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6 TRANSLATIONS BETWEEN uml AND z++: 
FORMALISATION AND DEFORMALISATION 

 
 
 
 

"Poetry is what gets lost in translation." 
 

[attributed to Robert Frost (1874-1963)] 
 
 
 
 
 
 
6.1  Introduction 
 

This chapter presents the translation processes between UML models and their 

corresponding Z++ specifications. Emphasis is placed on the UML to Z++ translation, whose 

purpose is to increase the rigor of the system’s description, but in order to make formal 

specifications easier to understand during the integrated modelling of the system the reverse 

translation, from Z++ to UML, is also considered. The first type of translation, alternatively 

referred to as formalisation, applies both to UML class diagrams, which capture structural 

aspects of the system, and to UML state diagrams, which describe the system’s dynamics. 

The second translation, alternatively denoted deformalisation, produces UML classes from 

the information contained in Z++ specifications and thus can be considered “structure-

oriented”. The focus is on those parts of formalisation and deformalisation that can be 

performed automatically, a detailed set of translation principles and a translation algorithm 

based on these principles being presented for each process. The formalisation and 

deformalisation processes described in this chapter are included in the larger modelling frame 

of TCS that constitutes the subject of Chapter 7 and their application is illustrated in the 

Elevator Controller case study presented in Chapter 8. 
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6.2 Preliminary Remarks 
 
 
The modelling approach described in this thesis relies on the combined use of UML and 

Z++. In Chapter 7 details are given on the complete UML/Z++ integrated modelling process 

proposed in the thesis, a process that consists of a number of activities such as definition of 

use cases, construction of UML class diagrams, and elaboration of Z++ specifications. In the 

present chapter the focus is on two key parts of this process, the formalisation and 

deformalisation activities. Before describing these two activities, which essentially consist of 

translations between UML models and Z++ specifications, some general observations are 

necessary.  

 
First, a couple of remarks on terminology. Specifically, in the larger frame of the modelling 

approach described in Chapter 7 formalisation and deformalisation are denoted activities (or 

subprocesses), yet for simplicity in the present chapter we refer to them as processes (another 

possible generic term for formalisation and deformalisation, procedure, was avoided because 

it appears extensively in the pseudocode description of the algorithms presented later in this 

chapter). Also, the term translation (from UML to Z++, or from Z++ to UML), used as a 

substitute for formalisation and, respectively, deformalisation, should be seen as “selective 

translation” since in both cases only a partial mapping from one modelling space to the other 

is performed (in the case of deformalisation the term “truncated translation” would be even 

more accurate since significant informational content is possibly discarded when generating 

UML constructs from Z++ specifications).  

   

In what regards formalisation, its main role in the approach presented in this thesis is to help 

both developers and their clients gain a better understanding of the system under 

construction by increasing the rigour of the system’s description. With an accurate insight 

into the system’s desired structure and behaviour those involved in the early stages of the 

system’s development will be able to avoid a significant number of potentially very costly 

specification errors. Also, since the formalisation process makes precise and amenable to 

formal reasoning and formal refinement the initially written in UML description of the 
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system, it opens the door for subsequent formal processing, but aspects regarding formal 

analysis of specifications and formal refinement of specifications to code are not dealt with in 

the present thesis.    

 

Guidelines for formalising object-oriented semi-formal models have been proposed by Lano 

and Haughton in [Lano94c] and by Lano in [Lano95]. They represent the starting point for 

the semi-formal to formal translation process presented in this chapter but it should be 

pointed out that Lano and Haughton’s work was concerned with the formalisation in Z++ of 

OMT models, so we have adapted and extended their approach to UML models. Also, in the 

present approach we have attempted to provide a systematic description of the formalisation, 

through detailed sets of principles and detailed algorithms, and have additionally tackled the 

reverse translation from formal specifications to graphical representations, translation that 

was not considered by Lano and Haughton.  

 

As in the case of Lano and Haughton’s work, the approach proposed in this thesis addresses 

the formalisation of both structural and behavioural aspects of the system. For the latter, the 

same RTL formalism proposed by Jahanian and Mok is employed but differences exist 

between the two approaches regarding the details of this employment, as shown in Section 

6.4.  In practical terms, the formalisation of UML constructs in Z++ consists of two 

components, formalisation of class diagrams (described in Section 6.3, and concerned 

primarily with structural aspects of the system), and formalisation of state diagrams 

(presented in Section 6.4 and dealing with behavioural characteristics of the system).  The 

formalisation of UML models applies only to the core elements of the language (class 

diagrams, classes, relationships, and state diagrams) but, as shown in studies published by 

authors who have worked on similar formalisation approaches, these constructs provide good 

insights into the system and allow formal reasoning about its properties [Lano95, France99, 

Kim99a].  

 

Additional reference for the formalisation processes described in this chapter has been 

provided by the work of Kim and Carrington on formalising UML models in Object-Z 
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[Kim99a, Kim00a, Kim00b]. In particular, their formal Z description of UML class diagram 

constructs, preliminary to the translation procedure from UML to Object-Z, has served us to 

better define and organise the rules for well-formed UML class diagrams presented in 

Subsection 6.3.1.          

 

In what regards the reverse translation, from Z++ specifications to UML constructs, it should 

be noted that it has a secondary role in the modelling process, its purpose being to make 

easier the interpretation of the integrated model by developers and users not trained in 

formal methods. This feature may or may not be used within a particular modelling context, 

but its inclusion in the proposed approach allows a form of “reverse engineering,” from 

formal specifications to semi-formal graphical descriptions. In practice, it is thus possible to 

have some Z++ specifications developed first and then their class structure propagated into   

the UML space. This allows an improved communication between developers skilled in 

formal methods and developers and users that favour the graphical representation of the 

system. The deformalisation option is not a common feature in integrated approaches and its 

practical utility is smaller than that of formalisation. In fact, the only other approach that 

deals with the reverse propagation of models is Headway System’s RoZeLink [RoZeLink99], 

from which we have borrowed the idea. Nevertheless, the reverse translation suggested in 

Section 6.5 is significantly distinct from that used in RoZeLink, major differences stemming 

both from the quite dissimilar OO variants of Z used (ZEST in the case of RoZeLink, and 

Z++ in our case) and from the particular way the Formaliser structured editor used in 

conjunction with RoZeLink continually enforces the correct syntax of ZEST specifications 

[Formaliser01]. 

 

Since both formalisation and deformalisation processes can be partially automated we focus 

in this chapter on those translation operations that can be implemented by a computer 

program. For each process a set of translation principles is presented first and then, based on 

these principles, an algorithm that allows the automatic execution of parts of the translation 

is proposed. A number of issues pertaining to the practical utilisation of the formalisation 
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and deformalisation algorithms, in particular regarding their combined application, are 

discussed in Section 6.6.  

 

 

6.3. Formalisation of UML Class Diagrams in Z+ 

 

The first part of formalisation addresses the translation of UML structural constructs to Z++. 

This formalisation applies to UML class diagrams and to the elements they contain (classes 

and relationships), the result being a set of corresponding Z++ classes. For the target 

language of the translation, Z++, it is useful to consider again the general form of a Z++ class, 

introduced in Chapter 2 and presented in more detail in Appendix A, and to notice that a 

supplementary clause, PUBLICS, has been included in the definition of Z++ classes. This 

clause allows better specification of member visibility, in the same way the � list of Object-Z 

classes declares the attributes and operations that are externally accessible through the dot 

notation [Duke94]. (The introduction of this clause is in agreement with the declared 

intention of Z++’s authors, who designed the language’s syntax “to enable simpler extension 

of the notation by the addition of new clauses to a class definition” [Lano94d, pp. 138]). 

During the automatic translation the clauses of Z++ classes are partially filled in according to 

the information contained in UML class diagrams and then the formal specifications can be 

enhanced by developers with details of data structures, definition of operations, and more 

elaborate constraints. In this section, the input considered for the formalisation process is a 

single class diagram, a discussion regarding the application of the process to a set of class 

diagrams, as well as to a class or a group of selected classes being presented in Section 6.6.  

 

 

6.3.1 Rules for Developing Well-Formed Class Diagrams 

 

In order to reliably perform the translation of UML structural constructs into Z++ 

specifications a number of constraints on the syntactic structures of UML class diagrams 

must be enforced. These constraints ensure that the UML constructs are syntactically well-
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formed and thus can be subjected to automatic translation to Z++. Many of them represent 

restrictions on the development of UML models that are due to the specifics of the target 

language of the translation, Z++ (they can be described as “compatibility constraints” 

between UML and Z++), for instance interfaces and abstract classes are not treated since 

there are no equivalent constructs for them in Z++ and, if parameters of operations are 

provided in UML, both the names and the types of parameters must be specified in order to 

allow the automatic formalisation of operation signatures.  Other restrictions represent 

simplifications of UML in cases in which it has been considered that the burden on the 

formalisation process would not be compensated in practice by the inclusion of less 

frequently used features (e.g., only binary relationships are considered).  

 

These constraints, given below in the form of rules for developing well-formed class 

diagrams, raise indeed the level of rigour required in the UML space and reduce to a certain 

degree the modelling options of the UML developer. However, this reduction in modelling 

flexibility is well compensated by the benefits of the more precise descriptions made possible 

by formalisation. Also, while rather large and detailed, the set of constraints described below 

is however not exhaustive, its purpose being to avoid the more common modelling errors 

that would prevent reliable automatic formalisation of class diagrams. In addition, minor 

constraints such as restrictions on the number of characters used in the names of UML 

constructs have been omitted for simplicity.   

 

The rules for well-formedness presented in this section have been inspired primarily from 

[Kim99a], with additional observations drawn from [Lano95]. Many rules have been added 

(e.g., rules regarding attributes and operations, rules for generic classes) while some have 

been discarded (association classes are not considered). All rules are commented and 

organised in a manner intended to facilitate the subsequent description of the translation 

principles presented in Subsection 6.3.2 and of the formalisation algorithm AFCD 

(Algorithm for Formalising Class Diagrams) described in Section 6.3.3.  
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6.3.1.1 Rules for Class Diagrams 

 

The following must be satisfied by each class diagram that is subjected to formalisation:  

 

• The class diagram consists only of classes and binary relationships  

between classes;           (6.1)  

• There is a finite number of classes and a finite number of relationships 

 in the class diagram;           (6.2) 

• Each relationship that belongs to the given class diagram involves two  

classes that also belong to the given class diagram;    (6.3) 

   

The first rule indicates that for formalisation purposes only classes and binary relationships 

between classes are considered, other structural elements of UML that in general can be 

included in class diagrams, such as interfaces and multiple relationships, being ignored (these 

are restrictions generally imposed in other similar formalisation approaches, e.g., [Bruel96], 

[France99], [Kim99a]). However, in practice, some of the UML constructs that are not 

subjected to formalisation can still be present in the UML model, but in this case means to 

extract a representation of the class diagram suitable to formalisation should be devised. In 

addition, as indicated by rule (6.4) below, the classes can be of three kinds: regular, 

parameterised, and binding (classes that instantiate parameterised classes [Booch98]). The 

AFCD algorithm described in Subsection 6.3.3 assumes that rule (6.1) is satisfied, the class 

diagram that represents the input to AFCD being given as two sets, one of classes, and the 

other of binary relationships.  

 

Rule (6.2) imposes limitations on the cardinality of the set of classes and, respectively, of the 

set of relationships that make up a diagram. Included here for the sake of completeness, it 

can serve for a formal description (e.g., in Z or Z++) of the formalisation algorithm. 

 

Rule (6.3) makes sure that the input provided to AFCD is valid in the sense that no 

extraneous classes are involved in a relationship that belongs to the input class diagram. In 
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practice, this rule has an impact on the way two or more class diagrams can be related for 

translation purposes, as discussed in more detail in Section 6.6.  

 

Some other rules presented later in Subsection 6.3.1 can also be seen as applied to class 

diagrams, for instance rule (6.37) that prevents more than one generalisation relationship 

between any two classes, but for presentation reasons they have been described as “rules for 

relationships,” after the description of the rules for classes and the introduction of the kinds 

of relationships considered for formalisation.        

 

6.3.1.2 Rules for Classes  

 

The following constraints apply to UML classes contained in the class diagram that provides 

the input of the formalisation process: 

 

• Each class is either a regular class, a parameterised class, or a binding class;  (6.4) 

• Each class has a name, a finite number of attributes and a finite  

number of operations;          (6.5) 

• In addition to name, attributes, and operations, each parameterised class  

 and each binding class has a finite number of class parameters (in the  

 following, the parameters of parameterised classes are denoted formal class 

  parameters while the parameters of binding classes are denoted actual class 

 parameters). Regular classes do not have class parameters;      (6.6)  

• The name of each regular class is unique within the class diagram;   (6.7) 

• The name of each parameterised class is the same as the name of its  

binding classes but is distinct from the names of all other classes that 

belong to the class diagram;        (6.8)  

• The name of each binding class is the same as the name of the parameterised  

class it binds and the name of other binding classes that instantiate this 

parameterised class, but is distinct from the names of all other classes that 
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belong to the class diagram;            (6.9)  

• Each parametrised class and each binding class has at least one class  

 parameter;          (6.10)  

• Each formal class parameter and each actual class parameter is 

 given only as a name;        (6.11)  

• Each instantiating class has the same number of parameters as the  

 parameterised class it binds;       (6.12) 

• Each attribute has a name and, optionally, a type, a visibility, 

an initial value, and a property;      (6.13) 

• The name of each attribute of a class is distinct from the names of  

all attributes and operations that belong to the same class;   (6.14) 

• The visibility of an attribute is one of the following: public, protected,  

or private;                (6.15) 

• The property of an attribute is either changeable or frozen;  (6.16) 

• Each operation has a name and, optionally, a visibility, a finite list of  

parameters, a return type, and a property;     (6.17) 

• The name of each operation of a class is distinct from the names of  

all operations and attributes that belong to the same class;   (6.18) 

• The visibility of an operation is one of the following: public, protected,  

or private;                (6.19) 

• The property of an operation is either none or query;    (6.20) 

• Each parameter of an operation has a name, a type, and, optionally, 

a direction;         (6.21) 

• The parameters of an operation have unique names within the  

operation’s list of parameters;         (6.22) 

• The direction of each operation parameter is one of the following:   

in, out, or inout;         (6.23) 

• The type of each attribute, class parameter, operation parameter, and the  

return type of each operation is either a basic type, a class type, or  
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an array type;           (6.24) 

• Each formal class parameter denotes a basic type or a class type that is not 

the type defined by a parameterised or binding class;     (6.25) 

• The name of the each formal parameter is different from all the names  

      of types used in the class diagram outside the parameterised class to which  

the formal parameter belongs ;       (6.26) 

• The name of an actual class parameter is the name of a basic type or  

of a class type that is not the type defined by a parameterised or  

binding class.         (6.27) 

 

In the above, rule (6.4) specifies the types of classes that are subjected to formalisation. In 

essence, only the regular UML classes and the UML parameterised classes together with their 

binding classes are translated to Z++, which also allows parameterisation of classes (the 

parameterised classes are also referred to as template classes, or as generic classes, while the 

binding classes are alternatively denoted instantiating classes). 

  

The structure of classes that is considered by the formalisation process is specified in rules 

(6.5) and (6.6), the former giving the regular class structure while the latter appending the 

requirement for class parameters in the case of parameterised and binding classes. As in the 

case of rule (6.2), the requirements for a finite number of items in rules (6.5), (6.6), and 

(6.17) are included for the sake of completeness. Evidently, the formalisation algorithm will 

work on a finite input.   

