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Big data software 

needs to be 

delivered with 

quality, on time, 

and within budget. 

But, given the 

nature of big 

data, does big 

data software 

engineering really 

work?

at defining big data, varying based on con-
text, domain, and perspective. From the in-
frastructure’s perspective, big data has been 
defined as data with high volume, velocity, 
and variety (3V), and unpredictability. In 
this context, it has also been defined as data 
with some aspect that’s so large that cur-
rent, typical methods can’t be used to pro-
cess it.1,2 From the analytics’ perspective, big 
data has been defined as data so large that 
it contains significant low probability events 
that would be absent from traditional sta-
tistical sampling methods.3 From the busi-
ness user’s perspective, big data represents 
opportunities for gaining a competitive ad-
vantage by gaining actionable intelligence.4 
Each of these definitions provides descrip-
tive and important aspects that must be sup-
ported by big data software. Borrowing from 
these definitions, we propose a definition for 
big data software as “software that supports 
the time-constrained processing of continu-
ous information flows to provide actionable 
intelligence.”

The phrase software that supports ac-
knowledges that big data software includes 
both infrastructure and analytics software—
these have been referred as big throughput 
and big analytics software, respectively.5 In-
frastructure software is needed to store, re-
trieve, transmit, and process big data. While 
it’s essential to developing big data soft-
ware, much of the emphasis and hype has 
been placed on the analytics portion of big 
data software. Nonetheless, our definition of 
big data software encompasses both types of 
software. The term time-constrained denotes 
the urgency in providing solutions. In a way, 
big data software shares a similar property 
with real-time software: late responses are 
wrong responses. The phrase continuous in-
formation flows generalizes the input of big 
data software, which has the unique proper-
ties of volume, velocity, and variety. This gen-
eralization also extends to other important 
information properties of big data input, such 
as continuity (data in motion versus data 
at rest). Data in motion (or data streams) 
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can include potentially infinite data 
streams, at high speeds of arrival, 
with data whose density changes 
over time. Finally, actionable intel-
ligence generalizes the output of big 
data software—that is, big data soft-
ware exists to provide information 
that’s directly useful for immediate 
(strategic, operational, or tactical) use 
without having to go through the full 
intelligence production process. 

Actionable Intelligence
Actionable intelligence means much 
more than simply finding or summa-
rizing data; it stresses the discovery 
of hidden (unknown and hard to find) 
patterns that can be used to predict 
concepts, events, trends, opinions, 
and so on to support decision makers. 
The expected use of actionable intel-
ligence varies from system to system, 
with each variation increasing the 
complexity involved when engineer-
ing such systems. For this reason, it’s 
important to derive a taxonomy for 
understanding actionable intelligence 
and for thinking about how it af-
fects the complexity and development 
of big data software. The following 
three levels of actionable intelligence 
are proposed:

•	Level 1 (L1), supervised actionable 
intelligence;

•	Level 2 (L2), semisupervised ac-
tionable intelligence; and

•	Level 3 (L3), unsupervised action-
able intelligence.

In L1, the system serves as deci-
sion support for humans, so that 
humans supervise the intelligence 
produced by machines before tak-
ing action. In L2, machines are re-
lied upon to take actions based on 
self-produced intelligence; how-
ever, these actions can be reversed 
or corrected by humans. For exam-
ple, an L2 spam detector uses ma-
chine learning software to predict 
whether email messages are spam. 
Once this determination is made, the 
machine takes action to send incom-
ing emails to spam or inbox folders. 
Admittedly, the process isn’t perfect, 
and human intervention is required 
when misclassification occurs. In L3, 
machines are fully relied upon to 
take actions without requiring hu-
man intervention or correction. Not 
many L3 systems exist today; some 
recommender systems operate at L3, 
but most operate at L2, for obvious 
reasons.

Another important concept that 
needs to be explained before exam-
ining the engineering of big data 
software involves the intelligence pro-
duction process. For big data soft-
ware systems, it occurs primarily in 
two ways: single- and multi-hop pro-
cessing. In single-hop processing, data 
is processed directly by a single com-
ponent, and from that processing, all 
required actionable intelligence is pro-
duced and prepared for its intended 
consumer (human or machine), as 
Figure 1 shows.

