought about. Companies con-
tracted to develop big data analytics
software (such as US Department of
Defense contractors) will have to deal
with these issues in some way, espe-
cially as big data software continues
to find its way into mainstream appli-
cations. These could possibly include
application of big data software to
national security, government poli-
cymaking, or safety-critical appli-
cations, in which case, other legal
issues addressed by professional li-
censure would have to be taken into
consideration.

The Design Problem
A glance at the literature points to
certain key quality properties that
are often cited for big data software,
including usability, performance, re-
liability, availability, security, interop-
erability, scalability, and testability,
among others. Discussing all of these
in the right amount of detail requires
far more space than the one allotted
for this article. For this reason, focus
is placed on the reliability and secu-
rity of big data software.

Reliability. Perhaps the most prob-
lematic quality attribute to design in
big data software is reliability. The
problem lies mainly in the software’s
inability to determine (with absolute
certainty) correct outcomes. Consider
the sentiment analysis example pre-
sented earlier, where big data soft-
ware monitors Twitter. In this case,
input is data streams in the form of
noisy Twitter messages, and output is

actionable intelligence in the form of
predicted (positive, neutral, or nega-
tive) sentiment. At best, the system
provides the best-effort prediction of
sentiment. This prediction could be
highly accurate, but minimal or no
guarantees are made about the reli-
ability of such prediction—in some
cases, this would even be difficult for
humans. Under single-hop, L1 and
L2 actionable intelligence conditions,
verifying the reliability is difficult,
but not impossible, since humans can
use judgment and domain knowledge
to visually detect inaccurate or ex-
treme results.

However, under multi-hop, L3 ac-
tionable intelligence conditions, the
state of the art is insufficient for
equipping software with such func-
tionality. The question then arises,
how do software engineers design
for reliability in big data software?
The design problem is related to the
specification problem discussed ear-
lier and is an open area of research
in software engineering design. Sug-
gested solutions include discovering
new (or adapting old) architectural
tactics to help increase the reliability
of such systems. For example, archi-
tectural tactics that exploit determin-
istic metadata can be incorporated to
help concurrently gauge the reliabil-
ity of predictions. To deal with con-
cept drift, a concept-drift monitor or
change detection component6 could
be incorporated into the software de-
sign to detect and alert users when
analytic models are no longer reliable.
However, achieving this functionality
is no easy task because the “design
of a change detector is a compro-
mise between detecting true changes
and avoiding false alarms.”8 Other
works have proposed the inclusion
of similar monitors to detect at run-
time whether other system features
comply with its requirements during
its lifetime.11,12 Another suggested

January/February 2015	 www.computer.org/intelligent	 17

approach involves extending the con-
cept of metamorphic properties13
for the creation of monitors capable
of detecting misbehavior using these
properties, essentially crosscutting
the requirements, design, and testing
phases. These approaches (and oth-
ers) need to be explored further to de-
termine their adequacy for providing
efficient solutions to these complex
problems.

Security. In big data software, per-
fectly functioning software can by
itself be its own security vulnerabil-
ity, such as is the case in adversarial
machine learning.14 Two types of se-
curity attacks that exist for big data
software involve execution phase at-
tacks and training phase attacks. In
the former, data streams are tapped
to influence the actionable intelli-
gence generated by the big data soft-
ware. Consider the case of important
organizations (such as government)
using big data software to gauge pub-
lic opinion from social media for a
particular topic. In such a system,
malicious attackers can create data
generators that influence big data
software to produce unreliable or
malicious results—this is done with-
out ever having to break software,
find backdoors, and so on. In the case
of Twitter sentiment analysis, attack-
ers can simply create a public account
to inject pollutant datasets.

