
 205

7 A PrOCEDURAL FRAME

“Arithmetic is where the answer is right and everything is nice

and you can look out of the window and see the blue sky
--or the answer is wrong and you have to start over

and try again and see how it comes out this time.”

[Carl Sandburg, Arithmetic, Complete Poems, 1950]

7.1 Introduction

The translation principles described previously are included in this chapter in a procedural

frame whose aim is to make systematic the elaboration of the integrated semi-formal/formal

model of the system. Although given as a series of interconnected steps and although a

“regular” sequence of steps is proposed, this procedural frame is intended only to guide the

development of the model, and not to insist on a pre-established sequence of modelling

activities. As shown in this chapter, the frame is flexible enough to accommodate various

specification strategies and to support the iterative development of the model. The artefacts

obtained in the modelling process are described, including a key modelling element, denoted

class compound and introduced primarily for supporting the formalisation process. This new

construct represents an extension of the fundamental concept of class and encompasses the

traditional UML class and the UML state diagram associated with the class. The specific

modelling activities are also described and comments on the various elaboration paths that

can be followed during the development of the combined UML/Z++ model are included. In

addition to the suggested “regular” sequence of modelling activities an example of an

alternative scenario for the modelling process is given. The regular modelling scenario

proposed in this chapter is applied on the case study described in Chapter 8 and the entire

procedural frame is supported by the Harmony environment presented in Chapter 9.

 206

7.2 Modelling Focus

As indicated in Section 3.1, the approach presented in this thesis is focused on the structural

and behavioural aspects of TCS and is aimed at developing OO models in a rigorous,

pragmatic, and efficient way. For this reason, a number of modelling activities supported by

UML are not included in the procedural frame described in this chapter and their

corresponding artefacts (specifically, diagrams) are not included in the integrated UML/Z++

model. This simplification is justified by the fact that the above diagrams are either parallel

to some already incorporated (specifically, collaboration diagrams are essentially re-writings

of sequence diagrams), can be ignored without losing significant insight into the system

(activity diagrams), or can be deferred to later development stages that are beyond the scope

of the approach proposed in this thesis (component diagrams and deployment diagrams).

By considering the 4+1 architectural views shown in Fig. 3.4, only the User View, the

Structural View, and the Behavioural View are dealt with in the proposed approach, and

from the diagrams that support them only the use case diagrams, the class diagrams, the

sequence diagrams, and the state diagrams are employed. In addition to the discarded

diagrams indicated in the previous paragraph, object diagrams are not utilised either, the

reason being twofold: firstly, they bring relatively little information about the system in

addition to that already contained in class diagrams and sequence diagrams (“object diagrams

show instances instead of classes; they are useful for explaining small pieces of complicated

relationships, especially recursive relationships” [TogetherSoft00a]), and, secondly, the

objects do appear in sequence diagrams in a more important role, that of describing

behaviour (the system structure being sufficiently expressed by classes).

In short, we look at a 2+1 views architecture of the system, a reduction of the generic 4+1

views approach that nevertheless allows a reliable description of the system. It is worth noting

that many of the UML applications described in the recent literature focus typically on use

cases, scenarios, class diagrams, and statecharts diagrams, e.g., [Howerton99, Barrios99,

Xie99, Jigorea00, Xu00] and less frequently other types of diagrams are also presented, e.g.,

 207

[Bell99, Fernandes00]. In fact, having the class organisation completed in terms of both

attributes and operations allows the further development of the system possibly up to and

including implementation (partition and deployment of components may or may not be

necessary, depending on the application).

