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8 An Application: The Case of the 
Elevator System  

 

 

 
“In order to get some kind of limit to this enormous 
subject [elevators] it seems sensible to restrict this study 
to those devices which have land as their starting point, 
leaving aside the larger question of aviation and 
rocketry.”  

 
[Jean Gavois, in the Preface to his Going Up: An 
Informal History of the Elevator from the Pyramids to 
the Present, Otis Elevator Co., New York, 1983]  
 

 
 
 
 
8.1 Introduction   
  
   
 
Our modelling approach is illustrated in this chapter by a fairly complex application, an 

Elevator System (ELS). A brief review of this frequently used case study starts the 

presentation, then the application is defined in terms of general and temporal requirements. 

In particular, the timing constraints imposed on ELS are shown to provide a comprehensive 

coverage of the Dasarathy constraints discussed in Chapter 5. Following the specification 

steps presented in Chapter 7 the elevator system is subjected first to UML modelling, then 

the formalisation algorithms described in Chapter 6 are applied. The need of enhancing the 

formal specification and of precisely expressing the temporal requirements placed on systems 

is emphasised and, based on this application, observations regarding the modelling process 

proposed in Chapter 7 are included.  
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8.2 On the Elevator Case Study 

 

The elevator example constitutes one of the preferred case studies of software engineering 

authors, its extraction from a daily life reality (everybody knows what an elevator is) doubled 

by its intrinsic complexity --which allows the illustration of various modelling concepts and 

techniques, including the treatment of temporal constraints-- accounting for its popularity 

and frequent employment. The origins of this case study can be traced back to Donald 

Knuth's first volume on the Art of Computer Programming, where a simulation program of 

Caltech's Mathematics building's elevator was included to exemplify coroutine-based 

implementation techniques [Knuth73, pp. 280-295]. Since then, many other authors have 

resorted to the elevator problem as a means of illustrating new software development 

approaches; to point out only a few reports focused on an elevator system, we refer to Glenn 

Coleman et al's paper on simulating concurrent systems using Statemate specifications and 

automatic prototyping [Coleman90], Zhang and Mackworth's formal description of 

embedded real-time systems using Constraint Nets [Zhang93], Dong et al's approach on 

specifying parallel and distributed systems in Object-Z [Dong97b], Duval and Cattel's 

PROMELA and Synchronous C++-based method for developing safe process control 

applications [Duval97], and Schach's textbook on software engineering [Schach99]. The 

latter author points out that the elevator case study is non-trivial ("the problem is by no 

means as simple as it looks" [Schach99, pp. 347]), and can be of great value when illustration 

of software development techniques is intended. In fact, Schach makes the elevator system 

one of the two main case studies recurrent in his book. Recently, a detailed, comprehensive 

Object-Z description of an elevator has been proposed [Mahony00] and although it is one of 

the few that employs an object-oriented variant of Z, it differs from ours in several major 

aspects: firstly, it is purely formal, and we combine semi-formal graphical descriptions with 

formal specifications; secondly, they use CSP and we employ RTL as primary instrument for 

capturing temporal properties of systems; and thirdly, the OO extension of Z they employ is 

different from ours. In addition, our goal in this chapter has been to illustrate the steps and 

the artefacts of the modelling process proposed in Chapter 7, without giving comprehensive 
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details on a specific application. Thus we have been less ambitious with our Elevator System: 

it is not a multiple elevator-system (although the modelling resources employed in our 

approach, in particular UML and RTL, allow the expressing of concurrent behaviours), and 

it is not specified in all details.      

 

The starting point for our example was provided by the multiple-elevator system presented 

by Robert Holibaugh in his special report on Joint Integrated Avionics Working Group's 

Object-Oriented Domain Analysis Method (briefly denoted JODA) [Holibaugh93]. 

However, in order to make it illustrative for our purposes, we modified the problem 

statement in numerous places, in some cases by adding new requirements or by providing 

supplemental details to the existing ones, while in others by eliminating stipulations that 

would have had only limited significance for exercising our approach (for instance, we 

renounced providing the elevators with back doors). For the same illustration purposes, we 

have added a set of temporal constraints (time conditioning was non-existent in Holibaugh's 

case study) and described the solution of the problem in a fair level of detail. In this way, our 

example has departed significantly from its starting point, and acquired a “personality” of its 

own. Although fictive, without a precise correspondent in real life, the elevator described 

below is sufficiently general to be easily imagined working around the clock in the concrete, 

shadowing high-rise office building across the street.     

 

 

8.3 The Problem 
 
 
In our initial source of inspiration, the [Holibaugh93] report, the elevator system was part of 

an Office Building Transportation System that also encompassed an escalator system and a 

set of staircases.  Since the focus of this application is on the elevator system, detailed 

requirements on the building's escalators and stairs are not considered below. The general 

requirements for the elevator are denoted Rx  (where x is a number provided for easier 

referencing) while the requirements that explicitly impose timing constraints on the system 

are denoted Tx. The correspondence between the temporal constraints placed on the Elevator 



   224 
  

System and the basic Dasarathy timing constraints to which they can be related is given in 

Subsection 8.3.3 and both types of requirements are consequently treated by the problem's 

solution, presented in Sections 8.4.  

