
     269 
 

 

10 Conclusions 

 

 
 

“What we call the beginning is often the end. 
And to make an end is to make a beginning. 

The end is where we start from.” 
 

[T.S. Elliot, Little Gidding, Four Quartets, 1942] 
 
 
 
10.1 Introduction 
 
 
At the conclusion of this thesis, we first look back and highlight the merits and the 

limitations of our approach and then look forward to point out the work that remains to be 

done. To evaluate our work in the context of current research, a summary comparison with 

the closely related approaches discussed in Chapter 4 is included. The contributions of our 

work are presented by dividing them in two categories, principal and secondary, and the 

limitations of the present work are briefly reviewed. Needed improvements to the work 

described here and connected research paths that can be beneficially pursued in the future 

finalise the chapter.    

 
 

10.2 Summary Comparison with Closely Related Approaches 
 
 
In Chapter 4 five research studies were classified as “closely related approaches” to our work. 

Although they were examined in some detail in that chapter, we resort again to them in 

order to provide a brief comparison with our work. This comparison is based on a number of 

criteria, specifically: 
 

§ Type of translation from diagrammatic notations to formal specifications, which can be 

either an OO to an OO or an OO to non-OO  formalisation (the latter means that 



     270 
 

constructs of a non object-oriented formal language such as Z are adapted to represent 

OO constructs from the semi-formal counterpart); 

§ Provisions for modelling RT systems (either included or not); 

§ Type of integration of notations, based on the classification introduced in Section 4.2. 

Under this criterion, we denote simple formalisation (or derivation) by F, 

complementary formalisation by CF, and tight integration of notations (which involves 

two-way translations) by TF; 

§ The characteristic that can be referred to as the monolithic construction of the 

supporting specification environment (the definition of a monolithic environment has 

also been introduced in Section 4.2);   

§ Capability of applying tool-supported processing techniques on the formal specifications, 

including syntax and consistency checking, formal verification, and refinement. This 

capability describes the present situation and refers to the connection with tools that 

already exist;  

§ The usage of the formal notation involved, reflecting its popularity and the number of 

applications in which it has been employed. 

 

The results of this comparison are shown in Table 10.I. From this Table it can be seen that 

our approach has its merits as well as its limitations.  While the merits are stressed in Sections 

10.3 and 10.4, about the two main limitations highlighted in the table we need to point out 

that although one is more difficult to overcome (specifically, it is difficult to match the 

popularity enjoyed by Z, ZEST, or Object-Z), the other (connection to tools for further 

formal processing) can be surmounted through the continuation of the work presented in 

this thesis (Section 10.6 describes our intentions in this respect). In addition, there are 

several other limitations, discussed in Section 10.5, which also can be overcome through 

additional work. Nevertheless, we believe that our approach provides a viable alternative for 

combined, semi-formal/formal software specification, and introduces a fresher presence in 

the landscape of pragmatic development of TCS through synergetic use of semi-formal and 

formal techniques.    

 



     271 
 

Table 10.I Summary Comparison with Closely Related Approaches 

 
Criteria 

 

 
Approach 

 
 

OO to 
OO 

formalisa-
tion 

 

 
RT 

specification 
capability 

 

 
Type of 

integration 
of notations 

 
Monolithic 
specification 
environment 

 
Processing  
of formal 

specifications 
(analysis, 

refinement, 
etc.)  