  

Rules (6.7) to (6.9) provide constraints on the naming of classes. In general, within a class 

diagram the names of classes must be unique, but exceptions to this principle are necessary to 

accommodate binding of template classes such as Queue[X], which can be instantiated as 

Queue[Task], Queue[Patient], etc. (this is denoted implicit binding). In UML there is a second 

way of instantiating parameterised classes, explicit binding, with the name of the binding 

class different from the name of the template class, but for simplification purposes the 

formalisation algorithm assumes only implicit binding is used in class diagrams.  In practical 
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terms, to ensure efficient checking of class names, the AFCD will consider as names of 

generic and binding classes the string formed by concatenating the name of the class with the 

list of the class’ parameters. As such, it is easier to automatically detect that, for instance, the 

class Queue[Task] is distinct from the class Queue[Patient]. Also, this internal representation is 

needed for the specification of relationship ends, as indicated in Subsection 6.3.1.3.  

 

Rules (6.10) to (6.12) deal further with the well-formedness of template and instantiating 

classes. Obviously, the absence of parameters would contradict the concept of parameterised 

classes, hence rule (6.10), and the matching between formal class parameters and actual class 

parameters must also be enforced, as stated by rule (6.12). Rule (6.11) limits the format of 

class parameters to a single name, whose use is further restricted by rules (6.25) and (6.26). 

 

Rules (6.13) to (6.16) are concerned with the well-formedness of attributes. Although the 

visibility and the property of an attribute are listed as optional in rule (6.14), the AFCD will 

assign default values for these two components if none is provided (public for visibility and 

changeable for property).  Also, even though Z++ requires types for all the attributes, we 

decided to allow the AFCD to translate attributes without their types specified in UML, 

leaving to the developer the task of specifying in Z++, post translation, the missing types of 

attributes. Rule (6.14) requires unique names for attributes in a given class. Notably, the 

names of attributes must also be distinct from the names of operations, including inherited 

operations, a constraint that stems from the specifics of Z++ and from the addition of the 

PUBLICS clause, which lists attributes and operations without their type. Rule (6.15) 

specifies the possible kinds of attribute visibility and rule (6.16) gives details about allowable 

values for attribute property. The inclusion of rule (6.16) serves the formalisation process 

since the frozen (constant) attributes are included in Z++ in the clause FUNCTIONS while the 

changeable attributes are specified in the OWNS clause.  

 

Regarding the visibility of attributes and operations addressed by rules (6.15) and, 

respectively, (6.19), public attributes and operations will be made visible in Z++ by their 

inclusion in the PUBLICS clause, while private attributes and operations will require the use 
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of an intermediary class and of a hiding operation applied to this class, as detailed in the 

formalisation algorithm. Following from the specifics of Z++ and from the introduction of 

the PUBLICS component in the definition of Z++ class, protected attributes and operations 

will not require any special treatment.   

 

Rules (6.17) to (6.23) address syntactic aspects of operations. Regarding the uniqueness of an 

operation name in a class required by rule (6.18), considerations similar to those for rule 

(6.14) apply. Rule (6.20) has been included to support the translation process to since query 

operations, which do not change the state of the object, are listed separately (in the RETURNS 

clause) from the regular operations indicated by the none property (these operations are listed 

in the ACTIONS clause of the Z++ class). Rules for the parameters of operations are also 

necessary to help the automatic translation to Z++. In particular, both the name and the type 

of a parameter are required (6.21), since both are necessary in Z++ for declaring operations 

and an automatic assignment of parameter names by the AFCD would complicate 

unnecessarily the translation. Also, unique names for the parameters of an operation are 

required in Z++ even though they may have distinct types, hence rule (6.22), and the 

provisions of rule (6.23) are used in specifying the signatures of operations in Z++. If 

unspecified, the direction of a parameter will be considered in.    

     

Rule (6.24) indicates that three kinds of types are possible for attributes, parameters of 

template classes, parameters of operations, and the returns of operations. Class types are all 

the types whose name is identical with one of the names of classes that exist in the class 

diagram.  For practical purposes, the formalisation algorithms will accept names of  types 

given either as T, T[ ], or T[params], where params is a set of class parameters (more details 

are given in Subsection 6.3.2.1).    

 

Rules (6.25) to (6.27) further restrict the use of class parameter names in order to avoid 

possible complications when formalising generic classes. 
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6.3.1.3  Rules for Relationships 

 

The following rules apply to relationships between classes included in the class diagram: 

 

• Each relationship between two classes is either an association,  

an aggregation, a composition, a generalisation, or an instantiation;  (6.28) 

• Each association relationship has a name;     (6.29) 

• Each relationship has two relationship ends;     (6.30)    

• Each end of a relationship is attached to a class;    (6.31) 

• Each end of a relationship has one of the following types, depending  

on the kind of relationship to which it belongs: 

(a) assoc in the case of association; 

(b) aggreg, if the end is attached to the “whole”  class of the  

aggregation, and none if the end is attached to the “part” class; 

(c) comp, if the end is attached to the “whole” class of composition,  

and none if it attached to the “part” class; 

(d) super, if the end is attached to the superclass of a generalisation,  

and none if it is attached to the subclass; 

(e) generic, if the end is attached to the parameterised (generic) class  

of an relationship, and none if it is attached to the binding class; (6.32) 

• Each end of a relationship has a multiplicity constraint attached,  

which is expressed in the  form of a finite sequence of ranges  

a1 .. b1, a2 .. b2, ... , aK .. bK  

where: 

  K > 0,  

  ∀i, 1 ≤ i ≤ K, ai ≥ 0, bi > 0, ai ≤ bi   

  ∀i, 1 ≤ i ≤ K-1, bi < ai+1, 

  and bK only may be +∞ (denoted * )      (6.33) 

• The multiplicity of the relationship end that is attached to the  “whole”  

part of a composition relationship is 1;      (6.34) 
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• Both ends of a generalisation have multiplicity 1;    (6.35) 

• Both ends of an instantiation have multiplicity 1;    (6.36) 

• Between any two given classes, if more than one relationship exist, 

the relationships are all either associations or aggregations/compositions; (6.37) 

• The names of the associations that involve the same two classes are distinct; (6.38) 

• Each generalisation involves two distinct classes;      (6.39) 

• Each instantiation is between a parameterised class and an instantiating class; (6.40) 

• A class cannot be the superclass of any of its ancestors;    (6.41) 

 

Rule (6.28) specifies the kinds of relationships considered in the present approach. 

Compared with the types of UML relationships described in Section 3.3, the dependency 

and realisation relationships are not included (with the exception of the instantiation version 

of dependency). Also, it should be noted that the term instantiation relationship is not in the 

UML vocabulary, but we use it here to describe in a shorter way the dependency relationship 

between a parameterised class and a binding class.    

 

The names of association relationships are needed for formalising purposes, hence rule 

(6.29). 

 

Rules (6.30) and (6.31) enforce non-tangling relationships by requiring that each 

relationship be specified in terms of two relationship ends, each end being attached to a class.  

 

Rule (6.32) specifies constraints on relationship ends for properly formed relationships. It 

avoids incorrect situations such as a relationship with both ends of type aggregation.  

 

Rule (6.33) gives a general form for the multiplicity constraint attached to a relationship end. 

This form encompasses all cases normally used in UML, including the multiplicity 1, which 

can be represented as 1 .. 1, and the notation *, which can be represented 0 .. *.  
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Rule (6.34) makes sure that unshared containment, characteristic to composition, is properly 

specified in terms of multiplicity while rules (6.35) and (6.36) do the same for the 

instantiation of parameterised classes and, respectively, for generalisation.       

 

Rule (6.37) gives the conditions under which multiple relationships between two classes are 

allowed, while rule (6.38) makes sure that duplicate associations can be mechanically 

formalised. 

 

Rule (6.39) prevents a class to be its own superclass, while rule (6.40) defines more precisily 

the instantiation relationship; 

 

Finally, rule (6.41) avoids invalid situations in which a class acts as superclass to one or more 

of its ancestors. Technically, rule (6.41) incorporates rule (6.39), but the latter was included 

for increased clarity. The AFCD will detect the existence of cycles in the graph whose nodes 

are the classes and whose links are the generalisation relationships contained in the input 

class diagram.    

 

The set of rules for relationships described above need be completed with rules regarding the 

involvement of generic and binding classes in other types of relationships than instantiation. 

To keep things simple, the algorithm for automatic translation will assume that invalid 

situations such as a generic class at the “part” end of an aggregation whose “whole” end is 

attached to a regular class are resolved by the developer before the algorithm is applied. 

  

 

6.3.2 Translation Principles for Class Diagrams  

 

The automated translation of UML class diagrams to Z++ specifications follows a number of 

principles, as described below.  
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6.3.2.1 Translation of Types 

 

In order to facilitate the mechanisation of the formalisation process restrictions are placed on 

the use of types, as indicated in rule (6.24). In the UML space the considered types of 

attributes, parameters of operations, and returns of operations (henceforth collectively 

denoted UML types) can be expressed in one of the following forms: 

 
(a) In “scalar form” T, where T is a string identifier denoting either a basic type or a regular 

class type (the latter means that a regular class with name T exists in the class diagram); 

(b) In “array form” T[], where T is the name of a basic type or a regular class type (note the 

empty space within the square brackets, meaning that only one dimensional arrays are 

automatically processed and the information on array bounds, if any, is left to be 

formalised manually by the developer);   

(c) In “generic form” T[params], where params is a list of parameters passed to a template class, 

each parameter in params denoting a basic type or a regular class type (array types and 

types in generic form are not allowed within params, as indicated by rule (6.27)). 

 

With these restrictions, the mapping of types from UML to Z++ proceeds along the 

following lines: 

 

•  When the UML type is expressed in scalar form T, then:  

- if T is the name of a recognised basic type, specifically unsigned integer, integer or real then 

the correponding Z++ type will be, respectively, N, Z, or R (variants such as byte, int, 

long, double, and float will also be treated as recognised basic types within the above three 

categories). Constraints on the range of the type, if needed, will be specified by the 

human formaliser. The Boolean type will be recognised for the returns of operations, 

but no explicit output variable and no output domain will be associated in Z++ to 

the operation’s return. Also, the type void of an operation’s return will be recognised 

and treated as a type that requires no specification of output domain in the 
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operation’s signature and no specification of output parameter in the operation’s 

definition;    

- if T is the name of an existing regular UML class then the Z++ type will also be T; 

- if uppercase(T) is the name of an existing given set in Z++, then the Z++ type will be 

uppercase(T) (by uppercase(X) we denote the string obtained from the identifier X by 

promoting to uppercase all its lowercase letters, while keeping the others unchanged); 

- if T is neither the name of a recognised basic type, nor the name of an existing regular 

UML class or of an existing Z++ given set, it will be treated as the name of a 

unrecognised basic type and a new given set will be added in Z++, with the letters of 

the identifier T written in uppercase, as it is customary in Z. The Z++ type will 

therefore be uppercase(T); 

- if T is used in the context of a parameterised class and it is identical with the name of 

a formal parameter of the class, the Z++ type will also be T; 

•  When the UML type is an array type T[], then T will be first checked as described above 

and then the operator seq will be applied to the Z++ type corresponding to the scalar type 

T. For instance, the UML type int[] will become seq(Z) in Z++ and the UML type Car[] 

will be mapped either to seq(CAR), if no class with the name Car exists in the class diagram, 

or to seq(Car), if Car is the name of an existing  UML class; 

•  When the UML type is given in generic form T[params] it will be assumed that the items 

of the params list represent actual parameters for the generic class T. If these parameters are 

provided by the formal parameters of the enclosing class, they will be left unchanged, 

otherwise each parameter P of params will be checked against recognised basic types, 

existing regular classes, and existing given sets, as outlined previously for types expressed 

in scalar form. It is possible therefore that a new given set will be created in Z++ if P is 

neither the name of an existing class, nor the name of a recognised basic type (e.g., the 

UML type Stack[Book]will lead to the creation of the given set BOOK in Z++ if class Book does 

not exist in the class diagram).  

Since in order to allow an earlier transfer of UML class diagrams to Z++ specifications the 

UML types can be left unspecified, the formalisation algorithm may produce incomplete 

definitions for attributes and operations in Z++. This means that after the automatic 



   149 
  

translation is performed one of the first tasks of the human formaliser will be to complete the 

information on types if further development of formal specifications is intended. 

 

6.3.2.2  Translation of Attributes 

 

The following apply when translating to Z++ the attributes of UML classes : 

 

• The names of UML attributes will be used as names for the corresponding Z++ 

attributes, for instance the attribute size in UML will be mapped into the same name 

attribute size in Z++; 

• The property of the UML attribute will determine the clause in which the corresponding 

Z++ attribute is placed. Attributes that cannot be modified, declared frozen in UML, will 

be placed in the FUNCTIONS clause of the Z++ class, while all other attributes (changeable) 

will be included in the OWNS clause. Due to Z++’s specifics, it is assumed that frozen 

attributes are also declared protected, since the constants declared in the FUNCTIONS clause 

of a Z++ class are local to the class and to its subclasses;  

• The initial value of the attribute, if provided in UML, will be used as follows: 

- if the attribute is listed as changeable the initialisation of the attribute will be performed 

using an assignment statement in the init operation of the Z++ class; 

- if the attribute is frozen the initialisation will be performed in the predicate part of an 

axiomatic box definition that will be included in the FUNCTIONS clause; 

It is assumed that the type of the initial value of the attribute is the type of the attribute, 

which means that for array types the initial values must be given as sequences of the form 

<v1, …, vn>, n ò 0; 

• The visibility of an attribute att of a class C will be treated as follows by the translation 

algorithm: 

- if the attribute has public visibility the name of the attribute will be appended to the 

clause PUBLICS of the Z++ class C; 

- if the attribute has protected visibility no special measures will be taken since in Z++ all 

attributes are inherited automatically by the derived classes; 
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- if the attribute has private visibility it will be appended to the list of hidden features 

kept by the algorithm for each class. This list, if not empty after the processing of all 

the attributes and operations of the class, will require a hiding operation applied to 

the class, as detailed in Subsection 6.3.2.4.  

- the type of the attribute will be determined according to the translation priciples for 

types presented in Subsection 6.3.2.1. 

    

6.3.2.3 Translation of Operations 

 

The following principles apply for translating to Z++ the operations of UML classes: 

 

• The names of UML operations will be used as names for the corresponding Z++ 

operations, for instance the operation determineTrend in UML will be mapped into the same 

name operation determineTrend  in Z++; 

• The property of an op operation of a UML class C will determine the clauses of the Z++ 

class C in which the signature and the definition of the corresponding Z++ operation op  

are placed. Operations declared query, which do not change the state of the object, will 

have their signatures specified in the RETURNS clause of the Z++ class C, while all other 

operations will have their signatures included in the OPERATIONS clause. For both query 

and non query operations, definitions specified as indicated below are included in the 

ACTIONS clause of the Z++ class; 

• The parameters of the UML operation op, if any, are processed as follows:  

- the type of each operation parameter will be processed according to the translation 

principles for types described previously and the Z++ type of the parameter will be 

added to the Z++ operation’s signature according to the direction of the parameter. 