 

 

8.3.1  General Requirements for the Elevator System 

 

The general, non time-related requirements for the Elevator System are the following: 

 

[R1] The elevator serves two or more floors; 

[R2] The elevator contains on board a set of destination buttons (car buttons), one for 

each floor served by the elevator. When pressed, a destination button becomes 

illuminated and remains so until the elevators arrives at the corresponding floor; 

 [R3] The elevator has on board a set of lights (floor indicators), in one-to-one 

correspondence with the floors. At any given moment, exactly one of these indicators 

is lit, showing the floor the elevator is currently at; 

[R4] The elevator has on board two door buttons (a close door button and, respectively, 

an open door button) which, when the elevator is stopped at a floor, can be pressed 

by the passengers to close the door earlier than otherwise done automatically and, 

respectively, to keep the door open longer than otherwise allowed by the elevator's 

preset timeout; 

[R5]  The elevator contains an Alarm button that, when pressed, will generate an intense 

audio signal (further details are given in constraint [T5]);     

[R6] Each floor except the top and bottom floors has two request buttons, one for 

requesting the elevator to go up, and the other to go down. When pressed, such a 

button becomes illuminated and remains so until the elevator arrives at the floor and 

then moves in the requested direction. The terminal floors (the bottom floor and the 

top floor) have only one request button; 
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 [R7] The elevator has a single elevator door, which is either closed or open. The door 

cannot be opened while the elevator is moving and, reciprocally, when open it will 

prevent the elevator from moving; 

[R8]  On each floor, there is a floor door that will work in tandem with the elevator's door 

and, for safety reasons, a floor door can be open only if the elevator is stopped at that 

particular floor; 

[R9]   When an elevator has no requests, it will remain idle at the last visited floor (the last 

target floor at which the elevator has stopped), with its door closed; 

[R10] On board of the elevator there is a special Stop button, which when pressed will stop 

the elevator’s movement. It will not be possible to open the doors when the elevator 

is stopped in between the floors.  

 

 

8.3.2  Temporal Constraints for the Elevator System 

 

The elevator is also required to satisfy the following timing constraints: 

 

[T1] <Open Floor Door> After the elevator has stopped at a particular floor, the elevator's 

door will open no sooner than OPEN_MIN_TIME seconds and no later than 

OPEN_MAX_TIME. Practical values for these constants can be, for instance, 1.0 

seconds and, respectively, 3.0 seconds;   

[T2] <Stay Open Floor Door> After the elevator has stopped at a given floor the elevator's 

door will normally stay open for a STAY_OPEN_NORMAL_TIME period of time (e.g., 

12.0 seconds). However, if the Close Door button on board of the elevator is pressed 

before this timeout expires, the door will close but no sooner than 

STAY_OPEN_MIN_TIME (e.g., 2.0 seconds);  

[T3] <Resume Elevator Movement> After the door is closed, the movement of the elevator 

can resume, but no sooner than CLOSE_MIN_TIME seconds and no later than 

CLOSE_MAX_TIME seconds (possible values can be, for instance, 1.0 seconds and, 

respectively, 3.0 seconds);  
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[T04] <Elevator Speed Constraints> The movement of the elevator between destination 

floors should be continuously monitored, and a minimum and maximum speed 

limits should be considered. Two preset values, SPEED_LIMIT_LOW and 

SPEED_LIMIT_HIGH will serve the detection of abnormal moving conditions (too 

slow or too fast). In such cases, the elevator will be stopped immediately and an 

alarm signal will be issued. Practical values for the above constraints can be expressed 

in seconds per floor, for instance the lower limit can be 5.0 seconds/floor and the 

higher limit can be 3.0 seconds/floor (during continuous movement). It can be 

considered that floor sensors are available to detect the presence of the elevator by 

any given floor;   

[T5] <Stop Request> If the Stop button on board the elevator is pressed, the moving 

elevator will stop as soon as possible, in any case no later than STOP_MAX_TIME 

seconds (e.g., 2.0 seconds). The floor doors will not open if the elevator is not 

positioned at a floor, and the elevator will remain in this state of emergency stop for 

STAY_STOPPED_TIME seconds (e.g., 20.0 seconds) unless the Stop button will restart 

the above timeout from zero. Before the elevator resumes its movement, the Stop 

button will be illuminated for a sequence of several consecutive visual signals (timing 

requirements for both audio and visual signals are specified by [T7]);  

[T6] <Alarm Triggered> If the Alarm button inside the elevator is pressed, then the 

elevator will stop immediately according to the timing condition STOP_MAX_TIME 

(from T5) and a continuous, highly audible alarm signal will be issued (T7 gives 

details on timing characteristics of these signals). In contrast to T5, the elevator will 

not resume its movement after STAY_STOPPED_TIME seconds, and will stay stopped 

until authorization for moving is given by a designated staff member and the alarm 

system is set-off;    

[T7] <Signal Timing> The audio alarm will consists of a sequence signals, each of a 

duration no less than MIN_SIGNAL_DUR (e.g., 1.0 seconds) and no greater than 

MAX_SIGNAL_DUR (e.g., 2.0 seconds). The separation between signals, 

SIGNAL_SEPARATION, should be preset to a given value, e.g. 1.0 seconds.  The same 

constants can be used in the case of the visual signals mentioned by [T5];  
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8.3.3  Coverage of Dasarathy Constraints by the Elevator's Timing Requirements 

 

The timing constraints T1-T8 placed on the Elevator System's behaviour are intended to 

illustrate the way our proposed approach deals with a variety of temporal requirements. 

Since, as indicated in Section 5.2, Dasarathy's classification of timing restrictions offers a 

reference basis for such requirements, it is useful to notice that eight out of nine classes 

presented in Subsection 5.2.1 are covered in our case study. The correspondence between the 

elevator's timing constraints [TC1]-[TC7] and the corresponding Dasarathy classes of 

temporal constraints [DC1]-[DC9] to which they can be related is given in Table 8.I, and 

shows that all DC classes except [DC4], which is a constraint placed on external stimuli, are 

covered by at least one of the elevator timing requirements TC. This table, together with the 

solution of the problem presented in the remaining of this chapter, demonstrates that our 

proposed approach can deal with a large variety of timing restrictions placed on TCS.    