 
Usage 

of formal 
notation 

 
[Jia97] 

 

 
no 

 

 
No 

 
CF 

 

 
no 

 
Yes 

 
high (Z) 

 
[Noe00] 

 

 
no 

 

 
No 

 
CF 

 
partial 

 
Yes 

 
high (Z) 

 
 

[France97] 
 

 
no 

 
Yes 

 
F 
 

 
no 

 
Yes 

 
high (Z) 

 
[RoZeLink99] 

 

 
yes 

 
No 

 
TF 

 
no 

 
Yes 

 
high 

(ZEST) 
 

 
[Kim00b] 

 

 
yes 

 
yes 

 

 
CF 

 
N/A 

 
Yes 

 
high 

(Object-Z) 
 

 
Harmony 

 
yes 

 
yes 

 

 
TF 

 
yes 

 
no  

 
low 

(Z++) 
 

 

 
10.3  Main Contributions 
 
 

The main contributions of our work are the following: 
 
 

§ Pragmatic integration of two notations, one graphical and semi-formal (UML) and the 

other textual and formal (Z++), in a specification approach that attempts to reap the 

benefits of both; 

§ The advanced formalisation of UML constructs in Z++, both in terms of structure and 

behaviour. It is worth noting that although Lano describes ways of formalising OO 

models in Z++ [Lano95] this was nevertheless done in the context of the OMT notation 



     272 
 

and, while we have not covered all the minute aspects of the formalisation process, our 

translation from UML to Z++ is performed in a more pragmatic and systematic way, 

with detailed algorithms being proposed. Also important to note, very few formalisation 

approaches look at both structure and behaviour, notably [France97] and [Kim00b]), 

and practically only one within the vicinity of our topic location [RoZeLink99], takes 

into consideration the reverse propagation, from formal (textual) specifications to semi-

formal (diagrammatic) models;     

§ Rigorous and pragmatic treatment of TCS through the use of a formalism, RTL, whose 

notation is easy to comprehend and apply. The usability and coverage of our modelling 

approach stem from its capability of capturing various time-related properties of systems, 

as discussed in Chapters 5 and 8; 

§ Lightweight, practical specification process allowing for both reliable specifications and 

rapid development of software. The main idea of our approach is to provide a rigorous 

and usable alternative for OO specification of TCS. In order to achieve this, we have 

focused on the most critical aspects of modelling (in terms of consequences in the life-

cycle of the product) and covered the earlier phases of software construction, in 

particular the OO analysis phase; 

§  Design of the Harmony ISE, aimed at fully supporting the technique proposed in this 

thesis. What particularly distinguishes this specification environment is its monolithic 

construction, support for tight-integration of notations, balanced inclusion of both 

functions and notational elements (we have attempted to keep things simple, yet still 

operationally powerful), provisions for easier manipulation of formal symbols, and 

capacity for extension. 

  

10.4  Other Contributions 
 
 
There are also a number of aspects of our work that can be listed as secondary contributions. 

They do not play principal roles in the discourse of this thesis, yet they support it and also 

represent bits of original work that can be further employed and further investigated: 



     273 
 

§ Development of a non-trivial example, the ELS. Through this application, which can be 

added to the rather large collection of elevator case studies recorded in the literature, the 

most relevant particularities of our approach have been illustrated;  

§ Classification of integrations of notations. We needed it to provide a basis of comparison 

with other approaches, but it can be usefully employed or adapted for comparing 

alternatives of integrating notations in other contexts (e.g., hardware design);  

§ A zoom-in technique of investigation. The technique has of course been employed in 

numerous other cases (it is an embodiment of the classical top-down method of 

investigation), yet there are no reports in literature that present it under the “zoom-in” 

metaphor; 

§ Proposal of a class compound construct that encompasses both structure, expressed in 

the class construct, and behaviour, captured in the state diagram (in addition to the one 

defined by the operations of the class construct). This pairing of UML constructs (class 

and state diagram) although quite simple in its idea is nevertheless powerful in that it 

extends the basic OO concept of encapsulation (data + operations) to a stronger 

appendage of the type data + operations + allowable sequences of execution;  

§ Several proposals regarding the terminology: TCS, ISE, tight-integration of notations, 

monolithic approach, transition signature, transit operation, and the set of terms and 

abbreviations used to denote the artefacts and steps of our modelling approach;  

§ A comprehensive review of the research space. Compulsory part of a PhD thesis, of 

course, but we extended our survey to cover aspects such as UML perspectives and 

exemplification of UML constructs through the ACTS specification “theme”. Both the 

survey of UML and the modelling of ACTS can evolve in fully-fledged studies on their 

own rights. 