A much more difficult approach 
(from the engineering perspective) in-
volves multi-hop processing, where 
interdependencies between compo-
nents are necessary to extract de-
tailed actionable intelligence. In 
multi-hop processing, the output of 
one component is the input of an-
other. This web of components may 
be necessary to extract the most 
 informative actionable intelligence 
that can help answer questions such 
as who, what, when, where, and 
why. Figure 2 presents a conceptual 
view of big data software executing 
under multi-hop processing and ca-
pable of providing various level of 
actionable intelligence. Such systems 
are expected to process continuous 
flows of YouTube news videos, trans-
form input via speech-to-text, and 
extract sources and topics of conver-
sation via text mining. Concurrently, 
the system monitors Twitter data, 
employs topic extraction seeking top-
ics of interests, and uses sentiment 
analysis to predict public opinion. 
At each hop, the system produces ac-
tionable intelligence that’s consumed 
by other components, and at the end, 
aggregate and correlate data to pro-
vide intelligence that can be used to 
determine who’s saying what and 
the perceived public reaction to that 
event. 

Big Data Analytics 
Software Engineering
Having discussed big data software, 
its inputs, and outputs, let’s turn our 
attention to the main problems en-
countered when attempting to engi-
neer big data software. This requires 
the ability to specify requirements, 
design and construct software to 
meet those requirements, and ver-
ify through testing that the software 
meets those requirements. The focus 
is placed mainly on the big analytics 
portion of big data software.

Figure 1. Single-hop processing of information flow. In single-hop processing, 
data is processed by a single component and the output made readily available for 
immediate use. If this is the case, any inconsistencies in the results can be detected 
easier than in the multi-hop case.

Twitter

Continuous
information flow

Big data
software

Sentiment
analysis

Actionable
intelligence



January/February 2015 www.computer.org/intelligent 15

The requirements Problem
Requirement specification is crucial 
to the successful construction of soft-
ware. The requirements problem is 
better presented using a simple model 
for functional requirements’ specifi-
cation and verification. Consider the 
simplest form of requirement speci-
fication—one that specifies a single, 
verifiable function that the system 
must provide:

ri ← fi(xi),

where requirement ri is a function 
of some functional feature xi that 
the system needs to provide. Systems 
specified with such requirements are 
easily verified, simply by enumerat-
ing all requirements and verifying 
that the product of each individual 
requirement function evaluates to 1.  
That is, assuming a vector x of n 
functional features that the software 
needs to provide, a single require-
ment can be specified for each feature 
i and verification of the software can 
be modeled using the equation be-
low, where V = 1 denotes successful 
verification:

∏=
=

V f x( ).i i

i

n

1

Although ideal and simple, the 
model V for verification is inadequate 
for modeling other, more demanding 
software applications. For example, 
consider the case of real-time soft-
ware. In these cases, software is not 
only required to provide a particular 
functional feature xi, but it must do so 
within specified time-constraint tj. Re-
quirements for such software are func-
tions of both xi and tj, as seen below:

ri ← fi (xi ∧ ti).

In these cases, ri evaluates to 1 only 
when feature xi has been met within 
ti time. Thus, the proposed model 

V for verification needs to be ex-
tended to account for these types of 
requirements:

∏∏= ×V f x f x t( ) ( , ).real time i i j j j

j

m

i

n

-

Because big data software shares 
the same time-constrained  properties 
as real-time software, time- constrained 
requirements also apply to big data 
software. At first glance, it would 
seem that Vreal-time is appropriate for 
verifying big data software. How-
ever, both specification and verifica-
tion of big data analytics software are 
far more troublesome because a ma-
jor function expected from such sys-
tems involves making predictions on 
data streams. Every big data software 
product exists to process data that’s 
dynamic, fast-changing, and most 
crucially, subject to concept drifts.6 In 
big analytics, the term concept drift 
refers to changes in statistical prop-
erties of the concept to be learned. 
This phenomenon applies to a host of 
stochastic learning models—graphi-
cal models, Monte Carlo sampling 
methodologies, naïve Bayesian clas-
sifiers, and so on7—whose learned 
model parameters are directly corre-
lated to the data stream used for their 
estimation. These changes occur over 

time in unforeseen ways, thus causing 
predictions to become less accurate 
as time passes.8 This means that big 
analytics software could be specified 
to meet a specific accuracy threshold 
(using a given test dataset) and veri-
fied over some period p.