 

 

Table 8.I Correspondence between ELS’s Timing Requirements  

and Dasarathy's Constraints 

 
Elevator Timing Constraint 

 
Corresponding Dasarathy Constraints  
 

T1 <Open Floor Door> DC7 (MaxRR), and DC8 (MinRR) 

T2 <Stay Open Floor Door> DC6 (MinSR), DC7 (MaxRR), and DC8 (MinRR) 

T3 <Resume Elevator Movement> DC7 (MaxRR) and DC8 (MinRR) 

T4 <Elevator Speed Constraints> DC1 (MaxSS) and DC2 (MinSS) 

T5 <Stop Request> DC3 (MaxRS) and DC5 (MaxSR) 

T6 <Alarm Triggered> DC5 (MaxSR) 

T7 <Beep Timing> DC9 (Duration) 
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8.4 The Modelling Solution 

 

The steps of the “regular” flow of modelling activities described in Chapter 7 are illustrated 

below using the Elevator case study. The role of each modelling step is highlighted and 

examples of artefacts obtained in each step are given. 

 

 

8.4.1 Definition of Use Cases 

 

A single use case diagram is sufficient to describe the externally visible behaviour of the 

elevator system, as shown in Fig. 8.1. Within this diagram, two use cases are considered, 

Inside Request and Outside Request, and there are only two actors that interact with the 

systems, the User, a person that issues a command to the elevator, and the Elevator itself. 

 

 

User

Outside
Request

Inside
Request

Elevator System

Elevator

 
 

Fig. 8.1 ELS Use Case Diagram 



   229 
  

8.4.2 Elaboration of Scenarios 

 

The two use cases represented in Fig. 8.1 are next detailed through the use of scenarios, four 

such scenarios being presented in Fig. 8.2 to 8.5. As mentioned in Chapter 7, the scenarios 

can be described in various ways, one of which being to use application-tailored visual 

descriptions. In our case, a number of graphical symbols are used, as indicated in the legend 

attached to the figures, allowing a more elaborate description of the system’s externally 

visible behaviour.  

 

While developing the scenarios it has been observed that there is not a clear cut line between 

the two use cases considered initially, in real -life situations combinations of internal and 

external requests being issued for the elevator’s service. For this reason, the scenarios that 

follow are “attached” to the two use cases considered in Fig. 8.1 based on the type of the first 

issued request shown in the scenario. For illustration purposes only a segment of the building 

in which the elevator operates is considered (levels 2 to 6), sufficient however to describe the 

most important aspects of the elevator’s operation.  

 

While developing the scenarios, a number of rules regarding the functioning of the elevator 

have been established. To describe them, the notions of direction-changing and direction-

keeping requests need be introduced. While a direction-keeping request is simply not a 

direction-changing request, the latter can be either an internal request (for instance, someone 

presses the car button number 4 while the elevator is at floor 6 and moving up) or an 

external request (for instance when the elevator is at floor 3 and moving down a request is 

issued at floor 5, no matter for what direction).  Using these two terms, the “rules of the 

elevator” can be formulated as: 

 

Rule #1: “Maintain direction as long as possible”. This rule means basically that if more 

service requests exist, the elevator will serve first the direction-keeping requests. If, at a given 

time, there are only direction-changing requests, than the stipulations of Rule#3 below have 

to be followed; 
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Rule#2: “When maintaining the direction, go to the closest floor from which a direction-

keeping request has been issued”; 

 

Rule #3: “If direction has to be changed, change direction and then (a) try to apply rules 

Rules #1 and #2 or (b) if this is not applicable, go to the farthest floor from which a 

direction-changing request has been issued.” This rule prevents the situation of an “infinite 

loop” in the elevator’s traveling, as described in the scenario shown in Fig. 8.5.  

 

The first scenario, presented in Fig.8.2, is a normal instance of the Outside Request use case. 

Specifically, while the elevator is waiting at floor 6, a request from floor 3 is issued for 

movement up to floor 5. No other requests are issued while the elevator services this request. 

The basic behaviour of the elevator is captured in this scenario. 
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5
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Fig. 8.2 ELS Scenario: Outside Request A 
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The second scenario, shown in Fig. 8.3, is another instance of the Outside Request use case. 

Its can be described summarily as “Sorry, but I changed my mind!,” because in it the issuer 

of the request from floor 3 is no longer taking the elevator after it arrives at the floor. The 

elevator, not having any other internal or external requests to serve, becomes idle at floor 3.   

 

      

T im e

Floor

6

5

4

3

T
0 T

2
T

3
T

4
T

5 T 6
T

7

2

T
1

Legend: Moving
Elevator

Stopped or
Idle Elevator

Elevator's
Direction
Up / Down

User in
Elevator

Active Floor
Button
Up / Down

 

Fig. 8.3 ELS Scenario: Outside Request B 

 

The third scenario, presented in Fig. 8.4, also an instance of the Outside Request use case, 

describes a situation in which two requests are issued at the same floor for different 

directions. By applying Rules #1 and #2 of the elevator, the Up request at floor 4 is served 

before the Down request at the same floor, although the latter was issued first.  

