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2  BACKGROUND: CONTEXT And CoNCEPTS  

 

 

 

    “You must pin down the butterfly of time.” 
 

[Michael Jackson, Software Requirements and Specifications: A 
Lexicon of Practice, Principles and Prejudices, Addison-Wesley, 
1995, pp. 78] 

 

 

2.1 Introduction 

 

In this chapter the research space and the coordinates of the thesis’ topic are defined using a 

classification based on ‘domains and ‘sub-domains’ of exploration and the major aspects of 

the larger framework in which we have undertaken our research are overviewed. By analysing 

the distinctive features of real-time (or, in our vocabulary, time-constrained) systems, object-

oriented modelling, and formality in software development the larger contour of our work is 

drawn. The main characteristics of real-time systems are analysed with the dual intent of 

establishing the context of the present research and of identifying specific challenges of 

capturing temporal properties of systems. The impact of the object-oriented paradigm on the 

software development process is also discussed and the value of graphical notations is 

emphasised.  Some of the most significant aspects of employing formal notations in various 

phases of the software life-cycle are examined, and arguments pro and contra this 

employment are reviewed. As part of the examination of formality and formalisms, the newer 

category of light formal methods, which circumscribes our approach, is briefly discussed. 

Thus, Chapter 2 sets the scene for a closer look (in Chapter 3, “Background: Notations”) at 

the two specification languages used in our approach, one formal (Z) and the other 

graphical, semi-formal, and object-oriented (UML). The same scene is then used in Chapter 

4, “Related Work,” to identify existing research approaches that are situated in the vicinity of 

our topic’s location. 
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2.2 Research Space and Topic Location 

 

The research space that encompasses the topic of the present thesis can be described by 

considering three domains of exploration (Table 2.I and Fig. 2.1). For simplification, in the 

case of the first domain, which characterises the formality of a modelling approach, only its 

‘formal’ sub-domain is considered. The second domain describes the methodological 

paradigm used for software development, which can be either object-oriented or non object-

oriented. The third domain classifies approaches as having or not having RT modelling 

capabilities. Within each of the three domains of exploration a number of sub-domains 

(areas) of interest can be further delimited according to various criteria. We have been 

interested in specifying the Z, Z++, and UML “dimensions” of a given approach, hence the 

classification in Table 2.I, which distinguishes areas denoted A, B, and C in the first domain, 

1, 2, and 3 in the second, and • and + in the third.  

 
Table 2.I  Classification of Research Approaches Based on Domains of Exploration 

 
 

Formality Domain 

 

 

Methodology Domain 

 

Real-Time Domain 

Area A [non-Z]: 

Formalism involved, 

but not Z-centred 

Area 1 [non-OO]: 

Not an object-oriented 

methodology 

Area •  [non-RT]: 

No RT modelling  

capabilities 

Area B [Z but non-OOZ]: 

Formalism involved, 

Z-centred, but not OOZ 

Area 2 [OO, non-UML]: 

An OO methodology, 

but UML not involved 

Area + [RT]: 

RT modelling capabilities 

provided 

Area C [OOZ]: 

Formalism involved, and 

an OO version of Z used 

Area 3 [UML]: 

An OO methodology 

that uses UML 

 

N/A 
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The 18 possible combinations of areas from the three domains provide a classification 

scheme in which a given approach has a class between A1• and C3+ (with the exception of 

classes C1• and C1+, which do not make sense because an OOZ notation can be used only 

in conjunction with an OO modelling strategy). This sharp delimitation of domains involves 

a certain simplification, since things are almost never purely “black or white” (formal or 

categorically non-formal, for instance), but it nevertheless serves well our localisation 

purpose. Based on the classification presented in Table 2.I, a graphical representation of 

domains can be drawn, as presented in Fig. 2.1.  
 

RT non RT

formal

non OO OO

z

Research location:
 * formal, employing an OOZ variant

* OO development, UML-based
* RT modelling capability

uml

formal

ooz

 
 

Fig. 2.1 Domains of Research Space and Topic Location 

 

The figure indicates that our class C3+ approach is placed at the intersection of the three 

major domains described above, and also enjoys the special characteristics provided by its 
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“OOZ-centred” and “UML-based” dimensions.  Before moving to investigate further the 

three domains defining the research space and discuss the details of the Z and UML 

notations used to demarcate areas in these domains, several comments are necessary. Firstly, 

to keep the figure simple, the areas in Fig. 2.1 have not been textually labelled as indicated in 

Table 2.I, but the identification of specific classes, e.g., B2•, should be straightforward. 

Secondly, the graphical representation of the abstract topology presented in Fig. 2.1 is in not 

intended to reflect the proportionality of existing approaches (for instance, there is no 

intention on our part to claim a 50-50 distribution between OO and non-OO approaches, 

as the figure might suggest). Thirdly, the classification presented in Table 2.I and its 

depiction shown in Fig. 2.1 will be used again in Chapter 4, where a survey of related 

approaches is presented.  

 

 

2.3 On Specifying Real-Time Systems 

 

2.3.1 Characteristics of Real-Time Systems 

 

In today’s fast evolving world of computing, real-time systems are taking an increasingly 

important role and are extending their reign over a growing number of application domains. 

Real-time systems prove to be useful in many areas of human activity: numerous 

commercial, industrial, medical, and military products that must pay careful attention to the 

precious resource which is the time are used on daily basis. As pointed out by Stankovic, “a 

real-time system is one in which the correctness of the system depends not only on the 

logical results, but also on the time at which the results are produced” ([Stankovic96b], pp. 

751). In a similar way, Everett and Honiden indicate that “a real-time system must respond 

to externally generated stimuli within a finite, specifiable time delay” [Everett95, pp.13]. 