However, due to concept drift, the 
software’s performance could begin 
to degrade over time—without ever 
changing the software or hardware—
thus invalidating any previously ver-
ified analytics requirement! This 
expiration period could be a month, a 
year, or 10 years later. Clearly, Vreal-time 
doesn’t capture this property of big 
data software. If software engineers 
are contractually bound to require-
ments, and requirements are bound 
to verification, how can software en-
gineers write verifiable requirements 
when faced with concept drifts? To 
capture this property of big data soft-
ware, the requirements and verifi-
cation model needs to be extended 
further:

ri ← fi (xi ∧ ti ∧ pi),

which mandates that the system pro-
vides a functional feature xi, within 
some time constraint ti, and  verifiable 
during some period pi. This new form 

Figure 2. Multi-hop processing of continuous information flow. In multi-hop 
processing, data is processed by multiple components before making the results 
available for use.  If this is the case, any inconsistencies in the results would be 
more difficult to detect since it will not be obvious which component produced 
unreliable results. Also, any unreliable output in the multi-hop sequence will trickle 
through all subsequent processing.
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of requirement is used to extend Vreal-time 
to accurately model the specification 
and verification of big data analytics 
software:

∏∏

∏

= ×

×

V f x f x t

f x t p

( ) ( , )

( , , ).
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The model VBigData accounts for 
functional, time-constrained, and 
concept-drift-aware requirements. 
Concept evolution,9 the emergence 
of new classes, is also another data 
dynamic that arises in rapidly evolv-
ing big data streams. Several algo-
rithms10 address concept drift and 
concept evolution; however, our con-
cern is with the requirements and 
verification modeling of the software 
that could support these functional-
ities, not with the peculiarities of any 
one specific methodology. If the ana-
lytics software is required to incor-
porate the detection of new classes, 
the proposed VBigData verification 
model captures this desire inherently 
as this would be yet another time- or 
periodically-constrained functional 
requirement.

Although the addition of p may 
seem trivial, it has significant engi-
neering implications. The most nota-
ble one is that requirements specified 
for big data analytics software may 
(at most) result in systems that can 
only be verified reliably during some 
period pi. Therefore, requirements 
for such systems need to be expressed 
in a way that they can be monitored 
automatically against software sys-
tem events,11 such as concept drifts. 
A suggested approach involves the 
use of satisfaction arguments, where 
the verifiability of requirements can 
only be argued after assuming some-
thing about the domain.11 These new 
forms of requirements might result 

in additional software that needs to 
be integrated into the system, which 
could result in increased cost and ex-
tended schedules, since most likely 
they will have significant implications 
in the design, construction, testing, 
and maintenance phases. The addi-
tion of p also requires a paradigm 
shift in the way software contracts 
are thought about. Companies con-
tracted to develop big data analytics 
software (such as US Department of 
Defense contractors) will have to deal 
with these issues in some way, espe-
cially as big data software continues 
to find its way into mainstream appli-
cations. These could possibly include 
application of big data software to 
national security, government poli-
cymaking, or safety-critical appli-
cations, in which case, other legal 
issues addressed by professional li-
censure would have to be taken into 
consideration.

The Design Problem
A glance at the literature points to 
certain key quality properties that 
are often cited for big data software, 
including usability, performance, re-
liability, availability, security, interop-
erability, scalability, and testability, 
among others. Discussing all of these 
in the right amount of detail requires 
far more space than the one allotted 
for this article. For this reason, focus 
is placed on the reliability and secu-
rity of big data software. 