 

The fourth scenario, depicted in Fig. 8.5, is an instance of the Inside Request use case that 

serves for illustrating the solution for a situation in which a user attempts to use the elevator 

in a rather mischievous way. The scenario, which can be denoted “You cannot be the 

exclusive user of the elevator!”  shows that  a user that repeatedly tries to travel between floors  
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 Fig. 8.4 ELS Scenario: Outside Request C 
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3 and 4 (by pressing car button number 3 when moving from floor 3 to 4 and car button 4 

when moving from floor 4 to3) is interrupted in this action when another request is issued at  

floor 5. This solution is made possible by Rule #3b.   

 

8.4.3 Construction of the Class Diagram 

 

The scenarios shown previously serve not only for establishing a set of rules for the intended 

behaviour of the elevator, but they also help the construction of the system’s a class structure. 

The class diagram resulted from the information gathered while developing scenarios, as well 

from the inspection of the problem’s requirements is shown in Fig. 8.6. This diagram is 

given only in terms of component classes and relationships between classes, and provides no 

details about the contents of the classes (attributes and operations are not specified yet).  

   

Elevator

PositionDetector1

1
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1 1

CarButton

1

*

SpecialCarButton

1

*

Button

FloorButton Floor
10..1

10..1

GroupIndicator

1

1

Indicator

1
*

1

1serves

AlarmSystem
11

Fig. 8.6 ELS Class Diagram: Initial Structure 
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In this class diagram the obvious components of the elevator system are represented: the 

elevator itself, the floors, the buttons, and the indicators. In order to distribute the 

functionality of the elevator, the classes AlarmSystem, responsible with issuing audio and 

visual signals in exceptional situations, and PositionDetector, intended to take care of 

monitoring the position and the speed of the elevator, are also included.  Since conceptually 

both the floor indicators and the indicators present in the elevator have always the same state 

(they show the same thing, the floor at which the elevator is currently at), a single class 

GroupIndicator has been introduced. In addition, buttons are modelled by several classes, 

based on their specific use (regular car buttons, used for accepting internal requests from the 

user, special car buttons such as Alarm, Stop, Open Door and Close Door, and floor 

buttons, which indicate the direction of external requests). Only a class Floor has been 

included in the diagram to keep the graphical representation simple, although two classes 

TopFloor and BottomFloor from which a MiddleFloor inherits would more accurately 

describe the floors in an object-oriented way (see [Dong97] solution in this respect). 

 

  

8.4.4 Specification of Sequence Diagrams 

 

Additional insight into the elevator system is obtained by developing sequence diagrams. In 

particular, while trying to assign responsibilities to the objects of the classes the internal 

behaviour of the system becomes more clear. Fig. 8.7 shows a sequence diagram that 

corresponds to the scenario depicted in Fig. 8.2 (Outside Request A Scenario). In fact, the 

sequence diagram describes only half of this scenario, yet the analysis of the elevator’s 

behaviour indicates that the key design principles of the Elevator System are captured in this 

diagram. Specifically, the diagram describes both the situation in which the elevator is 

checking its requests at a floor (“idle” or “stopped”), and the situation in which the elevator 

is moving towards a destination floor (“target floor”).  
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elevator:
Elevator

floor:
Floor

positionDetector:
PositionDetector

door:
Door

updateRequests()*
getUpButtonState()

getDownButtonState()

getCarButtonStates()

updateTarget()

close()

moveDown()

goToTarget()*

updateRequests()

getCurrentFloor()

stop()
open()

all floors
are polled

target floor is
below current floor

target reached

 
Fig. 8.7 ELS Sequence Diagram: Outside Request A 
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The design solution considered, apparent in this sequence diagram, is to continuously poll 

both the floor buttons and the internal car buttons in order to permanently maintain a list of 

existing requests (the repeated operation updateRequests in the diagram). When the need for a 

movement is detected by the idle (or stopped) elevator, the target floor is set (updateTarget 

operation) and the elevator starts moving but not before closing its door (to be precise, if the 

elevator is idle, the door is already closed). While moving towards the target the list of 

requests need be continuously updated (within the goToTarget operation, which is labelled 

“repeated” to indicate the repetitive nature of its major two components: getCurrentFloor and 

UpdateRequests, the latter perfoming the same task as in the idle or stopped situations). The 

sequence diagram also stresses the central role the Elevator class has in the system. 

 

8.4.5 Elaboration of Class Compounds 

 

With a better insight into the system’s structure and behaviour, the class compounds can be 

next detailed. Two class compounds are described in this Subsection in terms of both class 

specification (CLS) and state diagram associated with the class (CLSTD). One class is very 

simple (the Button class), while the second is quite complex, bearing the responsibility of 

much of the work done by the system (the Elevator class). The Button class compound, with 

its two components shown in Fig. 8.8 (the class specification) and 8.9 (the state diagram) is 

included here because in this particular application other classes present in the class diagram 

have a behaviour similar to that of the Button (these classes are Indicator and Door).   

 

The Elevator class includes the operations deemed necessary in the sequence diagram drawn 

in the previous modelling step and has also its attributes specified. These attributes include 

the state descriptor for the objects of the class (the state attribute), an attribute for denoting 

the elevator’s current direction, another for keeping information about the elevator’s current 

floor, and three attributes for the groups of possible requests (internal requests, external 

requests for up movement, and external requests for down movement). 