7.3 Artefacts

During the modelling of the system, a series of diagrams are drawn, modelling constructs are

completed, including both UML and Z++ specification of classes, and the formalisation and

deformalisation processes are performed. Starting from a set of requirements that describe

the desired properties of the system, the following five categories of artefacts (products) are

obtained, making up the combined semi-formal/formal model of the system:

• Use case diagrams, describing the intended high-level behaviour of the system as seen

from the point of view of external entities (actors) that interact with the system. These

are typical UML use case diagrams, each capturing a portion of the system’s externally

visible behaviour (its “functionality”), and each containing a number of use cases that

further detail this behaviour. The regular UML notation is used to develop both use case

diagrams and use cases. Abbreviations for these constructs, introduced for easier

referencing and used as prefix denominations within Harmony’s Project Pane described

in Chapter 9 are UC for use cases and UCD for use case diagrams;

• Scenarios, specific sequences of actions involving the system and the actors that interact

with it. Scenarios, as pointed out by Booch, “are to use cases what instances are to classes,

meaning that a scenario is basically one instance of a use case” [Booch98, pp. 225]. UML

provides sequence and collaboration diagrams for representing scenarios; however, these

diagrams involve a high level of detail (they require the designation of classes and objects

for carrying out the scenarios) so we felt necessary to introduce a distinction between a

scenario and a sequence diagram. Specifically, we see a scenario as an informal, analysis-

level description of a particular sequence of actions encompassed by a use case, while a

sequence diagram is a detailed, design-level description of the same thing (in sequence

 208

diagrams responsibilities for carrying out actions are assigned to individual classes and

objects, as opposed to the system as a whole.) In our approach, another major difference

between scenarios and sequence diagrams is that no specific notation is required to

represent scenarios, while sequence diagrams are developed using the UML notation.

From a development point of view, a refinement step is thus introduced between the

elaboration of scenarios and that of sequence diagrams. Scenarios can be written in

natural language, possibly as a series of numbered steps [Schach99], captured in decision

tables [Davis93], shown using custom-made, application-specific graphical aids (Chapter

8 provides an example), or described in a notation similar to that of sequence diagrams

(e.g., event traces [Rumbaugh91]). In order to provide a modality to relate scenarios with

their encompassing use case, the notion of group of scenarios, a basic structuring

mechanism, is introduced. The abbreviation associated to a scenario is SC and the one

for a scenario group is SCG;

• Sequence diagrams, developed using the UML notation and providing a design-level

representation of scenarios. As discussed above, they are also “instances of use cases” and

capture the externally visible behaviour of the system but in addition they show internal

interactions among objects. The abbreviation for sequence diagrams is SQD and, by

symmetry with scenarios, the notion of group of sequence diagrams is introduced, with

the associated abbreviation SQDG;

• Class diagrams, defining the high level architecture of the system and consisting of

classes, relationships among classes, and additional structural constraints expressed as

multiplicity values. For formalisation purposes, only UML classes and the usual types of

relationships indicated in Section 6.3.1 are considered. Class diagrams are represented

using their dedicated UML notations, and are abbreviated as CD;

• Class compounds, each class compound, denoted COMP, being a simple syntactic

extension of class, grouping the regular class description (CLS) and the state diagram

associated with the class (CLSTD). The notion of class compound is introduced

primarily for supporting the needs of the formalisation process but it represents in

general a simple yet useful extension of the concept of class. The idea of a class

compound comes naturally from Z++, but it has also been inspired from the approach of

 209

Howerton and Hinchey [Howerton99], who propose the annexation of the Z

specification of the class state diagram to the UML description of the class. The intention

of Howerton et Hinchey is to directly combine UML descriptions and Z specifications

for describing classes in an approach that advocates different notations for modelling

different aspects of the system. However, they do not envisage the syntactical

concatenation of the UML class and state diagram constructs and do not propose a

denotation for their solution. As a brief remark, it is only natural to add when necessary

the state diagram of the class (defining possible sequences of executions) to the two

traditional sets of elements encapsulated in a class: data (defining structure) and

operations (defining behaviour). Thus, the class compound concept can be viewed as a

class with enhanced description of behaviour. Of course, not all classes need a state

diagram, so the CLSTD section of COMP can be empty. A summary of the

abbreviations introduced above is given in Table 7.I.