Reliability. Perhaps the most prob-
lematic quality attribute to design in 
big data software is reliability. The 
problem lies mainly in the software’s 
inability to determine (with absolute 
certainty) correct outcomes. Consider 
the sentiment analysis example pre-
sented earlier, where big data soft-
ware monitors Twitter. In this case, 
input is data streams in the form of 
noisy Twitter messages, and output is 

actionable intelligence in the form of 
predicted (positive, neutral, or nega-
tive) sentiment. At best, the system 
provides the best-effort prediction of 
sentiment. This prediction could be 
highly accurate, but minimal or no 
guarantees are made about the reli-
ability of such prediction—in some 
cases, this would even be difficult for 
humans. Under single-hop, L1 and 
L2 actionable intelligence conditions, 
verifying the reliability is difficult, 
but not impossible, since humans can 
use judgment and domain knowledge 
to visually detect inaccurate or ex-
treme results.

However, under multi-hop, L3 ac-
tionable intelligence conditions, the 
state of the art is insufficient for 
equipping software with such func-
tionality. The question then arises, 
how do software engineers design 
for reliability in big data software? 
The design problem is related to the 
specification problem discussed ear-
lier and is an open area of research 
in software engineering design. Sug-
gested solutions include discovering 
new (or adapting old) architectural 
tactics to help increase the reliability 
of such systems. For example, archi-
tectural tactics that exploit determin-
istic metadata can be incorporated to 
help concurrently gauge the reliabil-
ity of predictions. To deal with con-
cept drift, a concept-drift monitor or 
change detection component6 could 
be incorporated into the software de-
sign to detect and alert users when 
analytic models are no longer reliable. 
However, achieving this functionality 
is no easy task because the “design 
of a change detector is a compro-
mise between detecting true changes 
and avoiding false alarms.”8 Other 
works have proposed the inclusion 
of similar monitors to detect at run-
time whether other system features 
comply with its requirements during 
its lifetime.11,12 Another  suggested 
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 approach involves extending the con-
cept of metamorphic properties13 
for the creation of monitors capable 
of detecting misbehavior using these 
properties, essentially crosscutting 
the requirements, design, and testing 
phases. These approaches (and oth-
ers) need to be explored further to de-
termine their adequacy for providing 
efficient solutions to these complex 
problems.

Security. In big data software, per-
fectly functioning software can by 
itself be its own security vulnerabil-
ity, such as is the case in adversarial 
machine learning.14 Two types of se-
curity attacks that exist for big data 
software involve execution phase at-
tacks and training phase attacks. In 
the former, data streams are tapped 
to influence the actionable intelli-
gence generated by the big data soft-
ware. Consider the case of important 
organizations (such as government) 
using big data software to gauge pub-
lic opinion from social media for a 
particular topic. In such a system, 
malicious attackers can create data 
generators that influence big data 
software to produce unreliable or 
malicious results—this is done with-
out ever having to break software, 
find backdoors, and so on. In the case 
of Twitter sentiment analysis, attack-
ers can simply create a public account 
to inject pollutant datasets.

In training phase attacks, attack-
ers gain access to user accounts and 
inject the big data software with an 
adversarial training dataset designed 
to influence the machine learning 
training process to make the classifier 
misbehave.14 This would defeat the 
purpose of most recommender sys-
tems and could lead to great financial 
loss for companies. To prevent these 
attacks, advanced endpoint input 
 validation/filtering techniques15 must 
be  developed to assure data integrity 

and authenticity while (in some cases) 
preserving data privacy. Another par-
ticularly important problem to some 
big data software is denial of service 
(DoS). In most traditional applica-
tions, denying access to systems can 
result in nuisances for users and lead 
to significant costs to organizations. 
In big data software, denying access 
to data streams for some time period 
q can render the whole system a fail-
ure because they might have been 
designed to work only at q. Con-
sider emergency evacuation big data 
software that relies on social media 
data streams to enhance traffic rout-
ing, emergency dispatching, and so 
on during emergencies.16 A DoS at-
tack on the data source—instead of 
the target big data application—at 
period q could have catastrophic re-
sults, such as is the case in safety-
critical applications. This, of course, 
could influence many aspects of the 
software engineering process. Other 
important security concerns include 
securing computations in distrib-
uted programming frameworks15 and 
 devising scalable privacy-preserving 
data mining computations.15,17 For 
these and other security concerns, re-
search is needed to better understand 
the attack surface of big data appli-
cations, to identify use (and misuse) 
cases, and to devise threat models for 
each possible big data attack.15