   

The CLSTD of the Elevator class compound, shown in Fig. 8.11, is constructed based on 

the following states:  
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+turnOff()
+getState() : ButtonState

#state : ButtonState
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Fig. 8.8 ELS Class Button 
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Fig. 8.9 ELS State Diagram for the Button Class 
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#current : unsigned int
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#upFloorRequests : unsigned int [ ]
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Fig. 8.10 ELS Class Elevator  
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stoppedToDown

entry: door.open()
activity: updateRequests()
exit: door.close()

movingUp

entry: moveUp()
activity: goToTarget()
exit: stop()

stoppedToUp

entry: door.open()
activity: updateRequests()
exit: door.close()
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entry: moveDown()
activity: goToTarget()
exit: stop()

when(other_level_request
and up_to_go)

when(target_reached and
up_to_go)

when(up_target)

when(no_requests)

when(level_request and up_to_go)

when(level_request and down_to_go)

when(target_reached and up_to_go)

when(target_reached
and down_to_go)

when(down_target)

when(no_requests)

when(other_level_request
and down_to_go)

when(target_reached and down_to_go)

 

Fig. 8.11 ELS State Diagram for the Elevator Class 

 

- idle, describing the situation in which the elevator has no requests, neither internal 

nor external (to be more precise, the elevator enters this state after stopping at a floor, 

waiting for a period of time, and still not having requests); 

- movingUp, which is the state of the elevator moving upwards to its current target floor; 

- movingDown, same as above, but for the opposite direction; 

- stoppedToUp, which denotes the state in which the elevator is stopped at a floor and 

either (a) has pending requests, the analysis of which indicating that the next 

movement of the elevator is an up movement, or (b) has no pending requests but it 
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has just completed its last service coming from a lower floor and has not yet entered 

yet the idle state; 

- stoppedToDown, same as above, but with either (a) a down “next direction to take,” or (b) 

a last moving direction “down.” 

 

The Alarm and Stop Elevator situations (triggered by special inside car requests) 

correspond to two abnormal states of the elevator that for simplicity have been omitted 

from the diagram. In the diagram, specific change conditions lead to the transition of the 

elevator from state to state. Detailing of these conditions is best done in Z++, as shown 

later in the chapter. 
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Fig. 8.12 ELS Class Diagram with Attributes and Operations Attached to Classes 
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With all the classes of the initial class diagram shown in Fig. 8.6 detailed in terms of 

attributes and operations the resulting class diagram is the one presented in Fig. 8.12.  

 

 

8.4.6 Formalisation through the AFCD and the AFSD  

 

Having the classes of the class diagram specified in detail in terms of attributes and 

operations and having the state diagram also specified for some classes, it is possible to apply 

the automated translation processes from UML to Z++ described in Chapter 6.  

 

First, the class diagram is translated to Z++ by applying the AFCD algorithm detailed in 

Section 6.3, the result being shown in Fig. 8.13 (the text file generated by the Java program 

presented in Appendix B has been manually edited with Z specific symbols, the generation of 

such symbols directly from the program being one of the intended near future enhancements 

of the AFCD’s implementation). 

 

Next, the state diagrams associated with the classes are formalised via the AFSD algorithm 

presented in Section 6.4. In the case of the Button class the result, shown in Fig. 8.14, 

reflects the simplicity of the state diagram (it has been included here primarily for showing 

the groups of predicates generated in the HISTORY clause of the Z++ class), while in the 

case of the Elevator class presented in Fig. 8.15 it reflects the complexity of both the class’ 

structure and behaviour. Because the Elevator state diagram is specified using transitions 

triggered by changed events, numerous internal operations have been created. The quite arid 

nature of these operations (that need be further processed by the human specifier, at least in 

what regards their proper renaming) has prompted us to add comments for them in the 

Elevator Z++ class.  

 

In both the case of the complete Z++ specification shown in Fig. 8.13 and of the detailed 

Z++ class Elevator shown in Fig. 8.15, the intervention of the human formaliser after the 

application of the AFCD and AFSD algorithms is necessary, as described in more detail in 

the next Subsection. 
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[ELEVATORSTATE, DOORSTATE, INDICATORSTATE, SPECIALCARBUTTONKIND, 
BUTTONSTATE, FLOORBUTTONKIND, FLOORKIND, DIRECTION] 
---------------------------------------------------------------------- 
CLASS System  
PUBLICS 
TYPES 
FUNCTIONS 
OWNS 
   theServesDescriptor : ServesDescriptor; 
RETURNS 
OPERATIONS 
INVARIANT 
ACTIONS 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS Elevator  
PUBLICS 
   setTarget, updateRequests, moveUp, moveDown, stop, alarm 
TYPES 
FUNCTIONS 
OWNS 
   state : ELEVATORSTATE; 
   dir : DIRECTION; 
   current : ø; 
   target : ø; 
   carRequests : seq(ø); 
   upFloorRequests : seq(ø); 
   downFloorRequests : seq(ø); 
   door : Door; 
   carButtons : ¡CarButton; 
   specialCarButtons : ¡SpecialCarButton; 
   groupIndicator : GroupIndicator; 
   positionDetector : PositionDetector; 
   alarmSystem : AlarmSystem; 
RETURNS 
OPERATIONS 
   updateRequests :  Ñ ; 
   updateTarget :  Ñ ; 
   goToTarget :  Ñ ; 
   moveUp :  Ñ ; 
   moveDown :  Ñ ; 
   stop :  Ñ ; 
INVARIANT 
ACTIONS 
   setTarget   ==> ; 
   updateRequests   ==> ; 
   moveUp   ==> ; 
   moveDown   ==> ; 
   stop   ==> ; 
   alarm   ==> ; 
HISTORY 
END CLASS 

 
 