• Z++ specification (ZSPEC), consisting of a set of Z++ classes (ZPPCs), each Z++ class

corresponding to a class from the UML space. The Z++ specification as a whole is the

formal counterpart of the combined contents of the class diagrams that make up the

UML component of the integrated model of the system.

Table 7.I Abbreviations for Modelling Artefacts

Element Abbreviation Element Abbreviation

Use Case UC Class Diagram CD

Use Case Diagram UCD Class Compound COMP

Scenario SC Class Description CLS

Scenario Group SCG Class State Diagram CLSTD

Sequence Diagram SQD Z++ Specification ZSPEC

Sequence Diagram Group SQDG Z++ Class ZPPC

 210

7.4 Activities

Fig. 7.1 gives a diagrammatic description of the procedural frame proposed in this thesis for

modelling TCS. The figure shows both the modelling activities (steps) performed and the

artefacts obtained as the result of each activity. Since the artefacts have been discussed in the

preceding section, the focus is here on the activities. Before discussing them, a number of

conventions and simplifications used in Fig. 7.1 are indicated.

7.4.1 Conventions in the Diagrammatic Representation of the Procedural Frame

Several conventions are used in Fig. 7.1, as follows:

• Activities are represented by rounded rectangles;

• Modelling products (the artefacts) are represented by regular rectangles;

• Continuous, arrow-ended flow lines connect activities with their output products and

products with activities that use them as input;

• Dashed, arrow-ended lines represent a change from an activity to another and, in

contrast with the continuous flow lines, do not require that artefacts are obtained in the

originating activity (the decision to move to another activity may be based on the

inspection of the already existing artefacts associated with the current activity). These

dashed lines are used in two situations: in the process of iterative development of the

model (feedback links), and when moving from one activity to another without

necessarily providing new input to the newly initiated activity;

• The steps are numbered and organised in five stages (or levels), their ordering suggesting

the typical flow of activities within the modelling process. Same level activities can be

performed in a parallel fashion, including an interleaved form of parallelism;

• The set of diagrams obtained as a result of a specific modelling activity in stages 1 to 3

are generically denoted collection, e.g. the Use Case Collection is created in the

Definition of Use Cases step.

 211

Requirements Set

UC Collection

SC Collection

1 Definition of Use Cases

2 Elaboration of Scenarios

3A Construction of Class
Diagrams

4A Elaboration of
 UML Class Compounds
 4.A.1 Class Specification
 4.A.2 State Diagram Spec.

4B Elaboration of
 Z++ Specification

5A Formalisation

5B Deformalisation

UML Class
Compounds(COMP)
(CLS and CLSTD)

Z++ Specification
(ZSPEC), a set of

Z++ classes (ZPPC)

Integrated UML/Z++
Classes Collection

3B Specification of
Sequence Diagrams

SQD CollectionCD Collection

Fig. 7.1 The Procedural Frame

 212

7.4.2 Simplifications in the Diagrammatic Representation of the Procedural Frame

In order to keep the diagram readable a number of simplifications have been made regarding

aspects of the modelling process that are less common and therefore less emphasised in the

proposed procedural frame. Firstly, while in principle it is possible to come back several

levels at a time, for instance from step 4A to step 2 or even to step 1, the revision links are

drawn however only from one level to the immediately preceding one (this would be the

regular, more frequent way of refinement). Secondly, the CD Collection can serve as input

for the Specification of Sequence Diagrams activity (3B) and, vice-versa, the SQD Collection

can be used as reference for the Specification of Class Diagrams activity (3A), but more

important is their respective input for activities 4B (Elaboration of UML Class Compounds)

and, respectively, 4A (Elaboration of Z++ Classes). Thirdly, there is an implicit feedback

from activities 5A (Formalisation) and 5B (Deformalisation) to activities 4A and 4B (in fact,

so strong a feedback that activities on levels 4 and 5 can be aggregated on a single level, but

we needed to highlight the steps of formalisation and deformalisation), which again is not

shown for keeping the diagram readable. Lastly, the input for the entire process is

represented by the Requirements Set, whose elaboration is not of our concern (we assume

that a workable collection of requirements is available). Yet, in practice there is a continuous

need for revising the requirements, so links back from modelling activities to the definition

of requirements (an activity not shown in Fig. 7.1) should be considered implicit in the

diagram.