The Construction Problem
The construction problem is mainly 
driven by big data software requiring 
more than just programming skills. 
Today, most learning algorithms are 
created by machine learning scien-
tists, who aren’t necessarily the best 
programmers.18 Specific issues men-
tioned in the literature include slop-
piness, maintainability, debugging, 
and reproducibility.18 Most of these 
problems have been addressed within 
the software engineering community, 

where coding styles, peer reviews, 
configuration management software, 
and other tools are employed. How-
ever, a common trend exists where 
many machine learning advances are 
being used for improving software 
engineering, but not enough of soft-
ware engineering advances are being 
used for improving machine learning 
software.13

Other construction issues include 
lack of tools and frameworks that 
support assistive development.19 Pop-
ular development applications such as 
Waikato Environment for Knowledge 
Analysis (WEKA), Excel, Octave, or 
R are designed for machine learning 
software but not big data software. 
Applications of this sort require all 
the data to reside in memory, which 
isn’t the case for big data. Some 
tools are beginning to exist, such as 
the Massive Online Analysis (MOA) 
framework for data streaming,8 but 
more are needed. Construction for 
big data software is also particularly 
complex because the inherent nature 
of big data requires multiprocessing 
technologies, such as CUDA, GPUs, 
MapReduce, Hadoop, and so on, 
which must be mastered during the 
construction phase. Recently, new 
software frameworks, specifically 
targeted at improving the usability of 
these technologies, are striving to re-
duce the learning curve for big data 
software engineering. Examples in-
clude Mahout, which leverages the 
Hadoop processing environment for 
large-scale machine learning; Spark, 
built on the Scala language; and 
Storm for real-time analysis. Un-
doubtedly, by the time of publication, 
a few more might have arrived.

Although not the focus of our pres-
ent effort, it’s worth mentioning that 
efficient big data analytics also re-
quires you to keep in mind the dis-
tributed data store and retrieval 
technologies underlying the  analytics 
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computation. These technologies 
and frameworks include NoSql (sup-
ported in Cassandra and Hypertable) 
and SciDB. Under this massive and 
fast-changing technology landscape, 
developers not only have to keep up 
with the state of the art, but they must 
also expend significant development 
effort in experimenting with differ-
ent algorithms, multiprocessing tech-
niques, and software frameworks.19 
This, in turn, will strongly impact 
cost and schedules. Furthermore, the 
variety of big data may often entail 
multimedia processing (video, speech, 
text, and so on) for a single project, 
which increases complexity. Data 
cleansing and preparation efforts also 
add significant overhead during con-
struction.20 Future work should ad-
dress these issues, together with the 
creation of out-of-the-box solutions 
and exploratory tools to help during 
both training as well as executing big 
data software.2,21

The Testing Problem
Verifying the results of massive data 
stream processing is impractical for 
humans, if not impossible—it’s the 
reason why big data software exists 
in the first place. Throughout this 
process, many defects can go unno-
ticed. The research literature reports 
an “extreme imbalance between the 
number of published algorithms ver-
sus those really workable in the busi-
ness environment,” and reasons given 
for this imbalance include academic 
researchers not taking into account 
business environments.21 In other 
cases, transferring from algorithm 
development to implementation can 
be complex, leading to problems 
and defects being injected along the 
way. Specific concerns mentioned in 
the literature include untrustworthy 
data, bad assumptions, and incorrect 
mathematics among others.22  Finally, 
there’s also the ethical problem of 

data scientists ignoring important 
details to promote new methods and 
helping their new algorithms along by 
making sure that nothing goes wrong 
during the application of a method.18 
For these reasons, the ability of non-
data scientists to test the results of big 
data software is crucial.

Testing of big data software is 
problematic because these programs 
belong to the class of non-testable 
software, where no test oracles exist 
for verification. A proven approach 
for testing such systems is metamor-
phic testing,13 which requires the dis-
covery of metamorphic properties 
(MP) that can be used to test the va-
lidity of machine learning software. 
Consider the following metamorphic 
properties proposed for the Twitter 
sentiment analysis example. Based 
on domain knowledge, a vocabu-
lary v is identified for words associ-
ated with positive sentiment, where vi 
represents a single positive word in a 
tweet:

v = [v1, v2, …, vn].