In training phase attacks, attack-
ers gain access to user accounts and
inject the big data software with an
adversarial training dataset designed
to influence the machine learning
training process to make the classifier
misbehave.14 This would defeat the
purpose of most recommender sys-
tems and could lead to great financial
loss for companies. To prevent these
attacks, advanced endpoint input
validation/filtering techniques15 must
be developed to assure data integrity

and authenticity while (in some cases)
preserving data privacy. Another par-
ticularly important problem to some
big data software is denial of service
(DoS). In most traditional applica-
tions, denying access to systems can
result in nuisances for users and lead
to significant costs to organizations.
In big data software, denying access
to data streams for some time period
q can render the whole system a fail-
ure because they might have been
designed to work only at q. Con-
sider emergency evacuation big data
software that relies on social media
data streams to enhance traffic rout-
ing, emergency dispatching, and so
on during emergencies.16 A DoS at-
tack on the data source—instead of
the target big data application—at
period q could have catastrophic re-
sults, such as is the case in safety-
critical applications. This, of course,
could influence many aspects of the
software engineering process. Other
important security concerns include
securing computations in distrib-
uted programming frameworks15 and
devising scalable privacy-preserving
data mining computations.15,17 For
these and other security concerns, re-
search is needed to better understand
the attack surface of big data appli-
cations, to identify use (and misuse)
cases, and to devise threat models for
each possible big data attack.15

The Construction Problem
The construction problem is mainly
driven by big data software requiring
more than just programming skills.
Today, most learning algorithms are
created by machine learning scien-
tists, who aren’t necessarily the best
programmers.18 Specific issues men-
tioned in the literature include slop-
piness, maintainability, debugging,
and reproducibility.18 Most of these
problems have been addressed within
the software engineering community,

where coding styles, peer reviews,
configuration management software,
and other tools are employed. How-
ever, a common trend exists where
many machine learning advances are
being used for improving software
engineering, but not enough of soft-
ware engineering advances are being
used for improving machine learning
software.13

Other construction issues include
lack of tools and frameworks that
support assistive development.19 Pop-
ular development applications such as
Waikato Environment for Knowledge
Analysis (WEKA), Excel, Octave, or
R are designed for machine learning
software but not big data software.
Applications of this sort require all
the data to reside in memory, which
isn’t the case for big data. Some
tools are beginning to exist, such as
the Massive Online Analysis (MOA)
framework for data streaming,8 but
more are needed. Construction for
big data software is also particularly
complex because the inherent nature
of big data requires multiprocessing
technologies, such as CUDA, GPUs,
MapReduce, Hadoop, and so on,
which must be mastered during the
construction phase. Recently, new
software frameworks, specifically
targeted at improving the usability of
these technologies, are striving to re-
duce the learning curve for big data
software engineering. Examples in-
clude Mahout, which leverages the
Hadoop processing environment for
large-scale machine learning; Spark,
built on the Scala language; and
Storm for real-time analysis. Un-
doubtedly, by the time of publication,
a few more might have arrived.

Although not the focus of our pres-
ent effort, it’s worth mentioning that
efficient big data analytics also re-
quires you to keep in mind the dis-
tributed data store and retrieval
technologies underlying the analytics

18		 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

B i g D a t a

computation. These technologies
and frameworks include NoSql (sup-
ported in Cassandra and Hypertable)
and SciDB. Under this massive and
fast-changing technology landscape,
developers not only have to keep up
with the state of the art, but they must
also expend significant development
effort in experimenting with differ-
ent algorithms, multiprocessing tech-
niques, and software frameworks.19
This, in turn, will strongly impact
cost and schedules. Furthermore, the
variety of big data may often entail
multimedia processing (video, speech,
text, and so on) for a single project,
which increases complexity. Data
cleansing and preparation efforts also
add significant overhead during con-
struction.20 Future work should ad-
dress these issues, together with the
creation of out-of-the-box solutions
and exploratory tools to help during
both training as well as executing big
data software.2,21

The Testing Problem
Verifying the results of massive data
stream processing is impractical for
humans, if not impossible—it’s the
reason why big data software exists
in the first place. Throughout this
process, many defects can go unno-
ticed. The research literature reports
an “extreme imbalance between the
number of published algorithms ver-
sus those really workable in the busi-
ness environment,” and reasons given
for this imbalance include academic
researchers not taking into account
business environments.21 In other
cases, transferring from algorithm
development to implementation can
be complex, leading to problems
and defects being injected along the
way. Specific concerns mentioned in
the literature include untrustworthy
data, bad assumptions, and incorrect
mathematics among others.22 Finally,
there’s also the ethical problem of

data scientists ignoring important
details to promote new methods and
helping their new algorithms along by
making sure that nothing goes wrong
during the application of a method.18
For these reasons, the ability of non-
data scientists to test the results of big
data software is crucial.