Severe consequences may result if timing as well as logical correctness properties are not 

satisfied. Based on the severity of consequences, the real-time systems can be classified as 

hard real-time systems, where the failure of meeting the deadline can result in an important 

loss (including loss of human life, injury, and/or major equipment damage), or soft real-time 
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systems, in which the deadline can be occasionally missed, but the utility of the result 

decreases after the deadline [Burns97, Kopetz97]. Some authors take into consideration an 

intermediate category, firm real-time systems, which in essence can be described as having a 

shorter soft deadline and a longer hard deadline [Douglass98] (Fig. 2.2 presents a summary 

characterisation of the three types of real-time systems based on a generic utility-time 

function.) Hard real-time systems encompass aircraft controllers, process control systems, 

factory robots, traffic lights controllers, and medical devices such as heart pacemakers, while 

examples of soft real-time systems include automatic banking machines, ticket reservation 

systems, general-purpose communication systems, and embedded commercial products such 

as television sets and videocassette recorders. An example of firm real -time system is that of a 

patient ventilator system, in which an occasional late breath in the range of few seconds is 

tolerated, while a several minute delay is catastrophic [Douglass98].  

Utility

Time
th (hard deadline)

(a) Hard RTS

Utility

th (hard)
Time

ts (soft)

(b) Firm RTS

Utility (c) Soft RTS

Time
ts (soft deadline)

 
Fig. 2.2 Hard, Firm, and Soft Real-Time Systems 
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As pointed out by Stankovic, most of the activities of real-time systems have to occur in a 

timely fashion, but some non time-critical activities also coexist. The former activities are 

referred to as real-time tasks (or time-critical tasks) while the later can be simply called tasks 

[Stankovic88]. Timing constraints on tasks can be periodic, if activated every T units of 

time, aperiodic if activated at unpredictable times, or sporadic, if they aperiodic behaviour is 

further restrained by a minimum interval of time between activations [Stankovic96a]. The 

complexity of designing RTS also arises from additional types of constraints and 

requirements such as resource constraints, concurrence constraints, precedence relationships, 

placement constraints, communication requirements, criticalness. A real-time system differs 

from a traditional system (non real-time) in at least the following aspects: deadlines are 

attached to some or all of the system’s tasks, faults in the system –including timing faults– 

may lead to catastrophic consequences, the system should have the ability to deal with 

exceptions, the system must be fast, predictable, reliable, and adaptive [Stankovic88]. Lin 

and Burke show that RTS are very difficult to debug and modify, and –since there are always 

demands for new functions and configurations– they must be easy to change and reconfigure 

[Lin92]. Other authors also point out that the design of real-time software is resource-

constrained, the software itself is intricate and contains highly complex time critical parts, 

and the real-time software should be able to detect the occurrence of failures [Natarajan92, 

Everett95]. Everett and Honiden show that “development of most software focuses on how 

to handle a normal situation, but real-time, critical-application development also focuses on 

how to handle the abnormal situation” (Everett95, pp.15). And, unfortunately, as Gibbs 

points out, “errors in real-time systems ... are devilishly difficult to spot because, like that 

suspicious sound in your car engine, they only occur only when conditions are just so” 

[Gibbs94, pp.88]. In short, as noted by Douglass, RTS “must operate under more-severe 

constraints than ‘normal’ software systems yet perform reliably for long periods of time” 

[Douglass99, pp. 57]. 

 

In what follows, we give a more detailed account, albeit not exhaustive, of characteristics 

pertaining to RTS and analyse their implications on the design of a dedicated specification 

approach. Of course, it is rather difficult to find an example that exhibits all the properties 
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listed below, and it will be a massive task, if not impossible, to develop a specification 

method capable of rigorously handling all these properties. In fact, in Subsection 2.3.2 we 

focus on a reduced number of capabilities we have aimed to include in our modelling 

approach, but at this point it is useful to have a closer look at the impressive complexity of 

the RT domain. The starting point of our selection has been the list of requirements for 

specification languages presented by Narayan and Gajski in [Narayan93] and further 

analysed by Narayan in [Narayan96]. Their list of requirements is concerned, however, with 

the more restricted category of embedded systems so we have resorted to additional 

references in order to describe the larger class of real-time systems.  

 

•   Timeliness. The essential characteristic of RTS is that deadlines are imposed to some or 

all the tasks of the system. Timeliness is part of the definition of a real-time system 

[Douglass99], such system being required to work under predefined temporal constraints 

and correctly react to stimuli from its environment “on time” [Selic94]. In specification 

terms, the modelling notation should incorporate a time metric, as well as facilities for 

expressing both relative and absolute timing constraints; 

•  Reliability. One of the most imperative requirements placed on RTS, particularly on 

hard RTS, is that of reliability. Due to the gravity of the potential damages that can 

result as a consequence of a real-time system failing to function correctly, additional 

measures must be taken into consideration. As pointed out by Nancy Leveson, the vast 

majority of software faults have roots in incorrect specification [Leveson86], therefore the 

specification languages and techniques employed in the development of RTS must 

provide adequate support for incorporating reliability measures and for assessing the 

system’s safeness. Essentially, means to deliver specifications that are complete, 

consistent, comprehensible, and unambiguous are necessary [Burns97]. The use of 

formal techniques is required, at least for the security and safety-critical parts of the 

system; 

•  Intensive dynamics. Due to the typically intensive dynamics of RTS, modelling the states 

of such systems is an essential requirement for a dedicated specification language. 