Using v, several MP can be derived 
to verify the system’s output. For ex-
ample, the vocabularies v , v , and 
¬v can be derived for capturing syn-
onyms, antonyms, and negations of v, 
respectively:

[ ]=   v v v v, ,..., n1 2

[ ]=v v v v, ,... n1 2

¬v = [〖¬v〗1, 〖¬v〗2, … , 〖¬v〗n].

With these vocabularies in place, 
four different test cases can be cre-
ated using synthetic Twitter messages, 
such that the sentiment classifica-
tion for messages using each vi word 
should result in positive sentiment; 
reusing the same messages but swap-
ping each vi word with each vi  should 
also result in positive  sentiment 
 classification; and messages with 

both vi and 〖¬v〗i should result in neg-
ative classification. Inconsistency in 
these expected results would uncover 
errors for that particular system in 
that particular domain.

These verification techniques 
should be explored; if successful, they 
could be employed by test specialists 
without them ever needing to have 
expertise in machine learning. Open 
areas of research in this area involves 
the discovery of domain-specific MP 
in various big data software, which 
requires deep understanding of ma-
chine learning algorithms, software 
testing, and the domain in question. 
These discoveries would allow testers 
to transition to more appropriate in 
vivo testing approaches and will also 
provide significant crosscutting con-
tributions for both requirements and 
design of big data software, as dis-
cussed earlier.

Can we really engineer big data 
software? Yes, we can. No one 

can deny the evidence found in to-
day’s mainstream big data software, 
such as Facebook, Netflix, and Ama-
zon. Surely, a great deal of successful 
software engineering work has taken 
place. Perhaps a more relevant ques-
tion is, has the rest of the software 
engineering community mastered 
the engineering of such systems? We 
don’t think so.

Today, engineering these systems 
still entails seeking the most accu-
rate prediction while accepting so-
lutions that sacrifice accuracy for 
the sake of not having a solution at 
all.8 Moreover, requirements for the 
analytics portions of big data soft-
ware—to quote Captain Barbosa 
from Pirates of the Caribbean: The 
Curse of the Black Pearl—are “more 
what you’d call ‘guidelines’ than ac-
tual rules.” Many of the issues pre-
sented so far, and more, still remain 
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open to research.  Software engineer-
ing research is needed to fully under-
stand the role of requirements, design, 
and testing in big data software, and 
to characterize their crosscutting ef-
fects. Research work needs to take 
place to build architectures, tools, and 
frameworks;23 to improve visualiza-
tion and infrastructure software; to 
move from black-box to white-box 
algorithms and increase usability in 
adaptive learning systems;6 and to un-
derstand the role of professional licen-
sure and contract liability in big data 
software, especially as it makes its 
way to mainstream applications. In-
deed, much work is needed to reach 
the point where high-quality big data 
software can be created on time and 
within budget. 

References
1. A. Jacobs, “The Pathologies of Big 

Data,” Comm. ACM, vol. 52, no. 8, 

2009, pp. 36–44.

2. S. Madden, “From Databases to Big 

Data,” IEEE Internet Computing, vol. 

16, no. 3, 2012, pp. 4–6.

3. J. Cohen et al., “MAD Skills: New 

Analysis Practices for Big Data,” 

Proc. VLDB Endowment, 2009; 

http://db.cs.berkeley.edu/jmh/papers/ 

madskills-032009.pdf.

4. H. Chen, R.H. Chiang and V.C. Storey, 

“Business Intelligence and Analytics: 

From Big Data to Big Impact,” MIS 

Quaterly, vol. 36, no. 4, 2012,  

pp. 1165–1188.

5. T. Kraska, “Finding the Needle in the 

Big Data Systems Haystack,” IEEE In-

ternet Computing, vol. 17, no. 1, 2013, 

pp. 84–86.

6. J. Gama et al., “A Survey on Concept 

Drift Adaptation,” ACM Computing 

Surveys, vol. 46, no. 4, 2014, article 

no. 44.

7. K. Murphy, Machine Learning: A 

Probabilistic Perspective, MIT Press, 

2012.