7.4.3 Stages and Steps

The procedural frame outlined in Figure 7.1 serves only as a guide for modelling TCS, the

most important thing being to correctly and completely develop all the artefacts of the

integrated UML/Z++ model. The diagram presented in Fig. 7.1 is flexible enough to

accommodate various specification strategies and encompasses diverse modelling paths, as

discussed more in the next Subsection. In the following, we highlight the modelling activities

included in our procedural approach and present them as organised in five stages. The

 213

ordering of the modelling stages corresponds roughly to the typical sequence of activities so

the discussion that follows is somewhat biased towards the “regular” modelling scenario

proposed in the next Subsection and shown in Fig. 7.2. However, possible variations in the

sequencing of activities are also indicated, and are further illustrated in Subsection 7.4.5.

The specific activities performed in each stage are the following:

• At stage 1, starting from the Requirements Set that describes the desired system, a

number of use cases that capture segments of externally visible system functionality are

identified, making up the Use Cases Collection of the integrated model. During this

activity actors interacting with the system are also identified;

• At stage 2 use cases are used to instantiate a number of scenarios that will serve later for

the identification of classes. There is no restriction on the way scenarios are represented

since they are expected to produce “a rough cut” of the externally visible behaviour of the

system and provide high-level insight into the application. Normal scenarios (most likely

to occur) as well as abnormal scenarios (or exceptional scenarios, describing situations

that diverge from the normal case) are developed and possibly tied together in a Scenario

Group that corresponds to a particular use case. Taken together, groups of scenarios as

well as individual scenarios (that is, scenarios not yet related to an already defined use

case) make up the Scenarios Collection of the model. Although initially individual

scenarios as well as groups of scenarios not bounded to uses cases are possible, it is

recommended that through iterative revision of specifications the final model should

contain only bounded groups of scenarios, a one-to-one correspondence use case-scenario

group being desirable;

• At stage 3, using the available Scenarios Collection two possibly intertwined activities can

take place: Specification of Class Diagrams (3A) and Specification of Sequence Diagrams

(3B). In practice, one needs to develop concurrently the system’s model on both

directions, structure (classes) and behaviour (primarily, operations included in classes).

Only by simultaneously considering the class structure and the responsibilities of classes

and class instances, as captured in sequence diagrams, can the catch-22 type of problem

 214

at this level be resolved (what classes and objects to include in the sequence diagrams if

the class diagram is not defined, and what classes make up the high-level architecture of

the system if the internal behaviour is not known? –recall that scenarios describe

externally visible behaviour). However, in practice, the specification of sequence

diagrams is the one that can be deferred since in general it is easier to construct the class

diagrams by exploiting the information contained in scenarios (class diagrams may

contain only the names of the classes, without any other details, while the sequence

diagrams necessarily include both classes and their operations). Thus, step 3A is normally

performed first and step 3B follows. In fact, the specification of sequence diagrams

performed in step 3B can be omitted all together, as shown in Subsection 7.4.5. The best

thing, however, is not to ignore it, but to use it at least as a “revision checkpoint,” with

input from all subsequent levels. In short, from our point of view, on stage 3 the

development of class diagrams is compulsory while the development of sequence

diagrams is recommended;

• At stage 4 the CD Collection as well as the SQD Collection (if available) provide the

basis for the detailed specification of classes. An argument can be raised about the

development of classes represented separately from the development of class diagrams

and, indeed, there is a blurred line between these two activities. We separate them for

systematisation purposes and view the Specification of Class Diagrams as an activity in

which the rough sketch of the system’s class structure is drawn (in terms of classes,

relationships, and cardinality constraints) while the subsequent activities of UML and