Specifically, if the direction of the parameter is in then the type of the parameter will 

be added to the list of input domains, if the direction is out it will be added to list of 

output domains, and if the direction is inout it will be added to both lists; 

- the name of each operation parameter is used to construct the initial part of the 

operation’s definition in Z++. If the type of the parameter is in the name of the 
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parameter post-fixed by the symbol ? (denoting an input variable in Z) will be 

appended to the operation’s definition list of input parameters and if the type of the 

parameter is out, the name of the parameter postfixed by ! (denoting an output 

variable in Z) will be added to the operation’s definition list of output parameters. If 

the direction of the parameter is inout, both the above operations will be performed; 

• The return type of an UML operation, if present and different from void and Boolean, will 

be first processed according to the principles outlined for types in Subsection 6.3.2.1 and 

then placed as an item in the list of output domains of the corresponding Z++ 

operation’s signature. If void or Boolean, no action will be taken; 

• The visibility of each UML operation will be processed similarly to the visibility of UML 

attributes. The name of a UML public operation will be included in the PUBLICS clause 

of the Z++ class in which the corresponding Z++ operation has been created while the 

name of a private operation will be added to the list of hidden features maintained by the 

translation algorithm for each Z++ class for the purposes described in Subsection 6.3.2.4. 

Protected UML operations will not require any special treatment. 

 

6.3.2.4 Translation of Classes 

 

The following apply for automatic formalisation of UML classes in Z++:   

 

•  Only regular and generic classes will be translated, no action being necessary for binding 

classes, which simply instantiate generic classes. In fact, a particular instantiation of an 

existing generic class may not necessarily correspond to a binding class present in the 

class diagram (e.g., if the parameterised Producer[X] class exists in the class diagram, a 

variable can can declared as P:Producer[Car] in a UML class without having the Producer[Car] 

explicitly drawn in the class diagram); 

•  The names of UML classes will be used for their corresponding Z++ classes, each regular 

or generic UML class C being mapped into a class with the same name C in Z++; 

•  The class parameters of a generic UML class will be listed in the parameter list of the 

corresponding Z++ class; 
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• The names of all direct superclasses of a UML class will be listed in the EXTENDS clause 

of the corresponding Z++ class; 

• All the attributes of a UML class will be processed according to the principles described 

previously in Subsection 6.3.2.2, information being placed in the PUBLICS, 

FUNCTIONS, OWNS, and ACTIONS clauses of the corresponding Z++ class, as well as in 

the list of hidden features maintained by the algorithm for the Z++ class. The list of 

given sets of the Z++ specification will be updated during this process based on the 

information contained in the types of UML attributes; 

• All the operations of a UML class will be processed according to the principles described 

previously in Subsection 6.3.2.3, information being placed in the PUBLICS, RETURNS, 

OPERATIONS, and ACTIONS clauses of the corresponding Z++ class, as well as in the list 

of hidden features maintained by the algorithm for the Z++ class. The list of given sets of 

the Z++ specification will be updated during this process based on the information 

contained by the types of operation parameters and the type of operation return; 

• After all the classes in the class diagram are processed as described above, the classes C 

with a non empty list of hidden features will be used for creating hiding classes, prefixed 

by the symbol H (from Hiding), classes needed for providing the desired visibility of 

attributes and operations. Specifically, for each class C with hidden features an operation  

H_C ¡ C \ [ hidden_featuresC] will be included in the Z++ specification and the class H_C 

will be used instead of  C in the EXTENDS list of classes that have C superclass. 

 

 

6.3.2.5 Translation of Relationships  

 

The relationships included in a class diagram are formalised in Z++ as follows:   

• Inheritance relationships (generalisations) are formalised during the translation of classes 

through the inclusion in the EXTENDS clause of each Z++ class of the names of the class’ 

immediate superclasses; 
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• Instantiation relationships are formalised during the translation of classes by including 

the formal parameters of the class in the parameter lists of Z++ classes, as described in 

Subsection 6.3.2.4; 

• Aggregation and composition relationships are formalised by adding to the container 

class of the relationship an attribute that indicates the contained object or objects. 

Specifically, if the aggregation or composition is between class W (“whole”) and the class P 

(“part”), then the attribute will be created in class W with a name and a type that depend 

both on the multiplicity of the “part” end of the relationship, as follows:  

- if the multiplicity is “one,” then the attribute will have the name p (the class name in 

lowercase) and its type will be P. For instance, given a one-to-one aggregation or 

composition between the classes Radio and Antenna, with Antenna the “part” class of the 

relationship, then the attribute antenna : Antenna will be created in the class Radio; 

- if the multiplicity is “many,” then the attribute will have the name p+“s” and its type 

will be �P. For instance, considering a one-to-many aggregation or composition 

between Radio and Button, with Button the “part” class of the aggregation, then the 

attribute buttons : �Buttons will be created in the class Radio. 

However, if attributes of type P or �P already exist in W, no additional  attribute describing 

the aggregation/composition will be created in W. 

•  Associations relationships are formalised by creating a Z++ class that describes the 

association and by including in the System class of the Z++ specification an object of this 

class, with appropriate constraints attached. More precisely, considering a many-to-many 

association assoc between classes A and B, then: 

- a class with the name AssocDescriptor will be created in Z++; 

- the attributes instancesOfA of type �A, instancesOfB of type �B and assocInstances of type A Ö  B 

will be included in the  OWNS clause of  the AssocDescriptor class; 

- the constraint dom assocInstances = instancesOfA ∧  ran asssocInstances = instancesOfB will be 

included in the INVARIANT clause of the AssocDescriptor class; 

- the object theAssocDescriptor of type AssocDescriptor will be included in the OWNS clause of 

the System class of the specification. 
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For instance, considering the many-to-many association departs between the classes Flight 

and Airport, then the class DepartsDescriptor will be created in Z++ with attributes 

instancesOfFlight:�Flight, instancesOfAirport: �Airport, and departsInstances: Flight Ö Airport placed in its  

OWNS clause (the names of the classes are underlined to indicate that instances of 

associations are created between existing objects of the classes). A single object 

theDepartsDescriptor of type DepartsDescriptor will also be created in the System class of the Z++ 

specification.  

 

If the association is one-to-one or many-to-one from A to B than the type of the attribute 

assocInstances will be A Ü B and if the association is one-to-many from A to B the attribute’s 

type will be B Ü A.  

 

6.3.3 Algorithm for Formalising Class Diagrams (AFCD) 

 

Based on the rules for syntactically well-formed UML class diagrams, classes, and 

relationships presented in Subsection 6.3.1 and on the formalisation principles described in 

Subsection 6.3.2, an algorithm for translating the core structural UML constructs into Z++ 

specifications is given below in a Pascal-like pseudocode. The structure of the algorithm’s 

input as well as the format of the algorithm’s output are given first and then the algorithm is 

detailed in top-down fashion.  The code of a Java program that implements the algorithmic 

contents of ADFC and adapts its data structures for an OO solution is included in Appendix 

B.  Details that have been omitted from the presentation that follows can be found in the 

code presented in this Appendix.  As a matter of convention, in ADFC’s pseudocode the 

basic structuring module employed, the procedure, is specified as follows: 

 
procedure ProcedureName (<inputParams>; <outputParams>)     (6.42) 
  

where <inputParams> is a list of parameters given in the form <ip1 : T1, ip2 : T2, ..ipM : TM>,  with each 

ipi,   1  ≤ i  ≤  M,  an  input  parameter  of  type Ti,  and <outputParams>  is  a  list  of  the   form  

<op1 : T1, op2 : T2, .. opN : TN>, with each opj, 1  ≤  j  ≤  N, an output parameter of type Tj. For simplicity, 

the implicit type of output parameters is considered to be inout, meaning that the calling 
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module passes them to the procedure, which returns them after execution in a possibly 

modified form.  

 

6.3.3.1 AFCD Input 

 

The input of the formalisation algorithm is a representation of a UML class diagram, 

denoted CD, that consists of the tuple (C , R) where C  is the set of classes and R is the set of 

binary relationships between the classes, R : C  ↔ C. In terms of the structure, the following 

are considered: 

 
C  = {C0, .., CN-1}, N  ≥  0        (6.43) 

 
with N = 0 for the empty set of classes C = ∅. Similarly:      

 
R  = {R0, .., RM-1}, M ≥ 0        (6.44) 

 
Each class C in C  has the following format:  

 
C = (name, ctype, atts, ops, cparams)      (6.45) 

 
where name is a string identifier and ctype one of the following: reg, para,  or bind, while the 

other components have the form:  

 
 atts = {att0, ... , attNa-1},  Na ≥ 0         

ops = {op0, ... , opNo-1},  No ≥ 0        
cparams = {cp0, ... , cpNcp-1},  Ncp ≥ 0      (6.46) 

 
Each attribute att in atts has the form: 

 
att = (name, attype, vistype, initval, property)      (6.47) 

 
where name and type  are string identifiers, vistype is either public, protected, or private, and 

property is either changeable or frozen. With respect to initval, this should be a value of type, but 

the formalisation algorithm does not perform type checking.   

 

Each operation op in ops shown in (6.45) has the form: 
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op = (name, vistype, params, rettype, property)     (6.48) 

 
where name is a string identifiers, vistype is either public, protected, or private, property is none or 

query, and params is a set: 

 
params = {p0, ... , pNp-1},  Np ≥ 0                   (6.49) 

 
where each parameter p in params has the form: 

 
 p = (name, ptype, dir)         (6.50) 
 
with name and ptype string identifiers and dir one of in, out , or inout.  

 

Each class parameter cp in cparams given in (6.46) is a string identifier and attype of (6.47), 

rettype of (6.48) and ptype a (6.50) are type identifiers given as T, T[ ] or T[tparams], where T is 

a string identifier and tparams is a list:  

 
tparams = (tp0, ... , tpNtp-1),  Ntp ≥ 0      (6.51) 

 
with each tpi, 0  ≤ i  ≤  Ntp-1, a string identifier.  

 

Each relationship R in R of (6.44) has the form: 

 
 R = (name, rend1, rend2)       (6.52) 
 
where name is a string identifier or the reserved word null and the two ends of the relationship 

have the structure: 

 
 rend = (kind, classname, mult)        (6.53) 
 
with kind either assoc, aggreg , comp, super, generic, or none, the classname given as a string 

identifier, and mult specified in the form:   

 
    mult = (a1 .. b1, .., aK .. bK)        (6.54) 
 
where K and the range limits ai and bi , 1 ≤ i ≤ K,  satisfy condition (6.33). 
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6.3.3.2 AFCD Output 

 

The output of the algorithm is a Z++ specification Z = (H, ZC, OC) that consists of a 

header H that precedes the class declarations, a set ZC  of classes, and a set OC of operations 

on classes that gathers statements that represents operations applied on Z++ classes such as 

hiding and composition. A statement is considered to be a text consisting of one or more 

lines built according to the syntax of Z++. For AFCD purposes: 

 
 H = (GivenSets)         (6.55)  
 
meaning that only given sets are placed by the algorithm in the header specification, with: 

 
GivenSets= {GS0, ..., GSNgs-1}, Ngs  ≥  0       (6.56)  

 
where each GS is an uppercase string identifier. 

 

The set of Z++ classes has the form: 

 
ZC = {ZC0, ..., ZCNz-1}, Nz  ≥  0       (6.57) 

 
where each ZC has the structure indicated in (6.62). The set of operation on classes is given 

as:  

  
 OC = (HidingOperations)            (6.58) 
 
meaning that AFCD  constructs only hiding operations on classes for inclusion in OC, the 

form of HidingOperations being: 

 
HiddingOperations= {HO0, ..., HONho-1}, Nho  ≥  0      (6.59)  

 
where each HO is a Z++ statement. 

 

The form of each ZC in (6.59) is: 

 
ZC = (NAME, CPARAMS, EXTENDS, PUBLICS, TYPES , FUNCTIONS, OWNS, RETURNS   

      OPERATIONS, INVARIANT, ACTIONS, HISTORY)    (6.60) 
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which corresponds to the structure of Z++ described in Appendix A.  In the above NAME is a 

string identifier, CPARAMS, EXTENDS and PUBLICS are lists of string identifiers and all the other 

components of ZC are sets of Z++ statements . Notationally : 

 
 CPARAMS =  {cp0, ... , cpNzcp-1},   Nzcp ≥ 0      

EXTENDS =  {ext0, ... , extNxt-1},   Nxt ≥ 0 
PUBLICS  =  {pb0, ... , pbNpb-1},   Npb ≥ 0       
TYPES =  {typ0, ..., typNtp-1},   Ntp ≥ 0   
FUNCTIONS =  {fun0, ..., funNfun-1},   Nfun ≥ 0    
OWNS =  {own0, ..., ownNow-1},   Now ≥ 0        

 RETURNS =  {ret0, ..., retNret-1},   Nret ≥ 0        
 OPERATIONS=  {zop0, ..., zopNzo-1},   Nzo ≥ 0        

INVARIANT =  {inv0, ..., invNinv-1},   Ninv ≥ 0        
ACTIONS =  {act0, ..., actNact-1},  Nact ≥ 0     

 HISTORY =  {hist0, ..., ownNhis-1},   Nhis ≥ 0      (6.61) 
 
 

From the AFCD point of view the above corresponds to the external representation of a Z++ 

class, but for implementation purposes additional components are used for modelling Z++ 

classes (they make up the “internal representation” of the Z++ class, which facilitates the 

translation and allows extensions of the algorithm). Specifically, a set of attributes, a set of 

operations and a list of hidden features are included, as shown in the AFCD code presented 

in Appendix B.  

 

6.3.3.3 AFCD Pseudocode 

 

The highest level, pseudocode description of the AFCD is given in Fig. 6.1. The input for 

the FCD procedure is a class diagram, and its output is a Z++ specification. The FCD 

procedure invokes first the CheckCDSyntax procedure to verify that the rules for well-formed 

class diagrams are satisfied and, if this is confirmed, proceeds with the translation of UML 

constructs to Z++ by calling the TranslateCD procedure. The errorFlag variable, visible across 

the FCD, is used to signal the detection of errors (violations of rules for well-formedness) at all 

levels of procedure nesting. Specific messages that indicate the kind of the errors detected are 

issued locally by the lower level procedures. 
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-- Top level UML to Z++ formalisation procedure 
 

procedure FCD(CD:ClassDiagram) 
ZPPS:ZPPSpec;   --  Z++ specification to be generated  
errorFlag := false;  --  flag to signal well-formedness errors 
begin 

    CheckCDSyntax(CD);   --  check correctness of the class diagram 
    if (not errorFlag) then     
  TranslateCD(CD;ZPPS)  -- and translate only if no errors found 
         endif; 
    PrintZPPSpec(ZPPS);        -- print to file resulting Z++ specification  
 end FCD; 

  

 

Fig. 6.1 The Top Level FCD Procedure 

 

In the following, the CheckCDSyntax procedure is described only through its high-level 

components, specific details of implementation being provided by the code included in 

Appendix B. Here, only the rules that involve more than preliminary checks of the input in 

terms of expected structures and valid items are covered (examples of such preliminary 

checks include verifying that two relationship ends have been provided for each relationship 

and checking that the property of an attribute is either changeable or frozen). The TranslateCD 

procedure is described after the high-level modules of CheckCDSyntax are presented. 

  

 

-- Check the well-formedness of the input class diagram 
 
procedure CheckCDSyntax(CD:ClassDiagram) 
 begin 
      CheckRelationships(CD);  -- check constraints at relationship level 
      if (not errorFlag) then  

              CheckAcrossCD(CD); 
  end if; 

           if (not errorFlag) then  
              CheckClasses(CD);    -- check constraints at class level 

        end if; 
 end CheckCDSyntax; 

 

 

Fig. 6.2 The CheckCDSyntax Procedure 
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The CheckCDSyntax procedure shown in Fig. 6.2 consists of three categories of checkings, 

each addressing a context (class, relationship, or class diagram) that corresponds from a 

notational point of view to the groups of rules presented in Subsection 6.3.1. However, due 

to practical considerations, the order of contexts has been changed and, as detailed later, the 

contents of each group of checkings match only loosely the contents of the associated group 

of rules  (although globally all major rules are covered). More precisely, we have taken the 

approach of checking in a given context those rules that require (almost) exclusively 

information available in that context. For this reason, a rule such as (6.41) given previously 

as a relationship rule (a rule preventing a class to be the superclass of any of its ancestors) is 

verified in the CheckAcrossCD procedure and not in CheckRelationships. Regarding the order 

of checkings, the validation of the internal contents of classes (CheckClasses procedure), 

involving the inspection of lower-level structural details, is performed only if the other two 

categories of tests are passed. Also, the CheckAcrossCD procedure follows the internal checking 

of relationships since improperly formed relationships would preclude reliable verifications at 

the class diagram level.    

