
Moinul Hossain
CS 791Z

03/02/2015

Unit Testing and JUnit

● What is Software Testing?

● What and Why Unit Testing?

● JUnit

● JUnit features and Examples

● Test Driven Development (TDD)

Outline

● Software testing is an activity to find defects in software codes

● History of Software testing dates back to 1961!

○ The book Computer Programming Fundamentals by Gerald

Weinberg and Herbert Leeds contains a chapter on testing
softwares

● Software testing in 70’s and 80’s was destruction oriented

● Modern day software testing is prevention oriented

What is Software Testing?

● Modern day softwares usually consist of four levels of testing:
○ Unit Testing
○ Integration Testing
○ System Testing
○ Acceptance Testing

What is Software Testing?

● Unit testing is a software testing method by which individual units of
source code are tested with automatic test cases

● The goal of unit testing is to isolate different parts of the program
into units and show that the individual unit works as expected

● Unit testing is done by the developers. Unit testing is developers
version of ‘acceptance test’

What is Unit Testing ?

● Unit testing finds problems early in the development cycle

● Unit testing simplifies integration

● Unit tests provide a living documentation of the system

● Unit testing helps the design by allowing to apply principles like
decoupling

Why Unit Testing ?

● An unit testing framework for Java

● Developed by Kent Beck (creator of XP) and Erich Gamma

● Most popular testing framework for Java

● Descendent of xUnit framework family

● Other available frameworks: TestNG, Arquillian, JTest etc.

JUnit

Website: junit.orgCurrent Version: 4.12

● Open source !

● Being actively developed over a decade

● Has a very good ecosystem around the developers community

● Has good support for integration with all major IDEs

● Has good support integration with project management and build
tools like Maven and Gradle

Why JUnit ?

A Basic Example of Unit Testing
1. interface Calculator {

2. int add(int a, int b);

3. }

4.

5.

6. class CalculatorImpl implements Calculator {

7. int add(int a, int b) {

8. return a + b;

9. }

10. }

1. public class TestCalculator {

2.

3. // can it add the positive numbers 1 and 2?

4. public void testSumPositiveNumbersOneAndTwo() {

5. Calculator calc= new CalculatorImpl();

6. assert(calc.add(1, 2) == 3);

7. }

8.

9. // can it add the negative numbers -1 and -2?

10. public void testSumNegativeNumbers() {

11. Calculator calc= new CalculatorImpl();

12. assert(calc.add(-1, -2) == -3);

13. }

14.

15. // can it add a positive and a negative?

16. public void testSumPositiveAndNegative() {

17. Calculator calc= new CalculatorImpl();

18. assert(adder.add(-1, 1) == 0);

19. }

20.

21. // how about larger numbers?

22. public void testSumLargeNumbers() {

23. Calculator calc= new CalculatorImpl();

24. assert(adder.add(1234, 988) == 2222);

25. }

26. }

A unit functionality Covered tests for the functionality

JUnit Architecture

A Basic Example using JUnit
1. interface Calculator {

2. int add(int a, int b);

3. }

4.

5.

6. class CalculatorImpl implements Calculator {

7. int add(int a, int b) {

8. return a + b;

9. }

10. }

1. public class CalculatorTest {

2.

3. Calculator calc;

4.

5. @Before

6. public void setUp(){

7. calc = new CalculatorImpl();

8. }

9.

10. @Test

11. public void testSumPositiveNumbersOneAndTwo(){

12. assertEqual(calc.add(1, 2) == 3);

13. }

14. }

JUnit Features

● Assertions: Specify expected output of an unit and compare

● Test set up and teardown: As easy as using @Before and @After

● Exception Testing: Test whether an Exception has been thrown by a
piece of code

● Test Suites: JUnit provides option to have suites of tests to better
organize the tests

● Stub and Mock Objects: Provides support to use stub as placeholder
for complex or yet to be developed code

JUnit Features

● Test Reports: provides options to generate test reports in different
formats like HTML, XML etc

● Support for build systems: Has strong support for integration with
different build systems like Ant, Maven and Gradle

Popular JUnit Extensions

● Cactus: For testing server side Java codes

● HTMLUnit: Models HTML documents and provides an API that
allows you to invoke pages, fill out forms, click links, etc.

● Mockito: Popular object mocking framework built on top of JUnit

Test Driven Development (TDD)

● Popular software development process often used with agile
process like SCRUM

● TDD: Write the test code first, then write the development code

● TDD forces to think how to use a component first and then how to
implement a component consequently

Test Driven Development (TDD)

1. public class CalculatorTest {

2.

3. Calculator calc;

4.

5. @Before

6. public void setUp(){

7. calc = new CalculatorImpl();

8. }

9.

10. @Test

11. public void testSumPositiveNumbersOneAndTwo(){

12. assertEqual(calc.add(1, 2) == 3);

13. }

14. }

Questions?