Fig. 8.13 ELS Z++ Specification Generated by the AFCD  
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// ------------------------------------------------------------------- 
CLASS AlarmSystem  
PUBLICS 
   audioSignal, visualSignal 
TYPES 
FUNCTIONS 
OWNS 
RETURNS 
OPERATIONS 
   audioSignal :  Ñ ; 
   visualSignal :  Ñ ; 
INVARIANT 
ACTIONS 
   audioSignal   ==> ; 
   visualSignal   ==> ; 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS PositionDetector  
PUBLICS 
   getCurrentFloor, calculateSpeed 
TYPES 
FUNCTIONS 
OWNS 
   currentFloor : ø; 
RETURNS 
OPERATIONS 
   getCurrentFloor :  Ñ ø; 
   calculateSpeed :  Ñ ƒ; 
INVARIANT 
ACTIONS 
   getCurrentFloor  result! ==> ; 
   calculateSpeed  result! ==> ; 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS Door  
PUBLICS 
   open, close, getState 
TYPES 
FUNCTIONS 
OWNS 
   state : DOORSTATE; 
RETURNS 
OPERATIONS 
   open :  Ñ ; 
   close :  Ñ ; 
   getState :  Ñ DOORSTATE; 
INVARIANT 
ACTIONS 
   open   ==> ; 
   close   ==> ; 
   getState  result! ==> ; 
HISTORY 
END CLASS 
 

Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page) 
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// ------------------------------------------------------------------- 
CLASS CarButton  
PUBLICS 
   getButtonNumber 
TYPES 
FUNCTIONS 
OWNS 
   buttonNumber : ø; 
RETURNS 
OPERATIONS 
   getButtonNumber :  Ñ ø; 
INVARIANT 
ACTIONS 
   getButtonNumber  result! ==> ; 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS SpecialCarButton  
PUBLICS 
   getKind 
TYPES 
FUNCTIONS 
OWNS 
   kind : SPECIALCARBUTTONKIND; 
RETURNS 
OPERATIONS 
   getKind :  Ñ SPECIALCARBUTTONKIND; 
INVARIANT 
ACTIONS 
   getKind  result! ==>  
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS Button  
PUBLICS 
   press, turnOff, getStatus 
TYPES 
FUNCTIONS 
OWNS 
   state : BUTTONSTATE; 
RETURNS 
OPERATIONS 
   press :  Ñ ; 
   turnOff :  Ñ ; 
   getStatus :  Ñ BUTTONSTATE; 
INVARIANT 
ACTIONS 
   press   ==> ; 
   turnOff   ==> ; 
   getStatus  result! ==> ; 
HISTORY 
END CLASS 
 

 
Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page) 

 
 
 



   244 
  

// ------------------------------------------------------------------- 
CLASS FloorButton  
PUBLICS 
   getKind 
TYPES 
FUNCTIONS 
OWNS 
   kind : FLOORBUTTONKIND; 
RETURNS 
OPERATIONS 
   getKind :  Ñ FLOORBUTTONKIND; 
INVARIANT 
ACTIONS 
   getKind  result! ==> ; 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS Floor  
PUBLICS 
   getKind, setFloorNumber, getUpButtonState, getDownButtonState 
TYPES 
FUNCTIONS 
OWNS 
   kind : FLOORKIND 
   floorNumber : ø; 
   upButton : FloorButton; 
   downButton : FloorButton;    
   groupIndicator : GroupIndicator; 
RETURNS 
OPERATIONS 
   getKind :  Ñ FLOORKIND; 
   setFloorNumber : ø Ñ ; 
   getUpButtonState :  Ñ BUTTONSTATE; 
   getDownButtonState :  Ñ BUTTONSTATE; 
INVARIANT 
ACTIONS 
   getKind  result! ==> ; 
   setFloorNumber floorNumber?  ==> ; 
   getUpButtonState  result! ==> ; 
   getDownButtonState  result! ==> ; 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS GroupIndicator  
PUBLICS 
   setIndicator, resetIndicator, resetAll 
TYPES 
FUNCTIONS 
OWNS 
   size : ø; 
   indicators : ¡Indicator; 
RETURNS 
OPERATIONS 
   setIndicator : ø Ñ ø; 
    

 
Fig. 8.13 ELS Z++ Specification Generated by the AFCD ( continued from the previous page) 
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          resetIndicator : ø Ñ ; 
   resetAll :  Ñ ; 
INVARIANT 
ACTIONS 
   setIndicator ind? result! ==> ; 
   resetIndicator floorNumber?  ==> ; 
   resetAll   ==>  
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS Indicator  
PUBLICS 
   turnOn, turnOff, getState 
TYPES 
FUNCTIONS 
OWNS 
   state : INDICATORSTATE; 
   indicatorNumber : ø; 
RETURNS 
OPERATIONS 
   turnOn :  Ñ ; 
   turnOff :  Ñ ; 
   getState :  Ñ INDICATORSTATE; 
INVARIANT 
ACTIONS 
   turnOn   ==> ; 
   turnOff   ==> ; 
   getState  result! ==> ; 
HISTORY 
END CLASS 
// ------------------------------------------------------------------- 
CLASS ServesDescriptor  
PUBLICS 
TYPES 
FUNCTIONS 
OWNS 
   instancesofElevator : ¡Elevator; 
   instancesofFloor : ¡Floor; 
   servesInstances : Floor Ü Elevator; 
RETURNS 
OPERATIONS 
INVARIANT 
   dom servesInstances = instancesofFloor 
   ran servesInstances = instancesofElevator 
ACTIONS 
HISTORY 
END CLASS 
HPositionDetector ¡ PositionDetector \ [currentFloor] 
HDoor ¡ Door \ [state] 
HCarButton ¡ CarButton \ [buttonNumber] 
HSpecialCarButton ¡ SpecialCarButton \ [kind] 
HFloorButton ¡ FloorButton \ [kind] 
HGroupIndicator ¡ GroupIndicator \ [size] 
HIndicator ¡ Indicator \ [state, indicatorNumber] 