Diagrammatic notations with solid mathematic foundation have been proposed (among 
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the most notable Petri Nets [Petri62, Reisig85] and Statecharts [Harel87]) and proved to 

be extremely valuable for specifying the dynamic behaviour of RTS. In particular, finite-

state machines have been used successfully in various phases of the software development 

process [Avnur90, Ding93, Harel96];    

•  Input/Output. Obviously, due to the continuous interaction with the environment in 

which a real-time system typically operates, an adequate set of symbols and operators for 

describing input/output operations should be included in the specification language;   

•  Exceptions. Real-time systems must react promptly to stimuli from their environment or 

to internal events that necessitate immediate attention. Some events, external or internal, 

are more important than others, and taking appropriate measures in response to critical 

situations is a strict requirement for such systems. Exception and interrupt handling are 

inherent in the implementation of RTS and it is desirable to have them described at the 

specification level; 

•   Concurrency. Even though concurrency is not part of the definition of RTS, many such 

systems exhibit concurrent behaviour. Moreover, as pointed out in [Shaw92], due to the 

very nature of RTS it is not sufficient to model only the system, it is also necessary to 

capture the environment in which it operates. And, this environment is inherently 

concurrent, with multiple sources of stimuli that influence the behaviour of the system. 

Consequently, a specification language for RTS should provide appropriate support for 

expressing concurrency;  

•  Distribution. As in the case of concurrency, distribution is not necessarily a characteristic 

of RTS, but it is nevertheless impossible to ignore it, at least in the case of large-scale 

systems. Capturing the distributed nature of a complex real-time system is becoming a 

necessary feature in these days when the Internet and the World-Wide Web have 

obtained the status of common nouns. However, the task of expressing both concurrency 

and distribution is very demanding [Douglass99];   

 •  Communication and synchronisation. One cannot possibly imagine a useful system in 

which various software components do not communicate and synchronise, more so in a 

real-time system that is required to be both concurrent and distributed. Clear description 



  27 

of communication and synchronisation is necessary and the specification notation must 

provide constructs and mechanisms to support it; 

•  Resource allocation. Because many RTS are also distributed, it is desirable that facilities 

for describing allocation of resources should be included in a specification language that 

aims at modelling such systems;  

•  Size. RTS are not only special in their dealing with time but in many cases they are also 

large and complex, involving numerous processes and threads, as well as a significant 

number of input/output variables. Size alone is obviously an element that affects the 

development of a system, but in the case of RTS a complicating factor is that largeness is 

inherently associated with continuous change, so provisions for extensibility should be 

built in the design of such systems [Burns97]. Both structured and object-oriented 

methods provide means of dealing with increasingly more demanding requirements on 

size; modules, classes, components, and patterns are typical solutions for dealing with 

large-size software products. Operators for expressing composition and decomposition, as 

well as mechanisms for modelling hierarchical structures are necessary;  

•  Non time-constrained activities. Although it would appear that non time-critical activities 

      should not be deemed an issue, it has been shown that incorporating such activities in 

the development of RTS may prove to be a complicating factor. The most common 

problem raised by non time-constrained activities is that a worst-case execution time for 

them (e.g., the answer from a human user) cannot be easily evaluated [Audsley96]; 

•   Computations. Typically, RTS must continuously interact with their environment and 

provide appropriate response under conditions imposed by the environment. The 

computation of the system’s response can be complex, for instance in the case of process 

control systems, which involve solving systems of possibly complicated differential 

equations. Consequently, the implementation of RTS requires the ability of 

manipulating real, fixed or floating-point numbers [Burns97]. This translates into a 

requirement for the specification language, which must be able to handle both 

quantitative and qualitative intricacies of RTS; 

•   Data modelling. RTS are the most complex type of systems –as put by Alderson et al., 

they “have proved troublesome to produce, with all the difficulties of the other kinds of 
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software-based systems together with a number of specific additional problems” 

[Alderson98, pp. 442]. Among the traditional difficulties, data modelling is a challenging 

issue if not for all, but for an increasing number of time-constrained systems. In fact, a 

branch of time-constrained systems is that of real-time database systems (RTDBS), in 

which both timely response and the ability to manipulate data that has temporal validity 

are required [Lin94]. In this respect, solutions to unambiguously specify aspects such as 

relationships between consistency constraints and timing constraints, the validity of 

external data consistency, abstractions for data, and also data transformations are needed 

[Sahraoui97];  

•  Reuse. As pointed out by Mrva, the real-time systems, particularly the embedded 

systems, appear to be poor candidates for reuse [Mrva97]. This can be explained by the 

fact that most of the RTS are specialised, typically required to resolve needs of a rather 

particular nature. Reuse seems hard to achieve with RTS for the simple reason that rarely 

two applications exhibit more than limited similarity. However, as indicated by Mrva, 

reuse is not only desirable but also possible within the realm of such systems and the 

major factors on which the reusability value of a real-time system depends on are the 

frequency and the utility of reuse, which are related to comprehensibility, habitability 

(measures how “at home” a potential user feels with the reusable components), and 

independence of components with respect to their environment [Mrva97].  The object-

oriented paradigm offers an avenue of investigation for the designers of RTS, together 

with the newer pattern-based techniques;  

•  Animation/execution. The need for animation is advocated by many authors who stress 

the importance of rapid-prototyping and early client feedback in the development of 

RTS. Animation of specifications is generally desired, because it can provide a rapid 

feedback to the designer and facilitate a better understanding of the system’s 

requirements. Although the more ambitious goal of an animation system is to generate a 

full-scale prototype or even a complete implementation of the system being developed, 

animation can be used interactively for immediate exploration purposes: the 

consequences of a specification can be evaluated dynamically, during the composition of 
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the system’s specifications, thus allowing the refining and optimisation of specifications 

[Utting95]. 

 

 

2.3.2 Focus On Time 

 

Obviously, the real-time domain is very complex and very demanding. The approach we take 

is to tackle some of its complexity and deal with several of the aspects mentioned above. 

Since the defining property of a real -time system is timeliness, we decided to focus on 

expressing temporal properties of the systems at the specification level. Because of this, and 

for reasons outlined in Subsection 1.4, we use time-constrained systems (TCS) as the 

preferred term in denoting the systems our approach is focused on, although when needed 

(primarily, for referencing purposes) the traditional RTS denomination is also used in this 

dissertation.  