8. A. Bifet et al., “MOA Massive On-

line Analysis,” 2014; http://heanet.

dl.sourceforge.net/project/moa-

datastream/documentation/Stream 

Mining.pdf.

9. M. Masud et al., “Classification and 

Novel Class Detection in Concept-

Drifting Data Streams under Time 

Constraints,” IEEE Trans. Knowledge 

Data Eng., vol. 23, no. 6, 2001,  

pp. 859–874.

10. M. Masud et al., “Detecting Recurring and 

Novel Classes in Concept-Drifting Data 

Streams,” Proc. 2011 IEEE Int’l Conf. 

Data Mining, 2011, pp. 1176–1181.

11. N. Maiden, “Monitoring Our Require-

ments,” IEEE Software, vol. 30, no. 1, 

2013, pp. 16–17.

12. W.N. Robinson, “A Roadmap for 

Comprehensive Requirements Monitor-

ing,” Computer, vol. 43, no. 5, 2010, 

pp. 64–72.

13. X. Xiaoyuan et al., “Testing and Vali-

dating Machine Learning Classifiers  

by Metamorphic Testing,” J. Systems 

and Software, vol. 84, no. 4, 2011,  

pp. 544–558.

14. J.D. Tygar, “Adversarial Machine 

Learning,” IEEE Internet Computing, 

vol. 15, no. 5, 2011, pp. 4–6.

15. Cloud Security Alliance, “Expanded 

Top Ten Big Data Security and Privacy 

Challenges: Cloud Security Alliance,” 

Apr. 2013; https://cloudsecurityalliance.

org/download/expanded-top-ten-big-

data-security-and-privacy-challenges/.

16. J. Yin et al., “Using Social Media to En-

hance Emergency Situation Awareness,” 

IEEE Intelligent Systems, vol. 27, no. 6, 

2012, pp. 52–59.

17. R. Lu et al., “Toward Efficient and 

Privacy-Preserving Computing in Big 

Data Era,” IEEE Network, vol. 28, no. 

4, 2014, pp. 46–50.

18. S. Soren, “The Need for Open Source 

Software in Machine Learning,” J. 

Machine Learning, vol. 8, no. 10, 2007, 

pp. 2443–2466.

19. A. Kumar, F. Niu and C. Re, “Hazy: 

Making it Easier to Build and Maintain 

Big-Data Analytics,” Comm. ACM,  

vol. 56, no. 3, 2013, pp. 40–49.

20. D.E. O’Leary, “Artificial Intelligence 

and Big Data,” IEEE Intelligent Sys-

tems, vol. 28, no. 2, 2013, pp. 96–99, 

2013.

21. C. Longbing, “Domain-Driven Data 

Mining: Challenges and Prospects,” 

IEEE Trans. Knowledge and Data Eng., 

vol. 22, no. 6, 2010, pp. 755–769.

22. F. Shull, “Getting an Intuition for Big 

Data,” IEEE Software, vol. 30, no. 4, 

2013, pp. 3–6.

23. D. Zhang et al., “Social and Com-

munity Intelligence: Technologies and 

Trends,” IEEE Software, vol. 29, no. 4, 

2012, pp. 88–92.

 t h e  a u t h o r s
Carlos e. Otero is an associate professor of computer engineering at the Florida Institute 
of Technology. His research interests are in the areas of wireless and data-centric systems, 
software engineering, and (in a broader context) the performance evaluation and opti-
mization of systems and processes across a variety of domain areas (including software, 
 intelligence, and wireless systems). Otero has a PhD in computer engineering from Florida 
 Institute of Technology. He’s a senior member of IEEE. Contact him at cotero@fit.edu.

adrian Peter is an assistant professor of engineering systems at the Florida Institute of Tech-
nology. His research interests are in applying advanced analytics (machine learning, statis-
tical modeling, optimization, and visualization) to large-scale computing problems across 
a variety of domain areas (signal processing, geospatial, environmental, sensor fusion, and 
enterprise intelligence). Peter has a PhD in electrical and computer engineering from the Uni-
versity of Florida, Gainesville. He’s a member of IEEE. Contact him at apeter@fit.edu.

Selected CS articles and columns 
are also available for free at 

http://ComputingNow.computer.org.