Z++ class elaboration are concerned with the specification of class details (attributes,

operations, and constraints). And, indeed, stages 3 and 4 are the closest related stages in

the “stratification” suggested in Fig. 7.1. Regarding the “parallel” steps 4A, Elaboration

of UML Class Compounds, and 4B, Elaboration of Z++ Classes, they can be started and

performed simultaneously (this is the reason for placing them on the same level) but the

typical way is to perform step 4A first or to perform only the step 4A and rely on the

subsequent formalisation of class compounds (step 5A) to obtain Z++ specifications of

classes. In the regular flow of activities shown in Subsection 7.4.4 we actually use step 4B

as a refinement activity, which follows step 5A. The Elaboration of UML Class

 215

Compounds on stage 4 consists in: (a) establishing the attributes and the operations of

the classes as well as the constraints attached to classes in the regular UML construct of

class (CLS); and (b), in drawing state diagrams (CLSTD) for those classes that require

them, thus completing for each class in CDs its corresponding class compound COMP;

• At stage 5 the formalisation of selected UML class compounds takes place in step 5A by

applying initially the rules for automated translation described in Chapter 6 and then by

manually adding the necessary details to the formal specification. This activity has the

role of producing rigorous descriptions of the system, captured in the Z++ specification.

It provides the strongest basis for refining the model, many ambiguities, omissions and

inconsistencies being detected here. At the same level of modelling, deformalisation of

classes initially written in Z++ (step 5B) can be performed according to the guidelines

suggested in Chapter 6. However, as shown in the next Subsection, the “regular” flow of

activities includes only step 5A at this level of modelling and the procedural frame treats

the activity of deformalisation as a “variation” of the modelling process.

It is important to note that iterative refinements of the products obtained so far need be

performed. We envisage essentially two categories of iterative development, one expectedly

more intensive (more frequently performed), which can be called “short range revision”

because it involves backwards stages 5 to 3 only, and the second performed less frequently yet

reaching farther, which can be called “long range revision,” potentially affecting backwards

all the stages of activities, including the (not shown in the diagram) elaboration of

requirements. As already mentioned the iterative development of the artefacts that constitute

the integrated model of system is primarily propelled by the process of formalisation, a key

idea of our approach being to use formalisation of UML constructs for improving the

chances of detecting errors.

7.4.4 The Regular Sequence of Modelling Activities

A graph-like representation of the regular sequence of modelling activities, which for

simplicity omits the products of each activity, is represented in Fig. 7.2. (In UML terms, this

 216

1

2

3A

4A

5A

4B

3B

5B

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Definition of
Use Cases

Elaboration
of Scenarios

Construction of
Class Diagrams

Specification of
Sequence Diagrams

Elaboration of UML
Class Compounds

Elaboration of
Z++ Specification

Formalisation
(UML to Z++)

Deformalisation
(Z++ to UML)

Fig. 7.2 Regular Sequence of Modelling Activities

 217

can be assimilated with the normal scenario of the use case represented by the procedural

frame described in Fig. 7.1) The modelling stages are highlighted, the direct flow of activities

is emphasised by a thicker, continuous line and the iterative revisions of specifications are

indicated by a dashed line. This scenario, which in its “forward segment” (that is, not

including feedback links) does not encompass the deformalisation activity (reserved for

“irregular” modelling scenarios), can be succinctly described by the <1, 2, 3A, 3B, 4A, 5A,

4B> sequence, where the numbers are associated with activities as indicated in Fig. 7.1.