 

To simplify the pseudocode descriptions that follow, the testing of the errorFlag indicator 

between procedures is no longer shown, but it should be considered that an error in a given 

procedure would generally preclude the meaningful execution of the procedures that follow. 

Thus, if a test fails, the execution of the algorithm will stop. With this approach, the UML 

developer is required to incrementally improve the well-formedness of the class diagram.   

 

Also, since comments are included in the procedures given below, only brief indications on 

the correspondence between the FCD’s procedures and the rules of well-formedness are given 

in conjunctions with the components of the CheckCDSyntax procedure.    

 

As shown in Fig. 6.3, the internal verification of relationships consists of five tests, covering, 

in order, rules (6.32), (6.33), (6.29), (6.34), (6.35), and (6.36). The other rules listed as 

relationships rules in Subsection 6.3.1 are checked in the CheckAcrossCD procedure, shown in 

Fig. 6.5.   
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-- Check constraints on the relationships   
 
procedure CheckRelationships(CD:ClassDiagram) 
   begin 

CheckRelationshipEnds(CD);      -- verify proper ends of the relationships 
CheckWellFormedMultipicity(CD); -- verify multiplicity at the two ends 

    CheckAssociationsHaveName(CD); -- verify names are given to associations  
    CheckCompMultOne(CD);  -- the whole part of composition and  
    CheckRelMultOne(CD,GEN)  -- both ends of generalisation and    
    CheckRelMultOne(CD,INST)  -- instantiation must have multiplicity one 
 end CheckRelationships; 
 

Fig. 6.3 The CheckRelationships Procedure 

 

It is necessary to note that the organisation of tests shown in Fig. 6.3 for CheckRelationships 

was chosen over the faster alternative depicted in Fig. 6.4 because it allows a clear 

demarcation of tests and a clear separation of error messages.  

 

-- Alternative testing of relationships (not used). Faster, but with no clear separation of messages.  
 
procedure AlternativeCheckRelationships(CD:ClassDiagram) 
 begin 

for i = 0 to M-1 do         -- verify all relationships 
CheckRelationshipEnds (CD.R[i])     -- verify proper ends of the relationship 
CheckWellFormedMultipicity(CD.R[i]) -- verify multiplicity at the two ends 

  if (isAssociation(CD.R[i])) then 
   CheckAssocHasName(CD.R[i]) -- associations must have names  
  end if;  
  if (isComposition(CD.R[i])) then 
   CheckWholeMultOne(CD.R[i]) -- the whole part of composition  
  end if;     -- must have multiplicity  one 
  if (isGeneralisation(CD.R[i])) then 
   CheckRelMultOne(CD.R[i],GEN)  -- both ends of generalisation  
  end if;     -- must have multiplicity  one  
     if (isInstantiation(CD.R[i])) then 
   CheckRelMultOne(CD.R[i],INST) -- and both ends of  instantiation   
  end if;     -- must have multiplicity  one 
         end for;  

   end ALternativeCheckRelationships; 

 

Fig. 6.4 Alternative CheckRelationships Procedure 
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More complex verification work is done by the CheckAcrossCD procedure, whose component 

tests are sequentially ordered based on their possible implications on other tests.  

 

-- Check constraints across class diagram 
 
procedure CheckAcrossCD (CD:ClassDiagram) 
 begin 

         CheckEndRelClassesExist(CD); -- verify existence of classes involved in relationships 
   CheckClassNamesUnique(CD);   -- check constraints on names of classes     

         CheckDistinctAssocNames(CD); -- distinct names of assocs. between the same two classes  
CheckDuplicateRelationships(CD); -- only assoc and aggreg/comp can be duplicated  
CheckInstantiationEnds(CD);  -- verify instantiation ends attached correctly to classes 

         CheckMatchingBindings(CD);   -- classes in an inst. rel. must have same no. of params. 
CheckNoAncestorToSelf(CD);   -- a class cannot be ancestor to itself 

end CheckAcrossCD; 

 

 

Fig. 6.5 The CheckAcrossCD Procedure 

 

The rules verified by the CheckAcrossCD procedure are, in order (6.3), (6.7 to (6.9),  (6.38), 

(6.37), (6.40), (6.41), (6.12), and (6.41).   

 
The last procedure within CheckCDSyntax is CheckClasses, shown in Fig. 6.6, whose role is to 

ensure the uniqueness of names of attributes, operations, and parameters of operations, as 

required by rules (6.14), (6.18), and (6.22).   

   

 
-- Check constraints at class level  
 
procedure CheckClasses(CD:ClassDiagram) 
 begin 
    for i = 0 to N-1 do          -- verify all classes in the class diagram 
   CheckAttributeNamesUnique(CD.C[i]); -- verify names of attrib. within the class  
  CheckOperationNamesUnique(CD.C[i]); -- verify names of ops. within the class 
  CheckOpParamNamesUnique(CD.C[i])    -- verify names of op. parameters  
    end for;  

end CheckClasses; 

 

Fig. 6.6 The CheckClasses Procedure 
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The translation part of the algorithm, coordinated from the CDTranslate procedure is 

described next (Fig. 6.7 to 6.20).  

 

The top-level procedure CDTranslate performs the major tasks of translating the classes and 

the relationships (Fig. 6.7). In order to establish the required visibilities of attributes and 

operations, it also applies hiding operations on classes, an activity that can take place only 

after both classes and relationships are processed.  

 

The TranslateClasses procedure (Fig. 6.8) subjects to translation all non-binding UML 

classes by invoking TranslateClass (Fig. 6.9). Here, detailed formalisation work on individual 

UML classes is performed. Based on the information available in the input UML class a 

corresponding Z++ class is created, with its “internal representation” filled according to the 

translation principles presented in Subsection 6.3.2. Esentially, translations of attributes 

(procedures TranslateAttributes of Fig. 6.10 and TranslateAttribute of Fig. 6.11) and operations 

(procedures TranslateOperations of Fig. 6.12 and TranslateOperation of Fig. 6.13) are 

performed first, followed by placement of information in the “externally visible 

representation” of the Z++ class. This preparation work for external representation is done by 

PlaceZPPAttributes and PlaceZPPOperations procedures (Fig. 6.16 and 6.17). Details on the 

processing of operations are shown in the procedures ProcessOPParameters (Fig. 6.14) and 

ProcessOpReturn (Fig. 6.15), which deal with the translation of the operation’s parameters 

and, respectively, of the operation’s return. 

 

Since some of the relationships are implicitly processed during the formalisation of classes, 

only associations and aggregations/compositions receive special treatment, as indicated by the 

procedure TranslateRelationships (Fig. 6.18). Details on formalising aggregations and 

compositions are given in TranslateAggregation (Fig. 6.19), while the translation of association 

is described by TranslateAssociation (Fig. 6.20).  

 

Further translation details are available from the code included in Appendix B.    
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-- UML to Z++ translation of a class diagram 
 

procedure CDTranslate(CD:ClassDiagram; ZPPS:ZPPSpec) 
   begin 
 TranslateClasses(CD;ZPPS);      -- process classes  

 TranslateRelationships(CD;ZPPS) -- process relationships   
ResolveVisibility(;ZPPS)            -- apply hiding operations on Z++ classes    

   end CDTranslate;  
 

Fig. 6.7 The CDTranslate Procedure 

 
 

-- Translation of classes 
 

procedure TranslateClasses(CD:ClassDiagram; ZPPS:ZPPSpec) 
begin 
 for i = 0 to N-1 do     -- inspect all classes in the class diagram 
     if(CD.C[i].ctype /= bind) then      -- translate regular and parameterised  
  TranslateClass(CD,CD.C[i];ZPPS)  -- classes only (ignore binding classes) 
    endif;            

end for;  
       
   end TranslateClasses; 

 

Fig. 6.8 The TranslateClasses Procedure 

 
 

-- Translation of an individual class 
 

procedure TranslateClass(CD:ClassDiagram,C:UMLClass; ZPPS:ZPPSpec)    
ZC:ZPPClass;     -- Z++ class to be created 

begin  
   AppendClass(C.name; ZPPC, ZC);  -- create corresponding Z++ class   

if (C.ctype==para)then     -- if UML class is generic transfer formal  
       TransferCParams(C; ZC)    -- class parameters to Z++ class 

endif; 
ProcessParents(CD,C; ZC);    -- process parents and fill EXTENDS clause 
TranslateAttributes(CD,C; ZPPS,ZC);       -- formalise attributes  
TranslateOperations(CD,C; ZPPS,ZC);       -- formalise operations  
PlaceAttributes(;ZC);       -- fill FUNCTIONS, OWNS, and ACTIONS 
PlaceOperations(;ZC);          -- fill FUNCTIONS, OWNS, and ACTIONS 

   end TranslateClass;      -- work done on this class 
 

 

Fig. 6.9 The TranslateClass Procedure 
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-- Translation of attributes 
 

procedure TranslateAttributes(CD:ClassDiagram, C:UMLClass;  
                              ZPPS:ZPPSpec, ZC: ZPPClass) 
 
begin 
 for i = 0 to Na-1 do         -- inspect all attributes of the class 
     TranslateAttribute(CD,CD.atts[i];ZPPS,ZC)  -- and save info in Z++ class        

end for;         
   end TranslateAttributes; 
 

 

Fig. 6.10 The TranslateAttributes Procedure 

 
 
 

-- Translation of an attribute 
 

procedure TranslateAttribute(CD:ClassDiagram, att:UMLAtt; 
                             ZPPS:ZPPSpec, ZC:ZPPClass) 
 

zatt: ZPPAtt;     -- Z++ attribute to be created  
begin 
 zatt.name = att.name;    -- take name,  
 zatt.visibility = att.visibility;  -- visibility, 
 zatt.initval = att.initval;   -- and initial value from UML attribute 

if (att.property == changeable) then -- determine place of attribute in Z++ 
     zatt.clause = OWNS    -- class depending on property 
 else 
     zatt.clause = FUNCTIONS 
 end if; 
 if (zatt.visibility == public) then  -- make provisions for attribute visibility  
     Append(zatt.name; ZC.Publics)  
 else if (att.visibility == private) then 

          Append(zatt.name; ZC.HiddenFeatures) 
 end if; 
   ProcessType(att.type,CD,ZC;ZPPS,zatt.ztype);-- determine type of Z++ att. and  

-- possibly add to given sets of Z++ spec. 
Append(zatt;ZC);     -- finally, add attribute to Z++ class 

   end TranslateAttribute; 
 

 

Fig. 6.11 The TranslateAttribute Procedure 
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-- Translation of operations 
 

procedure TranslateOperations(CD:ClassDiagram, C:UMLClass;  
                              ZPPS:ZPPSpec, ZC: ZPPClass) 
 
begin 
 for i = 0 to No-1 do     -- inspect all operations of the class 
     TranslateOperation(CD,CD.op[i]; ZPPS,ZC); -- and save info in Z++ class        

end for;         
   end TranslateOperations; 
 

 

Fig. 6.12 The TranslateOperations Procedure 

 
 

-- Translation of an operation 
 

procedure TranslateOperation(CD:ClassDiagram, op:UMLOp;  
                             ZPPS:ZPPSpec, ZC: ZPPClass) 

zop: ZPPOp;      -- Z++ operation to be created   
begin 
 zop.name = op.name;    -- take name and 

zop.visibility = op.visibility;  -- visibility from UML operation 
if (zop.visibility == public) then  -- make provisions for operation visibility  

     Append(zop.name; ZC.Publics)  -- in Z++ context 
 else if (zop.visibility == private) then 

          Append(zop.name;ZC.HiddenFeatures) 
end if; 
if (op.property == query) then  -- determine place of operation signature 

     zop.clause = RETURNS   -- in Z++ class depending on property 
 else 
     zop.clause = OWNS 
 end if; 
   ProcessOPParameters(CD,op;ZPPS,ZC,zop); -- process parameters of operation and 
                           -- possibly add to given sets of Z++ spec 

 
   ProcessOpReturn(CD,op;ZPPS,ZC,zop);    -- process operation return and  

              -- possibly add to given sets 
Append(zop;ZC);     -- finally, add operation to Z++ class 

   end TranslateOperation; 
 

 

Fig. 6.13 The TranslateOperation Procedure 
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-- Translation of parameters of operations 
 

procedure ProcessOPParams(CD:ClassDiagram,op:UMLOp,ZC:ZPPCLass; 
                          ZPPS:ZPPSpec,zop:ZPPOp) 
 ztype:Ztype;     -- helper variables 
 name,dir:String;  
begin 

for i = 0 to Npo-1 do     -- process all operation parameters 
name = op.p[i].name;    -- take name and   
dir = op.p[i].name;    -- direction of parameter 
ProcessType(op.p[i].ptype,CD,ZC; ZPPS,ztype);-- determine Z++ type and 

-- possibly add to given sets of Z++ spec  
   if (dir == in) then     -- if direction of parameter is in 

Append (ztype;zop.sign.InputDomain);-- append type to input domain  
Append (name+”?”; zop.def.InputList)-- and decorated name to input list  

else if (dir == out) then    -- if direction of parameter is out 
Append (ztype; zop.sign.OutputDomain);-- append type to output domain  
Append (name+”!”; zop.def.OutputList)-- and decorated name to input list  

    else      -- otherwise, direction is inout 
Append (ztype;zop.sign.InputDomain);-- and therefore do both  
Append (name+”?”; zop.def.InputList);  
Append (ztype; zop.sign.OutputDomain);  
Append (name+”!”; zop.def.OutputList); 

    end if; 
 end for; 
    end ProcessOpParams; 
 

 

Fig. 6.14 The ProcessOpParams Procedure 

 

-- Interpretation of operation return 
 

procedure ProcessOPReturn(CD:ClassDiagram,op:UMLOp,ZC:ZPPCLass; 
                          ZPPS:ZPPSpec,zop:ZPPOp) 
 ztype:Ztype;       
begin 

      ProcessType(op.rettype,CD,ZC; ZPPS,ztype);-- determine Z++ type and 
-- possibly add to given sets of Z++ spec  

if ((op.rettype /= boolean)&&   -- if type neither boolean nor void 
    (op.rettype /= void)) then   

Append (ztype;zop.sign.OutputDomain); -- append to output domain  
Append (“result!”;zop.def.OutputList); -- and append result param. to output list 

end if;    
end ProcessOpReturn; 

 

 

Fig. 6.15 The ProcessOpReturn Procedure 
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-- Placement of Z++ attribute descriptions in appropriate clauses  
procedure PlaceZPPAttributes( ;ZC:ZPPCLass;)   
 stmtA:String;  -- two statements needed per attribute, one for attribute definition 
 stmtB:String;  -- the other for intialisation assignment (if an init value is provided) 
 initop:ZPPOp;  -- a Z++ operation that may be needed for the initialisation of attributes 
 axiomDef:String;  -- representation for the predicate part of a Z axiomatic definition  
begin 

for i = 0 to Nza-1 do     -- process all attributes  
   AssembleZPPAttDef(ZC.att[i];stmA); -- form att. def. from data in Z++ class   
   if(ZC.att[i].clause == OWNS) then  