 

10.5 More On the Limitations of the Proposed Approach 
 

Besides the two main limitations indicated in Section 10.2, namely Z++’s lack of exposure 

(due primarily to its lack of tools) and Harmony’s lack of connection to tools for formal 

analysis and refinement, there are several other limitations of the proposed approach that 



     274 
 

need be addressed in order to enhance the work presented in this dissertation.  In particular, 

the treatment of state diagrams is rather limited, confined to “flat,” non-composite structures 

and to sequential executions, which reduces the applicability of the translation algorithms to 

modelling TCS (such systems need treatment of concurrency, synchronisation, etc.). Also, 

the treatment of the timing constraints needs significant improvement, since we have not 

tackled the automated translation of timing constraints attached to UML structural 

constructs, and provided only a limited translation of such constraints in the case of state 

diagrams (the burden of formalising temporal constructs lies too heavily on the human 

formaliser). In addition, a more concise and precise description of the translation algorithms 

can be obtained if meta-models for UML and Z++/RTL are used. The deformalisation 

process also needs improvement; it has been described only by a set of principles and the 

outline of an algorithm, hence further work on details is needed, as it is needed on dealing 

with the particular aspects of applying the translations algorithms discussed in Section 6.6.   

 
 
10.6 A Look Forward 
 
 

The work presented here is neither complete nor free of errors. We are aware, as indicated in 

the previous section, of some of its limitations and know that further work is needed in 

several directions. In particular, our intentions for future work encompass: 

 

§ Enhanced automated formalisation and deformalisation. Due to the importance of these 

processes in producing reliable specifications further studies are necessary, especially 

regarding the translation of dynamic UML models into precise Z++ specifications;   

§ Syntax and consistency checking of Z++. We consider the alternative of translating Z++ 

to Z insufficient, and in order to achieve one of the primary goals of our approach, that 

of increased intellectual control over the software being developed, automated syntax and 

consistency checking of formal specifications can play an important role; 

§ The complete implementation of Harmony. At the time these lines are written, we have 

completed the design of Harmony. Nevertheless, only by implementing it and exercising 



     275 
 

it on various case studies we will be able to both improve its design and gain additional 

insight about the ways our approach can be efficiently put to work in practice; 

§ Development of tools for formal analysis and refinement. Although we have not aimed at 

covering aspects of formal proof and formal refinement, the development of such tools is 

necessary to support the wider application of our approach;  

§ More applications. In addition to improving the design of Harmony, the application of 

the approach on more case studies will be beneficial for fine-tuning the technique of 

specifying TCS proposed in this thesis.  

 
The above is work that we intend to pursue further in order to develop Harmony into a tool 

usable on large scale. But, predictably, while working on a given topic ideas for other subjects 

spring into one’s mind, some related and some not so related to the original topic of 

investigation (and some relatively clear and some decidedly vague). Some of the more related 

and the slightly more well-formed such ideas that occurred to us are: 

 

§ Visualisation of Z constructs in the sense proposed by Kim and Carrington for Z in 

[Kim99a]; 

§ Usage of the CSP formalism instead of RTL for alternative, enhanced modelling of 

paralellism;   

§ Animation of a subset of specifications. A look at solutions such as the Z-based Sum 

language [Utting95] can provide a starting point; 

§ Integration of our modelling technique with code generation tools aimed at exploiting 

the RT capabilities of high-level programming languages;   

§ Formalisation of modelling patterns and their utilisation in various contexts, for instance 

for developing Web applications. 

   

At any given time, our Elevator’s door may or may not be open depending on a series of 

factors, as discussed in Chapter 8, but the door of further work and further improvements 

should always be open.  

 