7.4.5 Alternative Flows of Modelling Activities

The procedural frame presented in Fig. 7.1 encompasses different orderings of activities and

we do not claim that the “regular” flow suggested in the previous Subsection represents the

unique or the most effective way of developing the integrated UML/Z++ model of the

system. There are other alternatives possible, and depending on the particular application, on

the experience of the development team, as well as on an a series of other factors, including

project priorities and deadlines, one of them may be considered better suited for the

particular development needs of a given application. Our “regular” chaining of modelling

activities represents only a reference procedure which we believe can be applied in the general

case, but nevertheless we do not constrain the ordering of the steps in the modelling process,

more important being the correct completion of the integrated model.

Among the other alternatives of sequencing the modelling activities, the one presented in

Fig. 7.3 is described here because it highlights a specific strategy that deserves further

examination. More precisely, this example of “irregular” scenario for the modelling process

can be described in its “forward segment” as <1, 2, 3A, 4A||4B, 5A||5B, 3B>, where the

symbol || describes parallel activities (notice that in order to show that 3B comes after 5A and

5B a compromise regarding the notation has been made in Fig. 7.3, where thick dashed lines

are used as part of the “forward segment”; they are however different from the regular

feedback connections, which continue to be represented as thin dashed lines). Two elements

are special in this scenario: first, the fact that the description of classes proceeds in parallel in

UML and Z++ and, second, that step 3B comes last in the forward part of the scenario.

 218

1

2

3A

4A

5A

4B

3B

5B

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Definition of
Use Cases

Elaboration
of Scenarios

Construction of
Class Diagrams

Specification of
Sequence
Diagrams

Elaboration of
 UMLClass
Compounds

Elaboration of
Z++

Specification

Formalisation
(UML to Z++)

Deformalisation
(Z++ to UML)

Fig. 7.3 An Example of “Irregular” Flow of Modelling Activities

 219

The first element highlights the idea that various teams of specifiers may have various

backgrounds and while some would favour the use of UML, some may prefer employing

Z++ as specification notation. In fact, there is the possibility that the specification of classes

may proceed first in Z++ and then in UML (and, by extrapolation, it is theoretically possible

to have all classes specified in Z++ and not at all in UML). The second element illustrates the

idea previously mentioned in Subsection 7.4.3 that sequence diagrams can be used as a tool

for fine-tuning the specification, and thus can be the last set of artefacts developed in the

modelling process. Of course, additional refinements for improving the accuracy of the

model follow in any case.

Another example of an irregular modelling scenario, which stresses rapid development is, in

its “forward segment,” <2, 3A, 4A, 5A, 4B>, meaning that the definition of use cases (step 1)

and the specification of sequence diagrams (step 3B) are omitted. In short, this modelling

alternative takes a “fast-track route” and, after the elaboration of scenarios, class diagrams are

developed, UML classes are detailed, the formalisation process takes place, and the detailed

specification of Z++ classes is completed. It represents in fact a shorter version of the regular

flow of modelling activities suggested earlier. Interestingly, perhaps due to space limitation,

in many papers describing the use of UML only the artefacts of steps 2, 3A and 4A are

described, in some cases step 2 being skipped as well. While we recommend the regular

alternative described in 7.4.3 the above modelling scenario can nevertheless work well in

various application contexts.

7.5 Chapter Summary

In this chapter a procedural frame for pragmatic, efficient and reliable modelling of TCS

have been presented. The artefacts produced in the modelling process, specifically various

sets of UML diagrams organised in collections, the set of UML class compounds, and the

formal specification consisting of a set of Z++ classes have been presented. The class

compound, a simple yet useful construct serving primarily the purpose of formalising UML

 220

classes in Z++ and representing a practical extension of the fundamental notion of UML

class, has been introduced. Specific abbreviations that are later used in the development of

the Harmony environment have been associated with the modelling artefacts. The modelling

activities, included in the proposed procedural frame and organised in five stages have also

been described and the modelling process has been discussed in terms of both regular and

irregular chainings of activities. The application of the suggested modelling process, relying

on the combined use of UML and Z++, is illustrated on an Elevator System case study

presented in the next chapter. It has also driven the design of the supporting tool Harmony

described in Chapter 9.