  Append(stmA;ZC.OWNS)    -- place attribute def.  in OWNS clause 
 if(ZC.att[i].initval not null) then -- if initial value exists 
       AssembleZPPAttAssign(ZC.att[i]; stmB); --  form assignment statement       
         if (initop not in ZC.ops) then 
  AddInitOp(;ZC.ops)  -- create init op. in Z++ class if needed 

   endif; 
    Append(stmB;ZC.initop.code) -- and add initialisation assignment to it    
      endif;     
   else       

  Append(addBar(stmA);ZC.FUNCTIONS);  -- place att. def.  in FUNCTIONS clause 
 if(ZC.att[i].initval not null) then -- and if initial value exists 
       AssembleZPPAttAssign(ZC.att[i]; stmB); --  form assignment statement       
         Append(stmB;axiomDef)  -- and append it to pred. part of ax. def.     
      endif;     
   endif; 
endfor; 
Append(schemaPred; ZC.FUNCTIONS);  -- complete Z schema in FUNCTIONS     

end ProcessOpReturn; 
 

 

Fig. 6.16 The PlaceZPPAttributes Procedure 
 

procedure PlaceZPPOperations ( ;ZC:ZPPCLass;) -- place op. descriptions in clauses     
 stmt: String;   -- statement that can be used for both signature and definition 
begin 

for i = 0 to Nzo-1 do          -- process all operations 
   AssembleZPPOpDef(ZC.op[i];stmt);  -- form op. def. from data in Z++ class   
   Append(stmt; ZC.ACTIONS);    -- and place it  in ACTIONS clause 
   AssembleZPPOpSign(ZC.op[i];stmt); -- form op. signature   

if(ZC.op[i].clause == RETURNS) then  
     Append(stmt;ZC.RETURNS)   -- and place it either in RETURNS clause 

 else 
   Append(stmt;ZC.OPERATIONS)  -- or in OPERATIONS clause 

    endif; 
endfor; 

  end PlaceZPPOperations;   
 

 
Fig. 6.17 The PlaceZPPOperations Procedure 
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-- Translation of relationships 
 

procedure TranslateRelationships(CD:ClassDiagram; ZPPS:ZPPSpec) 
begin 
 for i = 0 to M-1 do         -- inspect all relationships 
     if (IsAggreg(CD.R[i])or IsComp(CD.R[i])then  -- translate aggregs/comps  
  TranslateAggregation(CD.R[i];ZPPS)   
    else if (IsAssoc(CD.R[i])) then   
  TranslateAssociation(CD.R[i];ZPPS)  -- and associations 
    end if;            

end for;  
   end TranslateRelationships;     -- gen. and instantiations are 

-- processed during the  
-- translation of classes 

 

Fig. 6.18 The TranslateRelationships Procedure 

 

     

-- Translation of aggregation and composition 
 

procedureTranslateAggregation(rel:UMLRelationship; ZPPS:ZPPSpec) 
 

whole,part: String;   -- names of classes in aggreg/comp relationships 
 mp: boolean;   -- multiplicity of component (one/many as F/T)   
 watt: ZPPAtt;   -- attribute to be added to container (by default 

-- protected, without initial value, and with clause OWNS) 
cmp = “component”;  -- constant string used in def. of attributes 

 
begin 

 getEndsDescription(rel;whole,part,mp); -- get  info from relationship 
       -- and then assign name and type to attribute  

if (!mp) then         -- depending on the multiplicity of the part class       
   Assign(cmp+part,part;watt)   --  multiplicity of part one       
else  
   Assign(cmp+part+“s”,“�”+part;watt)  --  multiplicity of part many       
end if; 

 addAttToZPPClass(watt,whole; ZPPS);  -- add attributes to container class 
   endTranslateAggregation; 
 
 
 

Fig. 6.19 The TranslateAggregation Procedure 
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-- Translation of assocation 
 

procedureTranslateAssociation(rel:UMLRelationship; ZPPS:ZPPSpec) 
 
one,two: String;    -- names of the two classes in association  

 zatt: ZPPAtt;   -- helper ZPP attribute to be added to Z++ classes 
-- (protected, without initial value, and with clause OWNS) 

 line: String;   -- local variable    
 zcls: ZPPClass;   -- Z++ class to be created 
 dscr: =“Descriptor”;  -- constant strings used in the creation of the new class 
 instOf: =“instancesOf”;   
 inst: =“instances”;   
 
begin 
 
   zcls.name = rel.name + dscr;  -- the name of new class is derived from the name of assoc. 

getEndsDescription(rel; one, two);   -- get the names of the two classes in association  
formInvariantConstraint(one, two; line); -- create predicate for INVARIANT clause 
Append(line; zcls.INVARIANT);   -- and append to new class 
AddClassToZPPSppec(zcls; ZPPS);   -- append class to Z++ spec. 

 Assign(instOf + one, “�” + one; zatt);      
AddZPPAttToClass(zatt, zcls.name; ZPPS); -- add first attribute to the new class  
Assign(instOf + two, “�” + two; zatt)      
AddZPPAttToClass(zatt, zcls.name; ZPPS) -- add second attribute to the class 
FormInstancesType(one,two,ZPPS; stmt) 
Assign(rel.name + inst, line; zatt)      
addAttToZPPClass(zatt, zcls.name; ZPPS); -- add third attribute 
updateSystemDescriptors(zcls; ZPPS); -- update descriptors of associations 

    
   endTranslateAssociation; 
 
 

 
Fig. 6.20 The TranslateAssociation Procedure 
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6.4 Formalisation of UML State Diagrams in Z++ 

 

The second part of formalisation is concerned with the translation of UML dynamic 

constructs to Z++. More precisely, this formalisation applies to UML state diagrams that are 

associated to individual classes, the result consisting in information appended to the Z++ 

classes created previously during the formalisation of the structural aspects of the system.  As 

in the case of formalising class diagrams, the focus is on those parts of the translation process 

that can be automatically performed. The structure of the present section is similar to that of 

Section 6.3, but instead of a set of rules for syntactically correct state diagrams the expected 

format of states and transitions is given in a descriptive manner. Also, the Algorithm for 

Formalising State Diagrams (AFSD) is not presented at the same level of details as AFCD 

and it does not have an example of implementation included in the thesis’ appendices (due 

to space considerations only the code for AFCD is provided in Appendix B). However, an 

example of formalising a state diagram is given in Section 6.4. 

 

6.4.1 Constraints on the Contents of State Diagrams  

 

In Subsection 3.3.2 the notions of event, finite state machine and statechart diagram were 

discussed and the description of states and transitions was given. Compared with that 

description, the AFCD uses a slightly different version of state machine, some elements being 

ignored while other are added. In Fig. 6.21 the general form of a transition is presented, 

showing the modelling elements used in state diagrams that are accepted by the formalisation 

algorithm (the structure of these elements is reflected in the format of the AFSD’s input 

detailed in Subsection 6.4.3.1). 

 

As can be seen from Fig. 6.21, the AFSD takes into consideration timed transitions, in the 

sense described in [Lano95], but internal transitions of states (which do not cause state 

changes) and deferred events (that could be handled by the object in different states) are not 

dealt with during the mechanised translation to Z++. Also, signal events are omitted but all 

other possible types of trigger events, namely call event, passage of time event, and change 
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event, are considered. A further simplification is that composite states are not covered, 

although their possible treatment is briefly discussed in Section 6.6.      

 

Source State
(initial or regular state)

entry action
activity

exit action

Target State
(regular or final state)

entry action
activity

exit action

Transition

event (parameters)
[guard]

[lower, upper] /
actions

 
Fig. 6.21 General Form of a State Transition   

 

A state diagram consists of a finite number of states and a finite number of transitions 

between states. Each state is of one of the following kinds: initial, final, or regular (we 

introduce the last term to denote a state that is neither initial nor final). Exactly one of the 

states is the initial state of the diagram, and zero or more final states can be included in the 

state diagram. Each regular state has a unique name within the state diagram and may 

contain an entry action, an activity, and an exit action. Initial and final states, which are in 

fact pseudostates, do not have names and do not contain actions or activities.  

 

Each transition connects a source state to a target state and is either triggerless (automatic 

transition) or has a trigger event of the kind indicated below. A guard condition that can 

enable or disable the transition, an additional condition denoted initiation timing condition 

(expressed as an interval of time [lower, upper]), and a set of actions can optionally be attached 

to the transition. The source state and the target state of the transition may be the same, and 

each transition has only one trigger event. The same event, however, may serve as trigger for 

several transitions. The trigger event is of one of the following kinds: call event, denoted by a 
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name, passage of time event, specified in the form after (duration), or change event, given as when 

(condition). A call event may have a number of formal parameters, with types indicated. The 

guard condition is a Boolean expression that when evaluated as true enables the firing of the 

transition, provided the object is in the source state of the transition. When not indicated on 

the transition, the guard condition is assumed to be true. The timing limits lower and upper, if 

present, indicate the requirements for the transition’s initiation time, more precisely after the 

transition is enabled its execution must be initiated no earlier than lower units of time and no 

later than upper units of time. The actions attached to the transition as well as the actions and 

activities included in states are specified as method invocations, using a name and optionally 

a list of formal parameters, with types indicated (as in the case of the call events, the 

requirement for explicit types of parameters is needed for automated translation purposes, 

although usually the types of parameters are not specified in state diagrams). Actions may 

represent invocations of operations from supplier classes, in which case the name of an object 

of the supplier class precedes the name of the action (the dot notation is used, for instance in 

the state diagram for class C an action a.op() denotes the invocation of method op of object a, 

where a is an object of C’s supplier class A). Activities of states are assumed to be operations of 

the class for which the state diagram was drawn, so the dot notation need not be used (they 

are methods invoked on self).    

 

Depending on the type of their trigger event, the transitions can be classified as externally 

invoked if the trigger is a call event or internally invoked if the trigger is a change or passage 

of time event, or the transition is triggerless. For formalisation purposes triggerless transitions 

are assimilated to transitions caused by “change events” when(true).  Anonymous transitions 

with guarding condition guard are assimilated to transitions triggered by change events 

when(guard). Normally, when a change event when(condition) triggers a transition the guard 

component of the transition should be omitted (included in condition), although the AFSD 

processes it properly by appending the guard to the condition of the transition. In order to 

simplify the translation procedure, it is assumed that transitions from the initial state are 

triggerless, with no guarding condition, execution timing condition, or actions attached.  
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Also, it is assumed that the same call event appears throughout the entire state diagram with 

the same formal parameters, including names and types, as do actions and activities.    

 

6.4.2 Translation Principles for State Diagrams  

 

Before detailing the formalisation of the principal components of state diagrams, the states 

and the transitions, a number of preliminary observations on the approach taken for 

formalising state diagrams are necessary. 

 

6.4.2.1  General Principles and Terminology  

 

First of all, we need to recall that while a transition has a single trigger event an event may 

serve as trigger for several transitions (for the time being the point of view is sequential, 

meaning that at each occurrence time a trigger event triggers a single transition, but the 

transition it triggers may be different over the lifetime of the object).  As pointed out by Kim 

and Carrington, who cite [Douglass98], each trigger event must have an associated event 

acceptor operation in the class for which the state diagram has been drawn  [Kim00b].  Since 

an event may trigger more than one transition, this operation may in fact describe several 

transitions. Because it indicates the effects of the event in terms of transitions triggered and 

because of notational reasons that will become apparent in Subsection 6.4.2.3, we chose to 

use the term transit operations for these event acceptor operations.  

 

However, using a single transit operation to cover all transitions possibly triggered by a 

certain event can be difficult to formalise mechanically, mainly because of the potential 

complexity of the timing constraints included in the HISTORY clause of the Z++ class.  In our 

approach, we resort to the notion of transition signature for avoiding excessively long 

temporal formulae in the HISTORY clause, while keeping reasonably small the number of 

transit operations associated to a trigger event. The use of transition signatures, defined 

below, provides an intermediary solution between two opposite alternatives: the alternative 

of using a transit operation for each trigger event, which may lead to complex formulae, and 
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the alternative of using a transit operation for each transition, which may lead to a large 

number of operations included in the Z++ class.    

 

By transition signature we denote the compound resulting from the concatenation of the 

following components associated to a transition, starting from the source state: the exit 

actions of the source state, the trigger event of the transition, the guard condition of the 

transition, the initiation timing constraint of the transition, and the actions attached to the 

transition (the parameters of events and actions are also part of the signature). In short, the 

signature of a transition includes all the components of the transition depicted in Fig. 6.1, 

prefixed by the exit action of the source state of the transition. This signature serves the 

purpose of identifying transitions that behave similarly but differ in the states they connect, 

transitions with identical signatures being described by the same transit operation. For 

example, in the state diagram of Fig. 3.12, reproduced in a simplified form in Fig. 6.29, 

there are three shared transition signatures, namely “when (limited_reached)/stop(),” “goSpeedOne,” 

and “off”. (Fig. 6.29 is used in Subsection 6.4.4 for exemplifying the application of the 

AFSD). 

 

The above definition of transition signature also hints to the fact that while we attach exit 

actions of states to outgoing transitions and include them in transit operations, the entry 

actions of the states are not formalised using transit operations. This is further explained in 

Subsection 6.4.2.2.       

 

For formalisation purposes, a number of additional conventions are introduced, as follows: 

 

•  A transition triggered by a call event is said to be a simple transition if its signature 

consists exclusively of the name of the trigger event and, if provided, of the names and 

types of the parameters of the event (in other words, the source state of the transition has 

no exit action and the transition itself has no guard condition, no initiation timing 

condition, and no actions). The notion of simple transition describes a non-guarded 

asynchronous method call with no restrictions on initiation time and no appended 
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actions (examples of such simple transitions in Fig. 6.29 are reverseDirection, goSpeedOne, 

goSpeedTwo, and off);   

•  Since several transit operations may be created for the same trigger call event, a basic 

name for the transit operations associated with the call event is needed. The basic name is 

the name of the event, for instance if the call event is sendCharacter(c: char) the basic name 

for the transit operations will be sendCharacter, and if more than one transit operation will 

be created, they will be denoted sendCharacter1, sendCharacter2, etc. (an exception applies if one 

of the transit operations describes the simple transition associated with the event –in this 

case the name sendCharacter  will be used for it, without an index appended). To distinguish 

between the operations that model the transitions and the event that triggers the 

transitions, in the Z++ specification the name of the event will be prefixed by ω, for 

instance the call event in the case described above will be denoted ωsendCharacter. 

 

A note on the creation of Z++ operations describing transitions, actions, and activities is also 

necessary. During the formalisation of the state diagram, when such an operation is to be 

created, an operation with the same name may exist as the result of previously applying the 

AFCD. In this case, it is no longer necessary to create another operation, but an error 

message will be generated if the input and output domains, as well as the input and output 

lists of the existing operation do not match the ones that would be generated for the new 

operation.  