Testing of big data software is
problematic because these programs
belong to the class of non-testable
software, where no test oracles exist
for verification. A proven approach
for testing such systems is metamor-
phic testing,13 which requires the dis-
covery of metamorphic properties
(MP) that can be used to test the va-
lidity of machine learning software.
Consider the following metamorphic
properties proposed for the Twitter
sentiment analysis example. Based
on domain knowledge, a vocabu-
lary v is identified for words associ-
ated with positive sentiment, where vi
represents a single positive word in a
tweet:

v = [v1, v2, …, vn].

Using v, several MP can be derived
to verify the system’s output. For ex-
ample, the vocabularies v , v , and
¬v can be derived for capturing syn-
onyms, antonyms, and negations of v,
respectively:

[]=   v v v v, ,..., n1 2

[]=v v v v, ,... n1 2

¬v = [〖¬v〗1, 〖¬v〗2, … , 〖¬v〗n].

With these vocabularies in place,
four different test cases can be cre-
ated using synthetic Twitter messages,
such that the sentiment classifica-
tion for messages using each vi word
should result in positive sentiment;
reusing the same messages but swap-
ping each vi word with each vi should
also result in positive sentiment
classification; and messages with

both vi and 〖¬v〗i should result in neg-
ative classification. Inconsistency in
these expected results would uncover
errors for that particular system in
that particular domain.

These verification techniques
should be explored; if successful, they
could be employed by test specialists
without them ever needing to have
expertise in machine learning. Open
areas of research in this area involves
the discovery of domain-specific MP
in various big data software, which
requires deep understanding of ma-
chine learning algorithms, software
testing, and the domain in question.
These discoveries would allow testers
to transition to more appropriate in
vivo testing approaches and will also
provide significant crosscutting con-
tributions for both requirements and
design of big data software, as dis-
cussed earlier.

Can we really engineer big data
software? Yes, we can. No one

can deny the evidence found in to-
day’s mainstream big data software,
such as Facebook, Netflix, and Ama-
zon. Surely, a great deal of successful
software engineering work has taken
place. Perhaps a more relevant ques-
tion is, has the rest of the software
engineering community mastered
the engineering of such systems? We
don’t think so.

Today, engineering these systems
still entails seeking the most accu-
rate prediction while accepting so-
lutions that sacrifice accuracy for
the sake of not having a solution at
all.8 Moreover, requirements for the
analytics portions of big data soft-
ware—to quote Captain Barbosa
from Pirates of the Caribbean: The
Curse of the Black Pearl—are “more
what you’d call ‘guidelines’ than ac-
tual rules.” Many of the issues pre-
sented so far, and more, still remain

January/February 2015	 www.computer.org/intelligent	 19

open to research. Software engineer-
ing research is needed to fully under-
stand the role of requirements, design,
and testing in big data software, and
to characterize their crosscutting ef-
fects. Research work needs to take
place to build architectures, tools, and
frameworks;23 to improve visualiza-
tion and infrastructure software; to
move from black-box to white-box
algorithms and increase usability in
adaptive learning systems;6 and to un-
derstand the role of professional licen-
sure and contract liability in big data
software, especially as it makes its
way to mainstream applications. In-
deed, much work is needed to reach
the point where high-quality big data
software can be created on time and
within budget.

References
1.	A. Jacobs, “The Pathologies of Big

Data,” Comm. ACM, vol. 52, no. 8,

2009, pp. 36–44.

2.	S. Madden, “From Databases to Big

Data,” IEEE Internet Computing, vol.

16, no. 3, 2012, pp. 4–6.

3.	J. Cohen et al., “MAD Skills: New

Analysis Practices for Big Data,”

Proc. VLDB Endowment, 2009;

http://db.cs.berkeley.edu/jmh/papers/

madskills-032009.pdf.

4.	H. Chen, R.H. Chiang and V.C. Storey,

“Business Intelligence and Analytics:

From Big Data to Big Impact,” MIS

Quaterly, vol. 36, no. 4, 2012,

pp. 1165–1188.

5.	T. Kraska, “Finding the Needle in the

Big Data Systems Haystack,” IEEE In-

ternet Computing, vol. 17, no. 1, 2013,

pp. 84–86.