 

Fig. 8.13 ELS Z++ Specification Generated by the AFCD (continued from the previous page) 



   246 
  
 

 

CLASS  Button  
PUBLICS 
 
   press, turnOff 
 
TYPES   
 
    ButtonState ::= notilluminated | illuminated 
 
FUNCTIONS   

 OWNS    
  
  state : ButtonState 
  
 RETURNS  

OPERATIONS   
 
    press: → ; 
   turnOff: → ; 
   

 INVARIANT  
 ACTIONS  

 
 init ==> state’ = notilluminated; 
 press ==> state’ = illuminated; 
 turnOff ==> state’ = notilluminated; 

 
 HISTORY  
   
  // mutual exclusion properties 
   
  mutex({press, turnOff}) ∧ self_mutex ({press, turnOff}) ∧ 
   
  // permission predicates  
  
  �(press ⇒ state = notilluminated ∨ state = illuminated) ∧  
  �(turnOff ⇒ state = illuminated) ∧  
 
  // definition of transition effects 
 
  �(press ⇒ �(state = illuminated)) ∧ 
  �(turnOff ⇒ �(state = notilluminated)) ∧ 
 
  // reachability properties 
 
  �(state = notilluminated ⇒ press) ∧  
  �(state = illuminated ⇒ press ∨ turnOff)  
   
 END CLASS 
 

 

 

Fig. 8.14 ELS Z++ Class Button Updated by the AFSD  



   247 
  

 
 

 
CLASS  Elevator  
PUBLICS 
 
   press, turnOff 
 
TYPES   

  
   ElevatorState ::= idle | movingup | movingdown | stoppedtoup | 

                     stoppedtodown 
 
FUNCTIONS   
OWNS    
  

state : ElevatorState; 
 dir : Direction; 
 current : ø; 
 target : ø; 

 carRequests : seq(ø); 
 upFloorRequests : seq(ø); 
 downFloorRequests : seq(ø); 
 door : Door; 
 carButtons : ¡CarButton; 
 specialCarButtons : ¡SpecialCarButton; 
 groupIndicator : GroupIndicator; 
 positionDetector : PositionDetector; 
 alarmSystem : AlarmSystem;  

 
RETURNS  
OPERATIONS   

 
updateRequests :  Ñ ; 
updateTarget :  Ñ ; 
goToTarget :  Ñ ; 
moveUp :  Ñ ; 
moveDown :  Ñ ; 
stop :  Ñ ; 

 *t1 : Ñ ; // condition triggered operations  
 *t2 : Ñ ;                       // describing the transitions of  
 *t3 : Ñ ;                       // the Elevator state diagram  
 *t4 : Ñ ;                       // shown in Fig. 8.12 
 *t5 : Ñ ; 
 *t6 : Ñ ; 
 *t7 : Ñ ; 
 *t8 : Ñ ; 
 *t9 : Ñ ; 

 

 

 

Fig. 8.15 ELS Z++ Class Elevator Updated by the AFSD (continued from previous page) 
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 INVARIANT  
 ACTIONS  
 
// [...]  
// definitions of Elevator operations as in Fig.8.12  
  
*t1 ==> state’ = movingup;       // idle to movingup 
*t2 ==> state’ = movingdown;     // idle to movingdown 

   *t3 ==> stop;                    // movingup or movingdown to stoppedtoup 
               state’ = stoppedtoup;     

*t4 ==> stop;                    // movingup/movingdown to stoppedtodown  
        state’ = stoppedtodown; 
*t5 ==> door.close;              // stoppedtoup to movingup 
        state’ = movingup; 
*t6 ==> door.close;              // stoppedtodown to movingdown 
        state’ = movingdown;   

   *t7 ==> state’ = stoppedtoup;    // idle to stoppedtoup 
 *t8 ==> state’= stoppedtodown;   // idle to stoppedtodown 

   *t9 ==> state’= idle;            // stoppedtoup/stoppedtodown to idle   
  

 HISTORY  
   
 // mutual exclusion properties, permission predicates, definition  
  // of transition effects and reachability properties omitted for 
  // simplity (examples are available in Fig. 6.30 and 8.14) 
 
    // enabling conditions:  
 
  (enabled(t1) ≡ (state = idle) ∧ other_level_request_and_up_to_go) ∧    

       (enabled(t2) ≡ (state = idle) ∧ other_level_request_and_down_to_go) ∧    
  (enabled(t3) ≡ (state = movingup ∨ state = movingdown) ∧ 
                  target_reached_and_up_to_go) ∧    

       (enabled(t4) ≡ (state = movingup ∨ state = movingdown) ∧  
                       target_reached_and_down_to_go) ∧    

  (enabled(t5) ≡ (state = stoppedtoup) ∧ up_target) ∧    
       (enabled(t6) ≡ (state = stoppedtodown) ∧ down_target) ∧   

  (enabled(t7) ≡ (state = idle) ∧ level_request and up_to_go) ∧    
       (enabled(t8) ≡ (state = idle) ∧ level_request and down_to_go) ∧    
       (enabled(t9) ≡ (state = stoppedtodown ∨ state = stoppedtoup) ∧ norequests    
 

 END CLASS 
 
 

 

Fig. 8.15 ELS Z++ Class Elevator Updated by the AFSD (continued from the previous page) 
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8.4.7 Enhancement of the Formal Specification 

 

After the automated translation from UML to Z++ takes place, the results obtained by 

applying the AFCD and the AFSD must be checked since modifications and additions may 

be necessary. In the case of the ELS Z++ specification example shown in Fig. 8.13, it can be 

observed that the “state types” (e.g., ElevatorState) are translated by the AFCD as given sets, 

although they should be defined as enumerated sets. Also, in the case of the Z++ class 

Elevator shown in Fig. 8.15, the attributes of array type denoting the internal and external 

requests of the elevator are translated as seq(ø), although a more suitable representation in 

this particular case is �ø, since these attributes are better modelled as sets.   