 

6.4.2.2 Translation of States 

 

The formalisation of states proceeds as follows: 

 

•  An enumerated type CState will be created in the TYPE clause of the Z++ class C 

corresponding to the UML class associated to the state diagram (e.g., a type DisplayState in 

the class Display). The elements of this type are the names (in lowercase) of the regular 

states included in the state diagram plus the names finalK, K ≥ 1, generated incrementally for 

each final state present in the state diagram (final states are included here for the sake of 
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completeness, although they appear rarely in RTS). In addition, an attribute state of type 

CState denoting the current state of the object will be created in the OWNS clause. The state 

attribute, local to the class, will not be listed in the PUBLICS clause of the Z++ class; 

• The name of the target state of the transition outgoing from the initial state will be used 

as initial value for the state attribute. The initialisation of state will be performed in the init 

operation of the Z++ class; 

• The names of the regular states and the generated names of the final states will be used to 

construct predicates in the HISTORY clause of the Z++ class, along the lines proposed in 

[Lano95]. Specifically, the following categories of predicates will be generated: 

permission predicates, definition of transition effects, and reachability properties. Delay, 

duration, and other timing constraints will also be included in the HISTORY, and the 

names of the states will be used in these constraints as well, as detailed later in the 

description of translations of state actions, state activities, and transitions (the last 

category of HISTORY predicates, describing mutual exclusion properties, involves only the 

names of transitions). For the first three categories of predicates, the following apply: 

- the permission predicates relate transitions with their source states and will be given 

in the form  

�(transit_operation ⇒ state = sourcestate1 ∨  ...  ∨   state = sourcestateN); 

- the predicates describing the effect of transitions relate transitions with their target 

states and will be given as  

� (transit_operation ⇒ �(state = targetstate1 ∨  ... ∨  state = targetstateM)); 

- the predicates for reachability indicate the relationships between source states and 

their outgoing transitions, and will be specified in the form   

� (state = sourcestate ⇒ transit_operation1 ∨  ... ∨   transit_operationP)   

The names of regular and final states will be placed accordingly in the above predicates, 

as will be the names of transit operations created as detailed in Subsection 6.4.2.3. 

• The entry action of each state, as well as the activity of the state will be formalised as 

local operations of the Z++ class, if not already declared otherwise in the class. The 

principles of translating UML operations described in Subsection 6.3.2.3 apply here as 

well, the names and the types of the parameters of the actions and activities being 
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processed in the same way the names and the parameters of operations are processed by 

the AFCD. A distinction occurs however if an entry action represents the invocation of a 

method on an instance of a supplier class. Since the class of this supplier object is not 

specified in the format of entry actions, no generation of operation will take place and no 

verification will be made to ensure that the method invoked actually exists, but a 

reminder in the generated Z++ specification will be included as a comment (e.g.,                 

// >> check invocation heater.raiseTemp(delta) is valid <<). This remainder will help the specifier to 

complete the formalisation of the state diagram after the AFSD is applied.  If an 

operation with the same name already exists in the Z++ class as the result of previously 

applying the AFCD no action will be taken, the idea being that entry actions and 

activities may be operations already declared in the UML description of the class 

included in the class diagram provided as input to the AFCD. Temporal specifications 

on the entry action and the activity of the state will be appended in the HISTORY clause 

of the Z++ class as follows: 

- if the entry action entry_action(paramsE) exists in state S, where paramsE are the names of 

the action’s parameters, then the predicate   

 
∀i∈÷1 • ↑ (entry_action(paramsE), i)  = ♣((state = S) := true, i) 
 

 will be added to indicate that the entry action initiates its executions as soon as the 

state is entered; 

- if the entry action entry_action(paramsE) is followed by an activity activity(paramsA), where 

paramsA are the names of the activity’s parameters, then temporal chaining between the 

two will be indicated as  

 
∀i∈÷1 • ↓ (entry_action(paramsE), i)  = ↑( activity (paramsA), i) 

 
meaning that the termination of the entry action coincides with the initiation of the 

activity; 

- if the state has  only activity (paramsA) but no entry action, the predicate  

 
∀i∈÷1 • ↑ (activity (paramsA), i)  = ♣((state = S) := true, i) 
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will be included to indicate that the state’s activity commences its executions as soon 

as the state is entered. 

For both the entry action and the activity the precondition state = S will be added to the 

definition of the operations that describe them; 

• The exit actions of the states will be covered by transit operations created to formalise 

translations, as described in the next subsection. 

 

6.4.2.3  Translation of Transitions 

 

Each transition will be formalised using a transit operation declared in the OPERATIONS 

clause and defined in the ACTIONS clause of the in the Z++ class. As previously stated, a 

transit operation describes several transitions with the same signature. Differences exist 

between the formalisation of externally invoked transition (transition whose triggers are call 

events) and internally invoked transitions (transitions triggered by change or passage of time 

events), as follows: 

 

•  If the transition is triggered by a call event denoted call, then for formalisation purposes 

the basic name of the transit operation will be call and the event itself will be denoted  ωcall. 

For each such transition: 

- an operation call with the signature included in the OPERATIONS clause and definition 

included in the ACTIONS clause of the Z++ class will be created using the information 

provided by the parameters of the event ωcall for defining the input and output 

domains of the operation’s signature and the input and output lists of the operation’s 

definition. The name of this operation will be included in the PUBLIC clause of the 

class; 

- if this is the only transition in the state diagram triggered by ωcall, or if all the 

transitions triggered by ωcall have the same signature, then the above is the only 

transit operation associated with ωcall. Information extracted from the transitions that 

have the same signature will be appended to the Z++ class as follows:  

° if the guard condition guard is specified then a predicate of the type  
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(enabled(call) ≡ (state = S1 ∨  ... ∨  state = SK) ∧  guard) 

 
will be included in the HISTORY clause of the Z++ class. In this predicate  the 

states S1, ... , SK are the source states of the transitions that share the same 

signature. Since the well-formedness of the guard condition is not verified, a 

reminder for the human specifier to check the condition will be included as a 

comment, in the form // >> check condition [guard] is well-formed <<; The inclusion of this 

predicate in the HISTORY clause allows further specification by the human 

formaliser of detailed temporal constraints regarding the execution of transition, 

for instance in the case of a transit operation that corresponds to a single guarded 

transition it is possible to write   

 
(enabled(call) ≡ (state = sourcestate) ∧  guard) ∧   
∀i∈÷1 • ∃ j, j1, j2∈÷1 • ((state = sourcestate) ∧  guard ) �♣ (ωcall, j) ∧  
♣ (ωcall, j)  = →  (call, i) ∧  ((state = sourcestate) ∧  guard ) �↑ (call, i) ∧  
↓(call, i) = ♣ ((state = sourcestate) := false, j1) ∧   

                ↓(call, i) = ♣ ((state = targetstate) := true, j2)  
 

The above indicates the conditions under the operation call is enabled, shows that 

the enabling condition holds at the time of the j-th occurrence of the trigger 

event ωcall and that the operation is requested as soon the trigger event occurs. It 

also indicates that the enabling condition still holds at the initiation of the 

operation and details the change of state at the termination of the operation (the 

assumption is that sourcestate and targetstate are distinct, otherwise the last two lines 

should be omitted); 

° if specified, the timing condition [lower, upper] will be used for including in the 

HISTORY clause the predicate 

 
∀i ∈ ÷1 •  fires (call, i)   ⇒  lower  ≤ delay (call, i)  ≤  upper 

 
which indicates that the execution of call initiates sometime between lower and 

upper units of time after the request for execution is made;   
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° in the definition of the operation call predicates relating the source state with the 

target state of all transitions covered by the operation will be included in the 

form   

 
   (state = sourcestate1 ∧  state’ = targetstate1) ∨  ...∨  (state = sourcestateK ∧  state’ = targetstateK) 

 
unless there is only one target state involved, in which case the inclusion of the 

predicate state’ = targetstate will suffice (conditions on source states will be included 

in permission and reachability predicates); 

° the state exit action and the actions attached to transitions are formalised as class 

operations declared in the OPERATIONS clause and defined in the ACTIONS clause 

of the Z++ class. These operations, which are local to the class, will have their 

invocations appended in sequence in the definition of the call operation (the 

order is the exit action first, followed by the actions attached to transitions in the 

order they are written on the transitions).  

 

- if there are several distinct signatures for the transitions triggered by ωcall, then for 

each distinct signature a transit operations will be created in the OPERATIONS clause 

and defined in the ACTIONS clause of the Z++ class. These operations will be declared 

public. If one of the transition signatures is the signature of a simple transition, then 

the corresponding transit operation is the call operation created previously, the 

remaining operations being named call1, call2, etc. If there is no simple transition 

signature among the signatures of transitions triggered by ωcall, then the names of the 

operations will be call1, call2, etc.; 

- for each transit operation callK (K ≥ 1), information extracted from the transitions that 

have the same signature will be appended to Z++ class in the manner described above 

for processing guards, initiation timing constraints, and source and target states. 

However, the state exit action and the actions attached to the transitions are 

appended in the following order to the body of the transit operation: state exit action 

first, followed by the invocation of the simple operation call, and then by the actions 

attached on transitions, in the order they are specified on transitions. Operations for 
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state exit action and transition actions are created in the Z++ class in the way 

described previously; 

     

•  If the transition’s trigger event is a change event when(condition) then the formalisation 

proceeds in a way similar to the one described for transitions triggered by call events, the 

difference being  that no operation for the simple transition is created and that internal 

(spontaneous) transit operations with the name τk, k ≥ 1, will be generated 

incrementally, one for each group of transitions that have the same signature. These 

internal operations are local to the class, therefore their names will not be included in the 

PUBLICS clause of the Z++ class. The condition of the event will be appended to the guard 

condition of the transitions, if any, and will be used in the above given formulae in the 

place of guard;  

 

•  If the transition’s trigger event is a passage of time event after(time_expression) then the 

formalisation is similar to that of transitions triggered by change events, internal transit 

operations with the name τk being generated incrementally by the algorithm for each 

group of transitions that have the same signature. The only difference resides in the way 

the temporal condition is handled. For each such condition the predicate  

  

∀i ∈ ÷1 •  enabled (τk ) ∧  ↑(τk, i) = ♣((state = sourcestate) := true, i ) + time_expression 

 

will be appended to the HISTORY clause of the Z++ class meaning that the operation is 

initiated after time_expression units of time from the moment the state is entered, provided 

the transition is enabled. This predicate need be checked by the human specifier, since 

no verification of the validity of the time expression is performed by the AFSD.  

 

The translation of transitions continues until all trigger events present in the state diagram 

are processed, each trigger event leading to the creation of one or more transit operations. 

Then, all the transit operations created in the translation process will be used to generate 

mutex and self-mutex predicates, permission predicates, effect of transition predicates, and 
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reachability predicates, all included in the HISTORY clause of the Z++ class as indicated in 

Subsection 6.4.2.2.  For the first category, it is assumed that transitions in UML state 

diagrams are both mutually exclusive and mutually self exclusive (see definition of these 

properties in Chapter 5), therefore the names of all transit operations will be included in 

both the mutex and self_mutex expressions appended to the HISTORY clause. 

 

6.4.3 Algorithm for Formalising State Diagrams (AFSD) 

 

In the same way the AFCD was described in Section 6.3, the AFSD is presented in this 

section through the structure of its input and output and through the pseudocode 

description of its executable contents. For separation of concerns purposes it is assumed that 

AFSD is invoked after AFCD, although they can be merged in an implementation, as 

discussed in Section 6.6. With this assumption, the Z++ class structure corresponding to the 

one developed in the UML space is already available, thus the AFSD only appends 

information to Z++ classes and is not concerned with the creation of classes.    

 

6.4.3.1 AFSD Input 

 

The input for the AFSD is provided by the Z++ specification resulted from the execution of 

the AFCD, specification given in the format presented in Subsection 6.3.3.2, and by a finite 

state diagram SD that consists of the tuple (S, T ), where S is a set of states and T a set of 

transitions between states, T : S �Ä�S. In terms of the structure, the following are considered: 

 
S  = {S0, .., SN-1}, N  ≥  0          
T  = {T0, .., TM-1}, M ≥ 0        (6.62) 

 
Each state S in S  has the following format:  

 
S = (name, kind, entry_action, activity, exit_action)     (6.63) 

 
where name is a string identifier (null if the state is not regular), and kind is one of the following: 

initial, regular, or final. The components entry_action and exit_action can be null, if not provided, or 

actions given in the form:  
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 action = (name, params)        (6.64) 
 
while activity is either null (if not provided) or an action prefixed by the name of an object, 

which is a string identifier, possibly null:  

 
activity = (objectname, action)       (6.65) 

 
In (6.64) params are given in the format indicated for operation parameters in (6.49) and 

(6.50). 

  

Each transition T in T of (6.62) has the form: 

 
 T = (source, target, trigger, guard, time_range, actions)    (6.66) 
 
where source and target are states that belong to S , guard is a Boolean expression including 

the default value true, time_range is either null or given as an interval [lower .. upper] with lower 

and upper numerical values such that lower ≤ upper, and actions has the form: 

 
actions = {action0, ... , actionNact-1},  Nact ≥ 0     (6.67) 

 
with each action given in the format (6.65).  The last component of a translation, the trigger 

event has the following form: 

 
trigger = (kind, body)         (6.68)  

 
where kind is one of the following: none (used only for the transition from the initial state), 

call, change, or timing. If the kind of the trigger event is none, than its body is null, and if the kind 

of the trigger is call, then its body has the form: 

 
body = (name, params)        (6.69)  

 
where name is a string identifier and params a list of parameters with the structure specified 

in (6.49) and (6.50). If the kind of the trigger is change, its body has the form: 

  
body = (condition)        (6.70)  
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where condition is a Boolean expression. If the kind of the trigger is timing, then its body has 

the form:  

 
body = (duration)        (6.71)  

 
where duration is a timed-valued expression.   

 

6.4.3.2 AFSD Output 

 

The output of the AFSD is a Z++ specification having the structure described in Subsection 

6.3.3.2. Under the assumption indicated at the beginning of Subsection 6.4.3, this output is 

generated by appending information to the Z++ specification provided as input to the 

AFSD.  

 

6.4.3.3 AFSD Pseudocode  

 

Using the convention (6.42) for the representation of procedures, the pseudocode 

description of AFCD is given in Figures 6.22 to 6.28. These figures show the higher level 

modules of the AFCD, designed according to the principles of translation outlined in 

Subsection 6.4.2. Since comments are included in procedures only some brief explanations 

are given below. 

 

The SDTranslateProcedure of Fig. 6.22 coordinates the entire formalisation work. Its three 

major components are the TranslateStates, TranslateTransitions, and WriteHistoryPredicates 

procedures. The TranslateStates procedure shown in Fig 6.23 has two roles: the first of 

creating the enumerated type State and the attribute state of this type (with proper 

initialisation), and the second of coordinating the individual formalisation of states. Each 

state is processed individually by the TranslateState procedure (Fig. 6.24), which appends the 

name of the state to the members of the State type and formalises the entry action and the 

activity of the state, if available. 
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Transitions are processed based on their trigger event by the TranslateTransitions procedure 

(Fig. 6.25). Details on the formalisation of transitions triggered by call events are given in 

Fig. 6.26, which contains the pseudocode of the ProcessCallTrans procedure. Since call events 

are asynchronous method calls a simple transit operation is generated in any case for the 

event, based on the name and parameters of the call event. If there is a single transition 

signature for this event, it is assumed that the simple transit operation is the only such 

method needed by the developers of the state diagram, hence the additional work on the 

simple transit operation done by procedure CompleteUniqueTransitOperation (not detailed in 

the AFSD pseudocode). In fact, if there are no guards, time range, state exit action and 

transition actions in this single transition signature, the procedure does nothing else other 

than appending the simple transition operation created previously to the list of transit 

operations maintained by the state diagram. Since the processing of translations is driven by 

the trigger events present in the state diagram, it is necessary to mark as “processed” the 

transitions covered in each invocation of the ProcessCallTrans procedure.  