6.	J. Gama et al., “A Survey on Concept

Drift Adaptation,” ACM Computing

Surveys, vol. 46, no. 4, 2014, article

no. 44.

7.	K. Murphy, Machine Learning: A

Probabilistic Perspective, MIT Press,

2012.

8.	A. Bifet et al., “MOA Massive On-

line Analysis,” 2014; http://heanet.

dl.sourceforge.net/project/moa-

datastream/documentation/Stream

Mining.pdf.

9.	M. Masud et al., “Classification and

Novel Class Detection in Concept-

Drifting Data Streams under Time

Constraints,” IEEE Trans. Knowledge

Data Eng., vol. 23, no. 6, 2001,

pp. 859–874.

10.	M. Masud et al., “Detecting Recurring and

Novel Classes in Concept-Drifting Data

Streams,” Proc. 2011 IEEE Int’l Conf.

Data Mining, 2011, pp. 1176–1181.

11.	N. Maiden, “Monitoring Our Require-

ments,” IEEE Software, vol. 30, no. 1,

2013, pp. 16–17.

12.	W.N. Robinson, “A Roadmap for

Comprehensive Requirements Monitor-

ing,” Computer, vol. 43, no. 5, 2010,

pp. 64–72.

13.	X. Xiaoyuan et al., “Testing and Vali-

dating Machine Learning Classifiers

by Metamorphic Testing,” J. Systems

and Software, vol. 84, no. 4, 2011,

pp. 544–558.

14.	J.D. Tygar, “Adversarial Machine

Learning,” IEEE Internet Computing,

vol. 15, no. 5, 2011, pp. 4–6.

15.	Cloud Security Alliance, “Expanded

Top Ten Big Data Security and Privacy

Challenges: Cloud Security Alliance,”

Apr. 2013; https://cloudsecurityalliance.

org/download/expanded-top-ten-big-

data-security-and-privacy-challenges/.

16.	J. Yin et al., “Using Social Media to En-

hance Emergency Situation Awareness,”

IEEE Intelligent Systems, vol. 27, no. 6,

2012, pp. 52–59.

17.	R. Lu et al., “Toward Efficient and

Privacy-Preserving Computing in Big

Data Era,” IEEE Network, vol. 28, no.

4, 2014, pp. 46–50.

18.	S. Soren, “The Need for Open Source

Software in Machine Learning,” J.

Machine Learning, vol. 8, no. 10, 2007,

pp. 2443–2466.

19.	A. Kumar, F. Niu and C. Re, “Hazy:

Making it Easier to Build and Maintain

Big-Data Analytics,” Comm. ACM,

vol. 56, no. 3, 2013, pp. 40–49.

20.	D.E. O’Leary, “Artificial Intelligence

and Big Data,” IEEE Intelligent Sys-

tems, vol. 28, no. 2, 2013, pp. 96–99,

2013.

21.	C. Longbing, “Domain-Driven Data

Mining: Challenges and Prospects,”

IEEE Trans. Knowledge and Data Eng.,

vol. 22, no. 6, 2010, pp. 755–769.

22.	F. Shull, “Getting an Intuition for Big

Data,” IEEE Software, vol. 30, no. 4,

2013, pp. 3–6.

23.	D. Zhang et al., “Social and Com-

munity Intelligence: Technologies and

Trends,” IEEE Software, vol. 29, no. 4,

2012, pp. 88–92.

 T h e A u t h o r s
Carlos E. Otero is an associate professor of computer engineering at the Florida Institute
of Technology. His research interests are in the areas of wireless and data-centric systems,
software engineering, and (in a broader context) the performance evaluation and opti-
mization of systems and processes across a variety of domain areas (including software,
intelligence, and wireless systems). Otero has a PhD in computer engineering from Florida
Institute of Technology. He’s a senior member of IEEE. Contact him at cotero@fit.edu.

Adrian Peter is an assistant professor of engineering systems at the Florida Institute of Tech-
nology. His research interests are in applying advanced analytics (machine learning, statis-
tical modeling, optimization, and visualization) to large-scale computing problems across
a variety of domain areas (signal processing, geospatial, environmental, sensor fusion, and
enterprise intelligence). Peter has a PhD in electrical and computer engineering from the Uni-
versity of Florida, Gainesville. He’s a member of IEEE. Contact him at apeter@fit.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