 
The work on the formal specification, aimed at its enhancement, encompasses various 

aspects. In particular, all sorts of constraints on both the structure and the behaviour of the 

class’ instances, as well as the bodies of the operations can be specified.  Without entering in 

too many details, we exemplify this aspect of formalisation by considering the Elevator Z++ 

class of Fig. 8.15 and by defining more precisely the conditions that trigger the transitions 

between the elevator’s states. Using the modified definitions: 

 
carRequests: �ø 

upFloorRequests: �ø 

downFloorRequests: �ø 

 

and the equivalences: 
 

 

floorRequests ¡ upFloorRequests µ downFloorRequests 

requests ¡ carRequests µ floorRequests 

 

some of the conditions of the internal transit operations tK included in the Elevator class can 

be written as follows (for each condition the transition it triggers is shown on the right-hand 

side of the formula): 
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(a) other_level_requests_and_up_to_go ¡  current ∉ floorRequests ∧  

    ∃x ∈ floorRequests � x > current                          [t1] 
  

(b) target_reached_and_down_to_go ¡ (current = target ) ∧  

(dir = down ∧  Ox ∈ requests � x > target ) ∨ (dir = up ∧  

  Ox ∈ requests � x > target ∧ ∃y ∈ requests � y < target) 

         [t4] 

(c) up_target ¡ target > current             [t5] 

 

(d) level_request_and_up_to_go ¡ current ∈ upFloorRequests   [t7] 

 

(e) no_requests ¡ requests = ∅        [t9]  

 

 
Of course, the above are a very small part of the work needed in the Z++ space, a significant 

amount of detail being necessary to describe the system in a complete and precise way. In 

particular, the modelling of the complex Z++ class Elevator is a laborious task, in which the 

fine interplaying of conditions and operations need be carefully specified. During the 

enhancement of the formal specification the deformalisation process can also take place, 

modifications performed in the Z++ space being reflected partially in the UML space. 

 

Attention to temporal properties of the system is also necessary. A detailed, elaborate 

specification of these properties is possible by writing RTL formulae in the HISTORY clause 

of the Z++ classes. Taking into consideration the temporal constraints placed in Section 8.2 

on the Elevator System, solutions for expressing them in Z++ can involve the following 

expressions: 

 

(a) For the temporal constraint [T1] the condition for the door to open within a given 

interval of time after the elevator stops at a floor can be expressed as: 

 

∀i:ø1 � ∃j:ø1 � ↑(door.open,j) - ↓(stop,i ≥ OPEN_MIN_TIME ∧ 
                ↓(door.open,j) - ↓(stop,i) ≤ OPEN_MAX_TIME 
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if the interpretation of the constraint is that the door starts to open and completes this 

action within the specified time bounds, or as:   

 
∀i:ø1 � ∃j:ø1 � ↓(stop,i) = Ñ(door.open,j)  
                ∧ OPEN_MIN_TIME ≤ delay (door.open,j) ≤ OPEN_MAX_TIME 
 

if the requirement is that the door only starts its opening within the specified time 

bounds. 

  

(b) For the temporal constraint [T2], the condition for the door to stay open at floor for a 

specific period of time provided the CloseButton is not pressed during this period of 

time can be expressed as:    

 

∀i:ø1 �(Oj:ø1 � ↓(door.open,i) ≤ ♣((CloseButton.state = on):=true,j) ≤  
     ↓(door.open,i) + STAY_OPEN_NORMAL_TIME) =>  
     ↑(door.close,i+1) = ↓(door.open,i) + STAY_OPEN_NORMAL_TIME  

 

(c) For the temporal constraint [T3] the correlation between the closing of the door and the 

start of the elevator movement (either up or down) can be expressed as: 

 

∀i:ø1 � ∃j:ø1 � CLOSE_MIN_TIME ≤ ↑(move,i) - ↓(door.close,j) 
                               ≤ CLOSE_MAX_TIME 

 

(d) For the temporal constraint [T7] the details regarding the audio and visual signals in case 

of emergency can be written as: 

 
∀i:ø1 � MIN_SIGNAL_DUR ≤ duration(signal,i) ≤ MAX_SIGNAL_DUR ∧  

            ↑(signal,i+1) - ↓(signal,i) ≤ SIGNAL_SEPARATION 
 
 
The constraint [T4] can be modelled using a variable that records the value of now at “new 

floor” occurrences during the elevator’s movement, while conditions [T5] and [T6] can be 

expressed with predicates similar to those presented above.  
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Using the specification capabilities of RTL, including the extensions proposed by Lano for 

its use within the frame of Z++, detailed time-related requirements placed on the system can 

be rigorously expressed.    

 

 

8.5 Chapter Summary 

 

In this chapter the modelling approach proposed in the thesis has been exemplified using an 

Elevator System on which a number of general and temporal constraints have been placed. 

Examples of artefacts for all the steps of the regular modelling process presented in Chapter 7 

have been provided and observations on the role of each step have been included. Examples 

of applying the AFCD and AFSD algorithms described in Chapter 6 have also been 

provided, the class diagram of the ELS being translated into a Z++ specification. Remarks on 

the need for enhancing the formal specification, as well as on the need of precisely describing 

the temporal aspects of the systems have also been included.  

 

 