 

If there are several transition signatures for the same call event, the GenerateTransitOperation is 

invoked for each such signature, as shown in Fig. 6.27. Formalisation work involving the 

processing of state exit action, of the guard condition, of the initialisation timing condition, 

and of the actions attached to transitions is performed here.  

 

The last procedure shown for the AFSD, the WriteHistoryPredicates, appends to the HISTORY 

clause of the Z++ class a number of predicates, as indicated in Subsection 6.4.2.2.      

 

-- UML to Z++ translation of a state diagram 
 

procedure SDTranslate(SD:StateDiagram,zcls:String;ZPPS:ZPPSpec) 
   begin 
 TranslateStates(SD,zcls;ZPPS);      -- process states  

 TranslateTransitions(SD,zcls;ZPPC);     -- process transitions   
WriteHistoryPredicates(SD,zcls;ZPPC)  -- add predicates to the HISTORY clause 

   end SDTranslate;  
 

 

Fig. 6.22 The SDTranslate Procedure 
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-- Translation of states 
 

procedure TranslateStates(SD:StateDiagram,zcls:String;ZPPS:ZPPSpec) 
zppET: ZPPEnumType;    -- enumerated type to be created  
state: ZPPAtt;     -- and an attribute of this type  

begin 
for i = 0 to N-1 do     -- inspect all states in the state diagram   

    TranslateState(SD,SD.S[i],zcls;ZPPS,zppET) -- translate each of them and   
        -- create the enumerated State type   

 end for;    
AddTypeToZPPClass(zppET,zcls;ZPPS);  -- add type to Z++ class 
Assign(“state”,zcls+“STATE”;zatt);      -- create attribute state:ClassState  
AddZPPAttToClass(zatt,zcls;ZPPS);  -- add it to the class 
InitialiseStateAtt(SD,zcls;ZPPS);  -- and initialise the state attribute  

   end TranslateStates; 

 

 

Fig. 6.23 The TranslateStates Procedure 

 

 

 

-- Translation of an individual state 
 

procedure TranslateState(SD:StateDiagram,S:State,zcls:String; 
         ZPPS:ZPPSpec,zppET:ZPPEnumType)    
begin  

if (S.kind == final) then   -- incrementally generate names of final 
   AppendFinalState(;zppET,S.name)  -- states and append them to STATE type 

 else if (S.kind = regular) then  
   AppendState(;zppET);    -- append name of reg. state to type 
   if (S.entry_act /= null) then 
 ProcessEntryAct(S,zcls;ZPPS);  -- formalise entry action   
   if (S.activity /= null) then 
 ProcessActivity(S,zcls;ZPPS);     -- formalise activity 
endif; 

   end TranslateState;       
 

 

Fig. 6.24 The TranslateState Procedure 
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-- Translation of transitions 
 

procedure TranslateTransitions(SD:StateDiagram,zcls:String; 
                               ZPPS:ZPPSpec)    
begin  
   for i = 0 to M-1 do     -- inspect all transitions 

   if (not Processed(T[i].trigger)) then  -- if not already processed  
      if(T[i].kind == call) then    -- process the transition 
        -- based on its trigger event: 
         ProcessCallTrans(SD,T[i],zcls;ZPPS) -- call event trigger, 
      else if (T[i].kind == change) then  

   ProcessChangeTrans(SD,T[i],zcls;ZPPS)  -- change event trigger, or 
      else if (T[i].kind == timing) then  
    ProcessTimingTrans(SD,T[i],zcls;ZPPS)  -- passage of time trigger  
      end if;        -- (the transition from the  
   end if;       -- initial state is not processed)    

      end for; 
   end TranslateTransitions;       
 

 

Fig. 6.25 The TranslateTransitions Procedure 

 

-- Translation of transitions triggered by a call event 
 

procedure ProcessCallTrans(SD:StateDiagram,T:Transition, 
                           zcls:String;ZPPS:ZPPSpec) 
tsigns[]: TransSign;    -- holder for transition signatures 
postfixNo: int := 1;         -- number to be appended to op. names  

begin  
          -- create simple operation  for this trigger 

GenerateSimpleTransitOperation(T.trigger,zcls;ZPPSpec);      
FormTransitionSignatures(SD,T.trigger;tsigns)  -- determine all trans. signatures 
if (tsigns.size == 1) then                     -- if one only, update simple op. 
   CompleteUniqueTransitOperation(SD,tsigns[0],zcls;ZPPC) 
else                                           -- otherwise generate a trans. op                                               
   for i = 1 to tsigns.size do                 -- for each signature 
      GenerateTransitOperation(SD,tsigns[i],zcls;ZPPC) 
   end for;              

      end if; 
   -- mark “processed” all transitions with this trigger         

      MarkTransitionsProcessed (T.trigger;SD);           
   end ProcessCallTrans ;      
 

 

Fig. 6.26 The ProcessCallTrans Procedure 
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-- Creation of operations for a transition signature    

 
procedure GenerateTransitOperation(SD:StateDiagram,tsign:TransSign, 
                                   zcls:String;ZPPS:ZPPSpec) 
   zop: ZPPOp;                     -- transit op. to be created         
begin  

      if (isSimpleTransSignature(tsign)) then  
   CompleteUniqueTransitOperation(SD,tsign,zcls;ZPPC) 

      else 
         SetName(T.trigger.name+getPostfix;zop);   -- assign postfix number  

        ProcessExitAction(SD,tsign,zcls;zop,ZPPC);   -- process exit action  
                        ProcessGuard(SD,tsign,zcls,zop.name;ZPPC);   -- use guard for HISTORY 
         ProcessTimeRange(SD,tsign,zcls,zop.name;ZPPC);-- use time range for HISTORY 
         RelateStatesInOperation(SD,tsign;zop);       -- relate source and target in 
                                                                                                                                           -- operation body 
         AppendActions(SD,tsign,zcls;zop,ZPPC);       -- create operations as needed  

-- and append actions to op. 
   AddOperation(zop,zcls;ZPPC);             -- finally, attach op. to class 
end if; 

   end GenerateTransitOperation ;      
 

 

Fig. 6.27 The GenerateTransitOperation Procedure 

 

   

-- UML to Z++ translation of a state diagram 
 

procedure WriteHistoryPredicates(SD:StateDiagram,zcls:String; 
                                 ZPPS:ZPPSpec) 

   begin 
 WriteMutexSelfMutex(SD,zcls;ZPPS);  -- write mutex and self-mutex predicates,  

 WritePermissions(SD,zcls;ZPPC); -- permission predicates,  
 WriteTransEffects(SD,zcls;ZPPC); -- transition effects predicates,  

WriteReachability(SD,zcls;ZPPC)  -- and reachability predicates in HISTORY clause  
   end WriteHistoryPredicates;  
 

 

Fig. 6.28 The WriteHistoryPredicates Procedure 

 

6.4.4 Example of Formalising a State Diagram 

 

In order to illustrate the proposed approach for formalising state diagrams the state diagram 

shown in Fig. 3.12 is reproduced here in a reduced form, stripped of annotations and with 
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shorter names for some of its states (Fig. 6.29). By applying the AFSD described in 

Subsection 6.4.3, the Z++ class presented in Fig. 6.30 is obtained.   

 

 

Stopped SpeedOne

SpeedTwo

Blocked

goSpeedOne

when
(target_reached) /

stop()

goSpeedTwo

goSpeedOne

when (limit_reached) /
stop()

permissionToRestart / reset()

when (limit_reached) /
stop()

reverseDirection

of f

o f f

 
Fig. 6.29 DCMotor State Diagram from the ACTS 

 
The notions of transition signature and transit operation can be easily related to the 

particular context of the DCMotor state diagram and of the DCMotor Z++ class obtained from 

it. To further describe the two notions, let us assume that another transition permissionToRestart, 

this time with two actions attached, stop() and reset(), is added to the state diagram,  

connecting the states  SpeedTwo  and  Stopped  (the latter being the target state of the transition).   

 

 



        191   
 

 
CLASS  DCMotor EXTENDS Motor 
PUBLICS 
 
   permissionToRestart, reverseDirection, off, goSpeedOne, goSpeedTwo 
 
TYPES   
 
    DCMotorState ::= stopped | blocked | speedone | speedtwo | final 
 
FUNCTIONS   

 OWNS    
  
  state : DCMotorState 
  
 RETURNS  

OPERATIONS   
 
    permissionToRestart: → ; 
   reverseDirection: → ; 
 off: → ; 
 goSpeedOne: → ;  
 goSpeedTwo: → ;  
  *t1: → ; 
  *t2: → ; 
 stop: → ; 
 reset: →  
 

 INVARIANT  
 ACTIONS  

 
 init ==> state’ = stopped; 
 permissionToRestart ==> reset; 
     state’ = stopped; 
   reverseDirection  ==>  state’ = stopped; 
 off ==> state’ = final; 
 goSpeedOne ==> state’ = speedone;  
 goSpeedTwo ==> state’ = speedtwo;   
  *t1 ==> stop; 
     state’ = blocked; 
  *t2 ==> state’ = stopped; 
 stop ==> ; 
 reset ==> 

 
 HISTORY  
   
  // mutual exclusion properties 
 
  mutex({permissionToRestart, reverseDirection, off, goSpeedOne, 
                 goSpeedTwo, t1, t2}) ∧  
          self_mutex({permissionToRestart, reverseDirection, off, goSpeedOne, 
                 goSpeedTwo, t1, t2}) ∧   
 
    

 

Fig. 6.30 Z++ Class DCMotor Generated by the AFSD (continued on next page) 
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          // permission predicates  
  
   �(permissionToRestart ⇒ state = blocked) ∧  
   �(reverseDirection ⇒ state = stopped) ∧  
   �(off ⇒ state = blocked ∨ state = stopped) ∧  
   �(goSpeedOne ⇒ state = stopped ∨ state = speedtwo) ∧  
   �(goSpeedTwo ⇒ state = speedone) ∧  
   �(t1 ⇒ state = speedone ∨ state = speedtwo) ∧  
   �(t2 ⇒ state = speedone) ∧  
   
  // definition of transition effects 
 
   �(init ⇒ �(state = stopped)) ∧ 
   �(permissionToRestart ⇒ �(state = stopped)) ∧ 
   �(reverseDirection ⇒ �(state = stopped)) ∧ 
   �(off ⇒ �(state = final)) ∧ 
   �(goSpeedOne ⇒ �(state = speedone)) ∧ 
   �(goSpeedTwo ⇒ �(state = speedtwo)) ∧ 
   �(t1 ⇒ �(state = blocked)) ∧     
   �(t2 ⇒ �(state = stopped)) ∧ 
 
  // reachability properties 
 
   �(state = stopped ⇒ reverseDirection ∨ off ∨ goSpeedOne) ∧  
   �(state = blocked ⇒ permissionToRestart ∨ off) ∧  
   �(state = speed_one ⇒ goSpeedTwo ∨ t1 ∨ t2) ∧  
   �(state = speed_two ⇒ goSpeedOne ∨ t1) ∧ 
  
  // delay, duration, and other constraints   
     

(enabled(t1) ≡ (state = speedone ∨ state = speedtwo) 
     ∧ limit_reached) ∧     

 
     // >> check [limit_reached] is well-formed << 

 
(enabled(t2) ≡ (state = speed_one) ∧ target_reached)    

 
      // >> check [target_reached] is well-formed << 

 
 END CLASS 
 
 

 
Fig. 6.30 Z++ Class DCMotor Generated by the AFSD (continued from the previous page) 

 
 

In this situation two distinct transition signatures would exist for the transitions triggered by 

the call event permissionToRestart. In terms of operations, the permissionToRestart would still be 

generated as an operation (corresponding to a “simple” transition), but it would not be in 

fact a transit operation. Thus, it would no longer be included in HISTORY predicates, and its 
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body would be empty. The two distinct transition signatures would have associated two 

transit operations, permissionToRestart1 and permissionToRestart2, which would be used to describe state 

changes. In their bodies, an invocation to permissionToRestart would be included before the 

invocation of their specific actions. During the enhancement of the Z++ specification, the 

human formaliser could decide whether these three operations can be replaced by a single 

(but more complex) operation.   

 
 
 
 

6.5 Deformalisation: From Z++ Specifications to UML Representations  

 

As discussed in Section 6.2, the reverse mapping, from Z++ to UML, can be useful in certain 

situations. As in the case of formalisation, this “reverse” translation can be partially 

mechanised, but it should be noted that relevant information included in the Z++ 

specification can be lost (in particular, various types, constraints, and bodies of operations). 

In this section a number of guiding principles for deformalisation are suggested and the 

outline of an Algorithm for Deformalisation (ADF) is presented.    

 

6.5.1 Principles of Deformalisation 

 

In the following, it is considered that a Z++ specification with the structure given in Section 

6.3.3.2 is available, based on which a class diagram together with a set of state diagrams 

associated to individual classes can be obtained. For the ADF the structure of the output 

class diagram is the one given in Subsection 6.3.3.1, while the state diagrams are represented 

as described in Subsection 6.4.3.1.  

 

6.5.1.1 Assigning Types for UML Attributes, Parameters of Operations, and  

  Operation Returns 

 

Due to the specifics of Z++, not all attributes, parameters of operations, and returns of 

operations present in the Z++ specification will have their types translated to UML.  Only 
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attributes specified as att:typespec in Z++, with typespec detailed as below, and only 

parameters of operations and returns of operations that correspond to input or output 

operation domains specified as typespec will have their types mapped to UML.  The format 

of typespec that allows an automated translation of type to UML is one of the following: 

 

(a) T (“scalar form”), where T is the name of a given set, or of an enumerated type, or of a 

regular Z++ class, or of a predefined Z type (÷, �, or º). If T is ÷ the corresponding 

UML type will be unsigned int, if T is � the type in UML will be int, if T is º the type in 

UML will be real, and in all other cases the type in UML will be T; 

(b) seq(T), �T, or £T (“array form”), with T given as in (a) above. In this case, if T is ÷ the type 

used in UML will be unsigned int[ ], if T is �  the UML type will be int[ ], if T is º the type 

will be real[ ], and in all other cases the corresponding UML type will be  T [ ]; 

(c) T[params] (“generic form”), where T is the name of a generic class included in the Z++ 

specification and params a list of names denoting actual parameters whose types are 

assumed to be of form (a) (parameters of generic classes may not be arrays or instances of 

generic or binding classes). In this case, the translated type in UML will be T[params]. 

 

In practical terms, the above restrictions on typespec signify that more complex Z++ 

specifications of types (e.g., involving functions, relations, or Cartesian products) are not 

mapped automatically to UML.  

 

6.5.1.2  Generating Attributes for UML Classes 

  

The following apply for obtaining the attributes of a UML class C, whose correspondent Z++ 

class is C (for easier referencing the latter will be denoted ZC in the following):   

•  Each attribute att included in the OWNS clause of the ZC class will have a corresponding 

attribute att in the C class, provided that the type of the attribute is not a class type 

(attributes of class type will lead to the creation of associations and aggregations, as 

shown in Subsection 6.5.1.5). The property of this attribute will be changeable, the type of 

the attribute will be assigned according to the principles presented in Subsection 6.5.1.1 



        195   
 

for the translation of types, and the visibility of the attribute will be public if att is included 

in the clause PUBLICS of class ZC, private if it is used in the hiding operation defining the 

Z++ class H_C, and protected otherwise. The initial value initval will be given to the attribute 

in the C class if an assignment statement att = initval exists in the init operation of class ZC;    

• From the FUNCTIONS clause of ZC, each attribute att will be extracted and included in the 

UML class C if the definition att:typespec is present in a axiomatic definition included in 

the clause. The property of this attribute will be frozen, the type of the attribute will be 

assigned according to the principles for translating types presented in Subsection 6.5.1.1, 

and the visibility of the attribute will be private if the name of the attribute is used in the 

hiding operation defining the Z++ class H_C, and protected otherwise (attributes declared in 

the FUNCTIONS clause cannot be public). The initial value initval will be given to the attribute 

in the C class if a statement att = initval exists in the predicate part of the axiomatic 

definition of the FUNCTIONS clause.    