 

Our “selection of emphasis” has also been based on the observation that while timeliness is a 

characteristic of both hard and soft real-time systems if we speak about TCS (as opposed to 

RTS) more stringent (“harder”) requirements placed on these systems, such as reliability and 

safety, are gently pushed towards the background. The intention, of course, has not been to 

ignore such demanding requirements, but to come up with a “more popular,” more 

pragmatic specification approach that would appeal to both software developers and users 

and would not scare them away by suggesting an emphasis on the more difficult (and less 

“popular”) subclass of complex safety-critical applications. And, while our method can 

address the modelling of hard RTS (e.g., traffic lights controllers), it is only fair to say that 

“really hard” RTS –if we may introduce this distinction– such as aircraft autopilot controllers 

or nuclear process control systems would need supplementary treatment, provided by some 

additional techniques and tools. On the other hand, while we acknowledge our approach’s 

focus to the “softer side” of RTS (in fact, not necessarily soft, since it could be either “lighter 

hard”, “firm,” or indeed “soft”!) we note that the term TCS has an additional advantage: it 

covers both reactive  (or event-driven) systems and time-based (or time-driven) systems 
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because timeliness is part of both of them. (If it were to speak simply about time-based 

systems it would have meant that we address only systems whose behaviour is driven by the 

passage of time or the arrival of time epochs [Douglass99], and this would have been 

somewhat too restrictive). 

 

Our emphasis on timing properties is illustrated by the fact that the starting point in the 

design of our approach has been provided by the archetypical classes of temporal constraints 

identified in [Dasarathy85] and that Real-Time Logic (RTL) [Jahanian86, Jahanian94], 

which offers very good support for expressing both absolute and relative timing properties, 

has been included in the proposed integrated specification method (more details are provided 

in Chapters 5 and 6). In terms of the characteristics of RTS discussed in the preceding 

subsection, the approach presented in this thesis can be summarily described as follows: it 

places primary emphasis on timeliness, provides a good modelling coverage of intensive 

dynamics, input/output, exceptions, non time-constrained activities, computations, data-

modelling and reuse, offers a fair support for dealing with concurrency, communication, 

synchronisation, and size, and does not address distribution, resource allocation, and 

animation/execution. In what regards reliability, the formal basis is here, with Z++ and RTL 

its pillars, but the particular specification approach we propose here need be complemented 

by analysis techniques that have been left outside the scope of the present dissertation.         

 

2.4 Brief Immersion in Object-Orientation 

 

2.4.1 On Objects and Their Modelling Power 

 

Over the years, the structured paradigm proved to be less effective than initially thought. By 

mid-eighties, the practitioners in the field became aware that it did not live up to earlier 

expectations, particularly in two major respects: it did not cope well with the increasing size 

of modern software products and did not support adequately the maintenance of such 

products [Schach99]. As indicated by Schach, the essential limitation of the structured 

paradigm is that its approaches for software development are either action-oriented or data-
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oriented, but not both. In response to this situation, a new alternative, soon to be known as 

object-oriented, emerged with remarkable power. Although an important breakthrough in 

software development, the apparition of the new approach was not spontaneous, but the 

cumulated result of the work of many scientists and developers [Booch94]. The origins of 

some concepts that helped shape the new approach can be traced back to as early as the 

1960s, most notably to Dahl and Nygaard (the class construct in Simula67), and to Alan 

Kay, Adele Goldberg and their team at the Xerox Palo Alto Research Center, California 

(messages and inheritance in Smalltalk) [Page-Jones99]. Other major contributors, according 

to the same author, include Larry Constantine (coupling and cohesion), Dijkstra (layers of 

abstraction), Barbara Liskov (abstract data types), David Parnas (information hiding), Jean 

Ichbiah (packages and genericity in Ada83), Bjarne Stroustrup (C++), Bertrand Meyer 

(Eiffel), Grady Booch, Ivar Jacobson, and James Rumbaugh (OOA, OOD, and UML). To 

these, we have to add Peter Chen, whose ERD (Entity-Relationship Diagrams) contribution 

[Chen76] is a recognised source of inspiration for object-oriented approaches. And, 

interestingly, if we follow Kouichi Kishida’s observations and look carefully we can find 

precursors to OO even in ancient times (Confucius) as well as in the 19th century (the 

German philosopher Max Weber) [Kishida96]! In fact, this should not be so surprising, since 

in his survey of the foundations of the object model, Booch also makes references to ancient 

philosophy, Greek in his case, as well as to Descartes [Booch94, pp. 36-37]. 

 

The newer approach, the object-oriented paradigm, is founded on the concept of object, 

which can be defined concisely as “a unified software component that incorporates both the 

data and the actions that operate on that data” [Schach99, pp. 17] or as “a concept, 

abstraction, or thing with crisp boundaries and meaning for the problem at hand” 

[Rumbaugh91, pp. 21]. More completely, an object is “an entity that: has state; is 

characterized by the actions that it suffers and that it requires of other objects; is an instance 

of some (possibly anonymous) class; is denoted by a name; has restricted visibility of and by 

other objects; may be viewed either by its specification or by its implementation” [Booch86, 

pp. 215]. The internal structure of an object is described by attributes, and messages can be 

sent to an object to invoke one of its methods (or operations) –that is, to invoke actions that 
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generally operate on the internal structure of the object. Typically, we ignore many details of 

objects, and are concerned mostly with ways of manipulating them through operations. In 

software, the notion of object covers tangible things (such as book, floor, door, or 

thermometer), persons (e.g., student, teacher, employee), roles (e.g., dispatcher, supervisor, 

controller), events (e.g., take-off, interrupt, shutdown) and an infinite variety of other things 

(e.g., proposals, meetings, poetic ideas, eulogies, referrals, rebuttals, etc.). In OO terminology 

a class is a template for objects that have similar features, more precisely the objects 

belonging to the same class have the same structure and the same behaviour (e.g., 

raymondsAlarmClock is an object of the class AlarmClock). A class can be seen as an abstract data 

type that supports inheritance. 

 

Three major principles are promoted by the OO paradigm: 

• Encapsulation, the defining principle of object-orientation, which signifies putting 

together in a single unit of both data and operations pertaining to some entity that can 

be qualified as an object (or, to be more precise, as a class, the “blueprint for creating 

objects” [Mughal00, pp. 2]). Encapsulation supports abstraction and information hiding, 

key ingredients for developing high-quality software products; 

• Inheritance, the mechanism of creating a new class from existing ones and the provider 

of the strongest foundation for reuse;  

• Polymorphism, essentially an instrument for abstraction and an enhancer of flexibility, 

with its meaning taken from the Greek equivalent of “having multiple forms,” and used 

in the OO world with the significance “same name for different behaviours.” 

 
The major breakthrough brought by the OO approach comes from the fact that the 

conceptual and physical independence of components reduces the level of complexity of 

software. Thus, both development and maintenance are simplified [Schach99]. Among the 

most important benefits of the OO approach we would nominate: 

 

• Greater modelling power, since objects correspond more naturally to real-world entities 

and as such the problem domain is better described; 
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• Increased code reusability and extensibility, due to encapsulation and inheritance, which 

offer strong support for code reuse and product extension; 

• Improved control of complexity, mainly through abstraction, information hiding, and 

localisation –the management of complexity is helped since the emphasis is on interfaces 

and interactions among independent, collaborating entities (objects). 

 

These benefits, together with a series of other advantages of the OO approach, such as 

production of software more resilient to change, greater level of confidence in the correctness 

of software through separation of its state space [Booch94], greater stability of designs over 

time, more flexible and adaptable development, and easier transition between the 

development phases [Johnson00], have lead to a proliferation of OO techniques and tools 

for software construction. Of course, there are less beneficial aspects of OO development 

that the software professionals are aware of, most significantly longer initial development 

time, decreased run-time performance, and unavailability of adequate OO DBMS, but 

overall the newer approach has gained the confidence of the software development world 

[Johnson00]. And, while there are some isolated opinions that the OO paradigm is only a 

“hype,” possibly less effective than the structured one [Niemann99], and some scientists have 

even proclaimed its impending demise  [Davis98], we share Bertrand Meyer’s position that 

“OO solutions are our best bet” and, in fact, “it’s the only game in town” [Meyer99, pp. 

144], the newly emerged component-based development actually assuming and making use 

of the OO technology.    

 

2.4.2 Object-Orientation in the Real-Time Domain 

 

For reasons mentioned in Subsection 1.1.2, the “conqueror objects” have only relatively 

recently expanded over the real-time domain. However, as the OO technology has matured, 

the focus of numerous scientists has shifted towards tackling the complexity of real-time 

applications via the OO avenue. Currently, there is a significant amount of work in this 

direction, and a number of important methods and methodologies have been proposed, 

among the most notable ROOM [Selic94, Selic96], TRIO [Bucci94, Ciapessoni99], 
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Octopus [Awad96], and Comet [Gomaa00]. The considerable attention currently paid by 

researchers and developers to the application of the OO techniques to the development of 

RT software is both indicative of the economical importance of RTS and illustrative for the 

general recognition of the OO paradigm’s modelling prowess. And, there is probably no 

better illustration for the current concerted effort in this direction than the development of 

powerful dedicated commercial tools such as I-Logix Inc.’s Rhapsody [Rhapsody01] and 

Rational Software Corporation’s Rational Rose Real-Time  [RationalRoseRT01].  In 

addition, the hottest general OO programming language of the moment, Java, has recently 

enhanced its support for RT applications through the definition of the preliminary version of 

the Real-Time Specification for Java (RTSJ), expected by E. Douglas Jensen “to become the 

first real-time programming language to be both commercially and technologically 

successful” [Bollella00, pp. xxi]. With strong research directions and important programs 

such as OMG’s Real-Time Analysis and Design Initiative [Selic99a], major advances in the 

development of industrial-use IDEs, and considerable RT support from an OO language 

such as Java that is used by a large number of programmers, the trend is obvious. We can 

safely assume that it will continue strongly in the foreseeable future.        

 

2.5  On The Importance of Graphical Notations 

 

It has been mentioned in Chapter 1 that today is almost impossible to create a viable 

software development tool without an adequate GUI interface. The provision for an easy-to-

use, friendly and functionally complete graphical interface is not simply a trend of the 

moment but a stringent requirement for any development tool intended for practical use. 

Although it might seem like a futile argumentation, it is nevertheless useful to stress the 

importance of visual interfaces in such tools. And perhaps there is no better way to emphasise 

this idea than by paraphrasing David Taylor who, in a recent article, recalls the following 

prediction he made more than 15 years ago about the OO paradigm: “by the year 2000 no 

one would talk about objects any more because the technology would be so thoroughly 

absorbed into the mainstream that no one would think to mention it” [Taylor99, pp. 50]. 

While we share Meyer’s position and question the accuracy of Taylor’s affirmation in the 
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OO context (Meyer considers that several more years are still needed before Taylor’s 

affirmation can be fully supported [Meyer99]), we believe that this is truly the case for 

graphical interfaces in the context of software tools. Thus, we can state that they are here for 

quite a while and practically taken for granted, so “nobody would think to mention them.” 

In fact, animation and multimedia capabilities are an important part of our interaction with 

the computers and they are expected to have an increasingly larger presence in modern 

professional tools, so perhaps discussing GUI advantages runs the risk of obsoleteness.   