   

  

6.5.1.3  Generating Operations for UML Classes 

  

The following apply for obtaining the operations of a UML class C whose correspondent Z++ 

class is ZC:  

• Internal operations of class ZC (operation prefixed by the symbol *) and the init operation 

of the class will not be translated to UML;  

• All other operations of ZC will be treated as follows: 

- The name of the operation in ZC will be used as the name of the corresponding 

operation in C; 

- The visibility of the operation will be public if the name of the operation is included in 

the PUBLICS clause of ZC, private if the name appears in the hiding operation defining 

the class H_C, and protected otherwise;   

- The property of the operation will be query if the operation is declared in the RETURNS 

clause of ZC and none if it is declared in the OPERATIONS clause; 
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- The return type of the operation will be assigned according to the principles 

described in Subsection 6.5.1.1, based on the output domain of the operation 

specified in either the RETURNS or the OPERATIONS clause of the ZC class; 

- The parameters of the operation in class C will receive the names used in the 

definition of the operation included in the ACTIONS clause of ZC. For each parameter, 

the direction of the parameter will be in if the name of the parameter is decorated 

with the symbol ?, out if it is decorated with the symbol !, and inout if the parameter 

appears in both the input and the output lists of the operation. The type of each 

operation parameter will be assigned as described in Subsection 6.5.1.1, based on the 

input and output domains of the operation, which are listed in either the RETURNS or 

the OPERATIONS clause of ZC;  

- The precondition of the operation as well as the body of the operation will not be 

translated to UML. However, assignment statements included in the init operation 

will be used for assigning initial values to attributes in UML, and predicates 

involving the state attribute, if available, will be inspected when generating state 

diagrams. 

 

6.5.1.4 Generating UML Classes 

  

The following apply for obtaining UML classes from a Z++ specification: 

 

•  Each class C in Z++ that is not a descriptor of an association (associtaion descriptor 

classes were introduced in Subsection 6.3.2.5) will have a correspondent class C in UML. 

If the Z++ class C has an associated hiding class H_C in Z++, the list of hidden features 

used in the hiding operation that defines H_C will be employed to assign the visibility 

private to the corresponding features (attributes and operations) of the UML class C, as 

described in Subsections 6.5.1.2 and 6.5.1.3; 

• Each generic class G in Z++ will be translated to generic class G in UML, the names of 

the formal class parameters of the Z++ class G being used as names for the formal class 

parameters of the UML class G;  
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•   A binding UML class G[actual_params]  will be created whenever a type G[actual_params] is 

encountered in the Z++ specification, with G matching the name of an existing generic 

class G in Z++ and the number of actual parameters actual_params equal to the number of 

the formal  parameters of the Z++ class G (however, the names of the actual_params should 

not be the same with the names formal_params of the generic class). If not already present, a 

binding relationship between the binding class and the generic class will be drawn in the 

class diagram, with the names of the actual parameters used to differentiate the binding 

class from other possible classes that instantiate the same generic class (see also 

Subsection 6.5.1.5 on generating relationships); 

• The attributes and the operations of each regular or parameterised UML class will be 

obtained as indicated in Subsections 6.5.1.2 and 6.5.1.3, based on the inspection of the 

corresponding Z++ class. 

 
 

6.5.1.5  Generating Relationships 

 
 
Relationships will be generated in UML class diagrams as follows: 

•  Generalisation relationships will be obtained based on the information included in the 

EXTENDS clause of Z++ classes. For each class P (parent) included in the EXTENDS clause of 

the Z++ class C (child) a generalisation relationship between P and C will be created in the 

class diagram. If the EXTENDS clause of C includes a hiding class H_P, the relationship in 

the class diagram will be nevertheless between P and C; 

• Instantiation relationships will be obtained based on the attributes of generic type 

G[actual_params], where G is the name of a generic Z++ class. A binding class 

G[actual_params] will be created for each different set of actual parameters actual_params 

encountered for G, and a instantiation relationship between this class and the generic 

UML class G will be included in the class diagram; 

• Associations will be obtained in two ways: 

(a) From association descriptor classes that exist in the Z++ specification (their 

description was given in Subsection 6.3.2.5). For each such descriptor class an 



        198   
 

association relationship will be created in the class diagram between the classes A and 

B included in the definition of instancesOf attributes of the association descriptor class; 

(b) From attributes of the type D, seq(D), �D, or £D  where D is the name of a Z++ class. 

For each such attribute encountered in a Z++ class C an association relationship 

between UML classes C and D will be created in the class diagram. The attribute may 

indicate in fact an aggregation or a composition relationship, but the human 

formaliser will be required to change the type of the relationship if necessary; 

•  Aggregations and compositions will not be generated automatically by the ADF but, as 

mentioned above, some of the association relationships produced by the ADF may in 

fact be aggregations or compositions. It will be left to the human specifier to make the 

necessary changes. 

 

6.5.1.6  Generating State Diagrams 

 

State diagrams will be created by the ADF only for those Z++ classes C that have an 

enumerated CState (or State) type defined in their TYPE clause and an attribute state of this 

type declared in their OWNS clause. For each such Z++ class a state diagram “C’s State 

Diagram” will be generated as follows: 

• The names of the enumerated type State’s members will be used as names of the states 

created in the state diagram (however, final states, which will be created as well, will not 

receive names);  

• If an initialisation assignment state = entrystate exists in the init operation of the Z++ 

class, an initial state will be created and an anonymous, non guarded and actionless 

transition from the initial state to entrystate will be created; 

• Based on the predicates included in the HISTORY clause of the Z++ class and on the 

predicates included in the transit operations of the class (specifically, predicates that 

relate source states with target states) transitions will be created in the state diagram. For 

each transition, the name of the transit operation that describes the transition in class C 

will be attached to the transition in the state diagram. 
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6.5.2 Outline of the Algorithm for Deformalisation (ADF) 

 

Based on the principles proposed in Subsection 6.5.1 for the generation, starting from a Z++ 

specification, of a UML model consisting of a class diagram and of a set of state diagrams 

associated to classes, an outline for a deformalisation algorithm is presented in Fig. 6.31 to 

6.33. This outline describes the ADF only in terms of its high level components, but it 

covers nevertheless all the significant aspects of the Z++ to UML translation process. 

 

As a matter of general approach, the mapping of the Z++ specification to a UML model can 

be tackled in (at least) two ways. One alternative is to design the algorithm in a manner that 

allows the successive generation of the major modelling elements of the UML space, namely 

the classes, the relationships, and the state diagrams. This approach would require however a 

triple processing of the individual Z++ classes, the first for creating the UML class structure 

that mirrors the one present in the formal specification, the second for generating the 

relationships between classes, and the third for creating state diagrams for those classes in 

which state changes are explicitly described in Z++ via a state attribute. While this approach 

allows a better separation of concerns, an incremental development of the UML model in 

terms of major kinds of artefacts, and a less complex structure of the algorithm, it is however 

less efficient in terms of implementation. 

  

Since this alternative involves a repeated treatment of each Z++ class and we envisage the 

possibility of applying the deformalisation process on an individual class or a group of 

selected classes, we have opted for a second approach, that of generating all types of UML 

elements –classes, relationships, and state diagrams– through a single inspection (processing 

loop) of the Z++ classes, each class being mapped to UML elements based on the 

information contained in its definition and on the information provided by the context of 

the Z++ specification.  While this approach allows the complete treatment of an individual 

Z++ class in a single processing step, it has the disadvantage that the generation of some 

UML elements is “buried” in modules whose primary purpose is different, more precisely 

binding classes and association relationships are created, if necessary, during the processing of 
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attributes (this is nevertheless in agreement with the translation principles described in 

Subsection 6.5.1.5). 

 

The approach we have taken is apparent in the top-level ADF procedure, presented in Fig. 

6.31.  

 

-- Z++ to UML translation  
 

procedure ADF(ZPPS:ZPPSpec;CD:ClassDiagram,SDS:StateDiagrams) 
 
begin 

     for i = 0 to Nz-1 do    -- process all Z++ classes 
  TranslateZPPClass(ZPPS,ZPPS.ZC[i];CD,SDS);    

  end for; 
     PrintClassDiagram(CD);       -- show/save results: class diagram   
     PrintStateDiagrams(SDS);    -- and state diagrams 
   end ADF;  
 

 

Fig. 6.31 The ADF Procedure 

 
The particular treatment of a Z++ class is handled by the TranslateZPPClass procedure, which 

coordinates the generation of the UML class, the processing of generalisations, and, if 

appropriate, the generation of the state diagram associated with the class (Fig. 6.32).  The 

last procedure shown for the ADF, GenerateUMLClass, describes the work needed for the 

completion of the UML class (Fig. 6.33). It is here, in the procedures called by 

GenerateUMLClass, where the possible generation of associations and binding classes can take 

place, while dealing with the types of attributes (processing the types of parameters of 

operations and of operation returns may also prompt the creation of binding classes). 
 
 
Nevertheless, as shown in Chapter 9, this organisation of the ADF suits better our modelling 

purposes. In fact, the closely related generation of the UML class and of the state diagram 

associated with the class in the TranslateZPPClass procedure forecasts the combined use of the 

regular UML class specification and of the state diagram associated with the class in the 

integrated modelling approach proposed in Chapter 7.   
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-- Translate individual Z++ class to UML 
 

procedure TranslateZPPClass(ZPPS:ZPPSpec,ZC:ZPPClass;  
                          CD:ClassDiagram,SDS:StateDiagrams)  
 
begin 

      if (isAssocDescriptor(ZC)) then       -- if the class describes an association 
         GenerateAssociation(ZPPS,ZC;CD)  -- simply add association to class diagram; 

 else        -- otherwise 
         GenerateUMLClass(ZPPS,ZC;CD);  -- generate the corresponding UML class 

                                          -- (in the process, create associations  
                                          --  and binding classes, if detected) 
   ProcessGeneralisations(ZPPS,ZC;CD)     -- process list of ancestors and 
                                     -- update relationships in class diagram 
   if (hasStateAtt(ZC)) then   -- if there is a ‘state’ attribute in the Z++ 
      GenerateStateDiagram(ZC;SDS)        -- create state diagram and add to  
   end if;                          -- the collection of state diagrams 

      end if; 
   end TranslateZPPClass; 
 

 

Fig. 6.32 The TranslateZPPClass Procedure 

 

 

 

-- Generate UML Class from Z++ class ; in the process, generate associations and binding classes from type information   
-- contained in the definition of attributes 

 
procedure GenerateUMLClass(ZPPS:ZPPSpec,ZC:ZPPClass;  
                           CD:ClassDiagram)  
    
   C:UMLClass;           -- UML class to be completed 
begin 

      SetNameAndType(ZC;C);         -- name the class and establish its  
                                                                                                                              -- type (regular or parameterised) 
      if (C.ctype == para) then         
       SetClassParameters(ZC;C);    -- if generic, provide parameters 

end if;        
GenerateAttributes(ZPPS,ZC;C,CD);         -- attach attributes  
GenerateOperations(ZPPS,ZC;C,CD);         -- attach operations 
AppendClassToClassDiagram(C;CD);          -- then append class to the class diagram  

       end GenerateUMLClass;  
                                                           
 

Fig. 6.33 The GenerateUMLClass Procedure 
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6.6 Notes on the Application of Formalisation and Deformalisation 

Algorithms 

 

At the conclusion of this chapter, several notes regarding the application of the three 

proposed algorithms for formalisation and deformalisation are necessary. 

 

First of all, while the focus in this chapter was on those aspects of translations between UML 

and Z++ that can be automated, it is necessary to mention that the proposed algorithms are 

intended only to serve as aids during the modelling process, and in no way to substitute the 

human developer. In fact, we cannot stress enough the importance of the human factor in 

the process of formalisation (and, generally, in the development process), the quality of the 

software product depending essentially on the skills of its developers. Also, as shown in the 

next chapter, while we assign a prominent role in the modelling process to the activities of 

formalisation and deformalisation, the emphasis is not on automated translations between 

UML and Z++, but on the combined, efficient use of the two notations. 

 

In practical terms, the three algorithms need be further refined in several aspects. In 

particular, in conjunction with the integrated specification environment described in 

Chapter 9, an environment whose design incorporates the mechanics of translation presented 

in this chapter, the following issues need be tackled (we suggest below solutions for each of 

them): 

 

• While the AFCD applies to class diagrams, for practical purposes it is necessary to allow 

the formalisation of a single class or of a selected group of classes. The solution for this is 

to allow the AFCD to continue to operate within the context of the class diagram and to 

visually mark in the generated Z++ specification the references made from within the 

group of formalised classes to classes outside this group (e.g., by including a comment 

listing the names of referenced but not formalised classes). This would allow the 

developer to decide if additional classes need be formalised; 
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• Also regarding the AFCD, its application to two or more related class diagrams need be 

considered. This is not so much an issue of the algorithm itself as it is an issue of 

combining and representing the related class diagrams in the environment that uses the 

AFCD. The problem resides in classes included in one diagram that are in relationships 

with classes from another class diagram. The suggested solution is to attach a description 

to the class (similar to a property sheet) indicating the relationships in which the class is 

involved, irrespective of the class diagram; 

• Although not a major issue, the combined use of the AFCD and of the AFSD can also be 

improved. At this point in time, AFCD is applied first, followed by the AFSD, the latter 

algorithm only appending information in a Z++ class created by the former. The AFSD 

can be extended without difficulty to create itself the target Z++ class and, more 

generally, the work of both algorithms can be integrated in a single formalisation 

algorithm. Since the same translation principles apply and the data structures used by the 

algorithms is already in place this integration should be straightforward; 

•    Regarding the AFSD, its extension to composite and concurrent states is a topic that 

deserves investigation. The first thing in such extension is to create an enumerated type 

for each composite state in the state diagram, with an attribute of this type describing the 

current local state. Then, more complex descriptions of transitions are necessary. Parallel 

executions can be expressed via the  || operator available in RTL; 

•  Finally, the combined use of the three algorithms, the AFCD, the AFSD, and the ADF is 

to be considered in an integrated environment (see Chapter 9). The main issue is the 

“update problem,” which arises when a model is switched back and forth between the 

two spaces, UML and Z++. The solution, similar to the one used in version control 

systems, is to let the developer decide on committing the changes. To help his or her 

decision, things to be added can be marked in a specific way (e.g., with indicators such as 

“>>>>>,” meaning “in,” or new information) and things to be removed in a different way 

(e.g., with “<<<<<,” meaning “out,” or information to be discarded).     
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6.7 Chapter Summary 

 

In this chapter translations between structural and dynamic UML model elements and Z++ 

specifications have been discussed. The focus has been on the formalisation process, which 

has the role of generating formal specifications from UML class diagrams and state diagrams 

but the auxiliary reverse process, denoted deformalisation, has also been considered. Detailed 

principles and algorithms have been presented for the automated UML to Z++ translation 

and guidelines for the reverse translation have been proposed. In Chapter 7 the activities of 

formalisation and deformalisation are included in a larger procedural frame that is aimed at 

guiding the development of the integrated UML/Z++ model of TCS and in Chapter 8 the 

application of the formalisation algorithms are illustrated through an Elevator Controller 

case study. 

 

 

 

 

 

 

 

 

 

 

 