 

But it is not only the graphical user interface we are referring to; the use in our approach of 

UML, defined as a “visual modelling language” [Quatrani98], corresponds to another reality, 

that of the need for visual notations in analysis and design. In Chapter 1 the motivations for 

a combination graphical notation (semi-formal in our case) with a formal language for 

software specification have been presented and while we do not intend to discuss here visual 

languages and environments in general, we refer nevertheless to [Green96] for a complete list 

of cognitive dimensions that can be used to evaluate the benefits of visual notations, 

including closeness of mapping, abstraction gradient, role-expressiveness, consistency, 

progressive evaluation, and visibility. Also, for a thorough rebuttal of some common 

objections to the use of visual representations in the computing process we refer to [Cox93]. 

However, the task is simpler in our case, since OO methodologies have been traditionally 

supported by graphical notations, and it is quite hard today to imagine such a methodology 

without an accompanying set of graphical symbols for classes, relationships, collaboration 

diagrams, etc.   

 

In our opinion, the use of visual representations, as opposed to simply employing text, is 

strongly justified by enhanced support for abstraction, better representation of information 

in terms of structures (components and their relationships), increased expressiveness (richness 

of information content), simpler syntax, capability for direct manipulation, and increased 

naturalness (which facilitates communication).     

Many scientists have acknowledged the advantages of visual  notations in software 

development by adding a “visual dimension” to their specification approaches, for instance 
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Buhr’s diagrams for the design of Ada applications [Buhr90], Dillon et al.’s Graphical 

Interval Logic (GIL) aimed at representing the temporal evolution of concurrent systems’ 

properties [Dillon94], Roman et al.’s custom built Pavane visualisations for capturing 

formally expressed specifications and designs [Roman96], and Taentzer’s visual rules for 

declarative specification of behaviour in OO modelling techniques [Taentzer99]. In the “Z 

area” an interesting approach is the one taken by Kim and Carrington who, based on Kent’s 

Constraint diagrams [Kent97] and Kent and Gil’s Contract Box notation [Kent98] propose 

3D visualisations of Z expressions to facilitate the understanding of specifications [Kim99b].   

 

It is also important to note that visual notations are not necessary semi-formal (or informal) 

because when accompanied by precise semantics they fit in the class of formal notations (this 

is the case, for example, of Petri Nets and Statecharts, two powerful techniques used for 

modelling specific aspects of RTS). But even in the case of more general semi-formal 

notations such as DFD (Data Flow Diagrams), ERD, or UML the expressive power 

provided by their graphical representation is of considerable help during the development 

process.       

 

And, to conclude the case for graphical notations, perhaps apparently a minor aspect, but 

nevertheless solidly backed by its acceptance in practice is Together Soft Corporation’s 

inclusion of colours in the modelling process [TogetherSoft00b]. Colours and other elements 

of visualisation are, in our opinion, great enhancers of productivity in developing software 

products.   

 

 

2.6 Formal Notations in Software Development 

 

2.6.1 Alexander’s Definition of a Formal System 

 

A clear and concise definition of a formal system can be found in [Alexander95]. The author 

uses the following terminology (key terms are highlighted by us using italics): 
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• A formal system consists of a formal language and a deductive apparatus; 

• A formal language has two essential components: an alphabet of symbols and a set of 

grammar rules; 

•  The grammar rules are used to construct well-formed formulas; 

• A deductive apparatus is a set of axioms (basic truths) plus a set of inference rules (e.g., 

substitution, simplification, expansion rules); 

• The inference rules produce a well-formed formula from other well-formed formulas; the 

deductive apparatus also provides means to establish whether a well-formed formula is a 

direct consequence of another;  

• To apply a formal system to a problem, the formal system must be given semantics, 

which in essence provide a mapping between objects in the problem domain and well-

formed formulas in the formal language; 

• With the semantic mapping established, the formal system can be used to create a formal 

model of “known characteristics” of the problem domain. 

 

As pointed out by Alexander, software systems requirements describe the desired behaviour 

of a system within its operational environment. In essence, the execution of a software 

artefact can be described formally by a precondition I(x) and a post-condition O(x,z), where 

x is the input of the execution and z is its output. In short, when I(x) is true, the execution of 

the software artefact generates z, which satisfies O(x,z). The key issue in software 

development is to find some program P(x) that produces z under the conditions stipulated by 

the pre-condition I and the post-condition O. This process of determining an appropriate 

P(x) is complex, and requires successive refinements, each producing a more concrete model 

of the system (the starting point being a high-level model of the requirements). Each 

refinement involves two fundamental processes, synthesis and analysis. Alexander points out 

that in general both synthesis, the creation of a new model of the system, and analysis, the 

verification of the model with respect to the original model, can be reliable only if formal 

models are employed.  Semi-formal models are unable to predict or verify most of the 

system’s characteristics.  
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According to the same author, “a software specification is a model of a developing software 

system” and “formal specification is representing software specification using a formal 

model” [Alexander95, pp. 30]. The “foundations picture” drawn by Alexander can be 

extended with a couple of definitions proposed earlier by Jeannette Wing:  

 

• “A formal specification language provides a notation (its syntactic domain), a universe of 

objects (its semantic domain), and a precise rule defining which objects satisfy each 

specification” [Wing90, pp. 10]; 

• Formal specification languages supply the mathematical basis for formal methods, which 

are “mathematically based techniques for describing system properties” [Wing90, pp. 8].  

 

2.6.2  Classifications and Examples of Formal Methods 

 

The usual way of classifying formal methods is based on the traditional model-oriented 

versus property-oriented criterion. The distinction between these two categories of methods 

stems from the way the behaviour of the system is defined, directly or indirectly. A model-

oriented method directly describes the behaviour of a system in terms of sequences of states 

(each state being characterised by a set of instance variables) and operations that can cause 

state transitions. The property-oriented methods can be further classified as axiomatic or 

algebraic, depending on their underlying mathematical foundation (first order predicate logic 

or many sorted algebras). In both cases, property-oriented methods define the behaviour of 

the system indirectly, via a set of properties usually expressed as axioms that the system must 

satisfy [Wing90]. In their comprehensive survey of formalisms Liu and Zedan propose a 

more refined taxonomy by identifying five classes of formal methods, specifically model-

based, logic-based (logics are employed to express the desired properties of the systems, 

including temporal and probabilistic behaviours), algebraic, process algebra-based (differ 

from algebraic by supporting explicit representation of concurrency), and net-based 

(graphical notations with precise formal semantics) [Liu97]. On the same topic, Gaudel 

points out that a finer distinction between formal methods can be made by using additional 

criteria, specifically [Gaudel94]: 
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•  Their level of formality –the methods can be classified according to three key terms, 

namely  ‘formalised,’ ‘conceptual,’ and ‘deductive’. Formal methods are obviously 

formalised but the degree of the notation’s formalisation and the potential of performing 

various types of checks are different from method to method. Similarly, different 

techniques emphasise in various degrees their capability of modelling conceptual aspects 

of systems and exhibit deduction systems of various degrees of complexity; 

•  The life-cycle stages where the techniques are applied. The classification encompasses 

activities such as domain specification, requirements engineering, design by refinement, 

proof of correctness, software re-engineering, and reuse;  

• The specific aspects of computing they address. Algebraic methods are focused on 

describing abstract data types in an implementation-independent manner, model-

oriented techniques aim at explicitly dealing with the dynamics of state-based systems, 

while other approaches address aspects specific to reactive and distributed systems, such 

as communication and concurrency; 

• The mathematical foundation on which they are based, in terms of conceptual 

framework and deduction system. The conceptual foundations include process algebras, 

automata, set theory, and partial functions, while the deduction systems can be based on 

first-order predicate logic, higher-order logic, temporal logic, etc.; 

•  The methodological apparatus accompanying the method. Typically, this may consist of 

data tool kits in the case of model-oriented techniques, or may be provided as a kernel 

for property specification in the case of algebraic or axiomatic methods.  

 

Some of the most representative formal methods are, in alphabetical order, Abrial’s B-

Method [Abrial96], Hoare’s CSP [Hoare78, Hoare85], Milner’s CCS [Milner80], ITL 

(Interval Temporal Logic) [Moszkowski86], Larch [Guttag85, Guttag93], LOTOS [ISO89], 

Petri Nets [Petri62, Reisig85], RTL (Real-Time Logic) [Jahanian86], RTTL (Real-Time 

Temporal Logic) [Ostroff89], Statecharts [Harel87], Temporal Logic [Rescher71, Pnueli77, 

Manna81], VDM [Jones90], and Z [Spivey92]. A large variety of environments and tools 

have been developed to accompany the existing formal methods and a significant number of 
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extensions and variations have been proposed. Several notable variants and tools pertaining 

to the “Z sub-domain” are discussed in Subsection 3.2.2 of this thesis. 

 

2.6.3 Advantages and Disadvantages of Formal Methods 

 

There has been a fair amount of debate over the applicability of formal methods in practice 

and especially over their potential of becoming working instruments for the large community 

of software developers. The attitudes vary from strong skepticism [Lawrence96, Glass96] to 

resolute conviction [Hall90, Meyer97, Kapur00], with many views within the range 

delimited by the above positions. We note however that the tendency is to recognise the 

benefits of formality in software development, but to caution also about its perceived 

disadvantages.  

 

In what follows we present a summary of both benefits and disadvantages of applying formal 

techniques but not before mentioning that precisely the intricacies of these techniques 

prompted us to decide on the fundamental theme of our thesis, that of integrating formality 

with semi-formality in software specification.  

 

The main reasons for employing formal methods are related to achieving the following goals: 

 

•  Better understanding of the system through formal specification and increased 

intellectual control [Gerhart94, Sommerville95, Clarke96, Hall96]. Daniel Jackson, in 

particular, remarkably refutes Brian Lawrence’s opinion that, due to the difficulties 

associated to their application, formal methods may not be actually needed. Jackson 

considers that documents written in a natural language cannot be adequate repositories 

of an analyst’s insights and that the greatest benefits of formalising requirements reside in 

clarifying ideas, revealing unexpected issues, and providing relevant feedback  for the 

discussion with the client (Jackson’s counterpoint to Lawrence’s opinion [Lawrence96], 

in [Jackson96a]). Also, Jeannette Wing remarkably notes that “the greatest benefit in 
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applying a formal method often comes from the process of formalizing rather than from 

the end result” [Wing90, pp. 13]; 

•  Higher degree of confidence through rigorous verification and property proving, 

particularly needed for the development of safety or security-critical systems 

[Sommerville95, Liu97, Schach99, Kapur00]; 

•  Increased customer satisfaction and higher quality of products, including earlier 

detection and minimisation of errors, as well as enhanced functionality and performance 

[Gerhart94, Larsen96]; 

•  Improved communication via supplemental notations [Gerhart94, Jackson96a]; 

•  Power of abstraction or, as expressively stated by D. Jackson, “simplicity by omission” 

[Jackson96a, pp. 21]; 

• Competitive advantage resulting from applying the best practice [Gerhart94, Kelley-

Sobel00]; 

• Compliance with standards or certification requirements [Hinchey96, Kapur00];   

• Possibility of automatic transformation from specification to implementation 

[Sommerville95]; 

•  Potential for reuse by enhanced identification of commonality [Bowen95a, Jackson96a, 

Meyer97]; 

• Educational benefits, including better understanding of research-and-design issues 

[Gerhart94] and improvement of complex problem solving skills [Kelley-Sobel00].  

 

On the negative side, the following are considered the main disadvantages of formal 

methods: 

 

• Difficult to use in practice due to their underlying mathematics, perceived by many 

developers as being hard to master [Gaudel94, Sommerville95, Lawrence96]. 

Representatively, Stephen Schach lists as weaknesses of formal specification methods 

“hard for team to learn, hard to use, almost impossible for most clients to understand” 

[Schach99, pp. 364];  
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• Lack of supporting tools [Gerhart94, Morgan94, Dill96, Holloway96]; 

• Not general enough, and not yet sufficiently employed in combination with other 

methods, formal or informal [Gerhart94, Clarke96, Lawrence96]; 

• Insufficient formal education and training of developers [Jones96, Hinchey96, Clarke96, 

Zimmerman00] and lack of educational support, including suitable textbooks [Kelley-

Sobel00]; 

• Slow technology transfer from research to industry [Gaudel94, Glass96, Clarke96];   

• Unwillingness of customers to invest effort in acquiring the necessary skills for dealing 

with formal representations of the systems [Sommerville95]; 

• Insufficient management support [Sommerville95]; 

• Inadequate notation, difficult to understand and use [Parnas96]; 

• Lack of application on significant, complex real-world problems [Holloway96, Dill96, 

Zimmerman00] and lack of truly impactive, convincing results [Parnas96]. 

 

Based on the analysis of a number of negative opinions about formal methods Hall [Hall90] 

and Bowen and Hinchey [Bowen95b] point out that many of the perceived disadvantages 

are actually “myths” and aptly dispel these myths with counterexamples and solid 

justification. Among the typical “myths” (or misconceptions) about formal methods the 

most common are: they increase development costs, can be applied only to safety critical 

systems, delay the delivery of the product, require a high level of mathematical skill, and are 

not actually necessary. 

 

Overall, we share the view of those who advocate the application of formal methods, and 

believe that the difficulties of learning them are well paid off by the benefits they can bring. 

On the other hand, we agree with Anthony Hall that they are not a universal panacea 

[Hall90] and believe that integrating them into a software development approach that 

combines formality with informality can increase their chances of success in practice. Also, 

we need not forget that like most other things in life, formal methods should not be 

overused, otherwise they may turn out to be actual obstacles in the completion path of a 
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software product. Or, in Bowen and Hinchey’s words, “thou shalt formalize, but not 

overformalize” [Bowen95a, pp. 57].  

 

2.6.4 Formal Techniques within the Software Development Process 

 

As indicated in Subsection 2.6.1, a formal system can essentially perform two kinds of 

activity, analysis and synthesis. On practical terms, formal techniques can be applied during 

all stages of formal development. Specific activities include rigorous specification of 

requirements, specification verification and validation, program refinement from 

specifications, specification-based testing, re-engineering, and reuse [Wing90, Gaudel94]. As 

pointed out by many authors, the greatest benefits can be obtained by applying formal 

techniques in the initial stages of development, when the early detection of errors saves a 

considerable amount of time and money [Leveson86, Morgan94, Larsen96, Schach99].    

 

2.6.5 A New Trend: Lighter Use of Formal Methods 

 

Recognising the need for a larger acceptance of formal methods, a new direction of 

investigation has emerged within the last few years, focused on a more pragmatic application 

of formalisms in software development. In order to increase the use of formal methods in 

industrial applications, including large-scale projects and applications outside the safety-

critical area, cost-effective ways of improving the quality of software have been proposed. In 

this direction, Jones suggests the use of formal methods light, an approach focused on 

sketching the abstract model of the system, seen as crucial for understanding the architecture 

of the system, with minimum emphasis on notational details [Jones96]. In the same line of 

research, Jackson and Wing consider that lightweight formal methods, characterised by 

partiality in language, modelling, analysis, and composition, can bring greater benefits at 

reduced cost by allowing economically feasible automatic analysis of selected parts of the 

system [Jackson96b]. The authors’ opinion is that the generality of an expressive language 

such as Z is an impediment for tool-supported analysis while simpler, less expressive, but 

more “focused” formal methods, can have greater effect in practical applications. An 
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exponent of the new direction, the lightweight modelling notation Alloy, based on a subset 

of Z and incorporating a limited number of extra features necessary for object modelling, has 

been recently developed at the Massachussetts Institute of Technology, together with a 

supporting tool entitled Alloy Constraint Analyzer [Jackson00a, Jackson00b]. Under the 

same umbrella of lightweight formal methods, Easterbrook et al. report very promising 

results of applying, in three NASA projects, “partial analysis on partial specifications, without 

a commitment to developing and baselining complete, consistent formal specification” 

[Easterbrook98, pp. 5]. Also, based on two other NASA case studies, Feather concludes that 

lightweight formal methods are useful for rapid analysis of specifications, yield results in a 

cost-effective and timely manner, and can be successfully used as complements to other 

forms of quality assurance [Feather98].  In a similar direction, Cau et al. propose the use of 

lean formal methods, envisaged as methods adequately accompanied by suites of affordable 

and practicable tools capable of supporting rapid prototyping, testing, and verification 

[Cau98], and Rushby suggests “invisible” formal methods, unobtrusively integrated in 

familiar software engineering tools [Rushby00]. The approach presented in this thesis also 

proposes a lighter application of formal methods.    

 

 

2.7 Chapter Summary 

 

In this chapter the larger space of our research has been surveyed and the topic of the 

dissertation has been localised on precise coordinates by using a “zoom-in” technique of 

exploration. Since the location of the thesis’ topic lays at the intersection of three major 

domains of software development and investigation, namely real-time systems, formality, and 

object-orientation, an overview of these domains has been presented and specific challenges, 

advantages, and disadvantages have been pointed out. This overview has provided the 

groundwork for next focusing the “investigation lense” on the two specification notations 

used in our approach (in Chapter 3) and, respectively, on the existing research studies that 

share similarities with our work (in Chapter 4).   

 


