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4 Related Work 

 
 

"But search the land of living men 
Where wilt thou find their like agen?'' 

 
[Walter Scott, Introduction to  
Canto First, Marmion, 1808] 

 
 

 

 

4.1 Introduction 

 

The purpose of this chapter is to narrow the research space, focus on the topic location and 

discuss current specification approaches that are related to ours. Based on the examination of 

these approaches, the contour of our work can be drawn with greater accuracy, leaving to the 

remaining of the thesis the task of completing the detailed picture of our approach. Some 

general observations regarding the integration of notations in software specification are 

presented first, followed by a brief review of a number of semi-formal/formal combinations 

of notations involving formalisms other than Z. Then, the examination of integrations of 

notations is narrowed down to research projects that involve Z or variants of Z. In particular, 

five approaches that share significant characteristics with the modelling solution presented in 

this thesis are discussed in more details and both commonalities and differences are 

highlighted. Because the approach proposed in this dissertation places special emphasis on 

capturing temporal properties of systems, a review of existing modalities of dealing with time 

in the context of Z-based specifications is also included.   
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4.2 Integration of Semi-formal and Formal Notations in Software 

Specification  

 

Integrating formal with semi-formal or informal notations in software development is not a 

new idea, some forms of combinations being present in a fair number of approaches. After 

all, formal languages like Z include provisions for textual, plain language annotations, 

intended to alleviate the difficulty of following complex mathematical expressions and to 

relate abstract descriptions with real-world entities. However, as pointed out by several 

authors, one of the main reasons that, in addition to lack of tools support, have prevented 

the wider application of formal methods is that not sufficient attention has been paid to the 

integration of formal techniques with traditional, semi-formal methods [Gerhart94, 

Clarke96, Lawrence96].  

 

Many authors consider the integration of formal techniques with conventional, informal (or 

semi-formal) approaches as highly beneficial in software development. For instance, 

[Aujla94] points out that formal techniques are portable and extendable and can be used in 

various ways and in various phases of the development. They can be applied as 

complementary techniques or as alternatives to conventional approaches. Their application 

leads to the detection of a significant number of errors in specifications. On the other hand, 

Aujla et al. show that formal techniques themselves benefit from being included in the larger 

frame of an integrated methodology; they are provided with both context and method, 

which they may lack if considered in isolation. Alexander sees the combination of formality 

and informality as a way to obtain “the best of both worlds” [Alexander95] and Bruel et al. 

point out that “the main objectives of integrated formal/informal approaches is to make 

formal methods easier to apply and to make informal methods more rigorous” [Bruel98b, 

pp. 52].   

 

Integration, which in general covers combination of notations, models, and even methods 

[Bruel98b], has nevertheless its own issues, most notably the fact that interpretations 

underlying the translation rules from informal to formal are seldom explicitly stated, the 
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focus of formalisation is in general on basic constructs, and not structures, and little 

attention is paid to relating the results of analysing the generated formal models to the 

corresponding components of the informal counterparts (Bernhard Rumpe, in the 

[Bruel98b] panel).  

 

However, in general, using complementary, concerted techniques for modelling software 

systems brings a series of benefits, the most important being the increased modelling power 

provided by the combination and the higher level of confidence they bring in regarding the 

correctness of the software product being developed. Evidently, these advantages did not pass 

unnoticed by the researchers and practitioners of the software engineering field, and various 

combination strategies have been proposed. Some of these strategies are briefly reviewed in 

the rest of this chapter but, before that, it is useful to point out that, in broad terms, the 

relationship between the formal and the semi-formal (or informal) components of a 

specification can be one of the following (notice that we refer in particular to semi-formal or 

informal graphical notations): 

 

• If the graphical (semi-formal or informal) part is built initially and then a translation 

process is applied to obtain its formal counterpart, we can speak about derivation of the 

formal model from the informal model or simply of formalisation (e.g., [Lee95], where 

diagrammatic and text elements of Bailin’s object-oriented requirements specification 

method OOS [Bailin89] are translated into Z counterparts, or [Laleau00], where the 

translation is from UML to B). Certainly, it is also possible to obtain a visualisation of 

the formal part, in which case the derivation is from formal to visual (e.g., [Salek94], 

where the REVIEW system is used in the larger frame of the METAVIEW meta-system 

–which facilitates the development of CASE environments– to generate natural language 

descriptions from Environment Definition Language (EDL)/Environment Constraint 

Language (ECL) specifications, or [Kim99b], where graphical representations for Z 

constructs are proposed). The later form of derivation can also be called deformalisation; 

•  If in addition to diagrammatic representations some related formal specifications are 

produced independently (e.g., [Jia97], where Z specifications supplement UML models), 
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the approach can be characterised as complementary formalisation. Typically, this 

approach also involves derivation from informal to formal, a subset of the diagrammatic 

description of the system being translated into formal specifications (this is the case for 

the cited [Jia97] approach, which is discussed in more detail in Subsection 4.5.1); 

• if changes in any of the specification’s parts are continuously propagated in the other, we 

can speak of a tight integration of notations (e.g., [RoZeLink99], where UML models 

are connected to corresponding ZEST descriptions). 

 

In the above classification the terms semi-formal part and formal part of a specification are 

used but we should point out that, due to the costs involved, formalising the entire 

specification of a software product is generally impractical, if not impossible, and the typical 

approach is to apply formal techniques only to the critical sections of the software being 

developed [Gerhart94]. As such, the correspondence between the diagrammatic (semi-formal 

or informal) and textual (formal) parts of a specification is typically limited to a subset of the 

specification’s components. 

 

Depending on the number of notations involved, a combination of notations can take the 

form of either a dual-notation integration (e.g., [Björkander00], where UML is combined 

with SDL) or of a multiple-notation integration (e.g., the multi-paradigm specification 

technique devised by Zave and Jackson [Zave96], the pure formal method integration 

(PFMI) strategy suggested by Paige to allow the combined usage of formal methods such as 

Z, refinement calculus, predicative programming, and Larch [Paige98], or the framework 

solution proposed by Day and Joyce for integrating multiple notations [Day00]). Generally 

speaking, the integration does not necessarily involve a formal/semi-formal (or informal) 

combination; it can be of the formal/formal type (e.g., [Sowmya98], where the dynamic 

aspects of RTS are modelled using both Statecharts and FNLOG, a logic-based language 

built on first-order predicate calculus and TL) or semi-formal/semi-formal (e.g., 

[Scogings01], where an integration UML/Lean Cuisine+ is proposed for supporting the early 

stages of interactive system design). And, as mentioned in the classification proposed above, 

it has also been considered useful to deformalise the formal models [Salek94, Kim99b]. 



 92 

For the purpose of comparing various integration approaches we also introduce the notion of 

monolithic environment, which means that a single CASE tool is used for developing both 

semi-formal and formal models, and various subsequent formal processing (such as analysis 

and refinement) can be invoked from this tool. The alternative, the non-monolithic 

environment, refers to a combined use of CASE tools, with separate invocations from the 

operating system.   

 

We believe that the integration of notations does provide a viable solution for modelling 

complex systems because various aspects of the systems need various ways of description, 

which can beneficially complement each other (for a classification and examination of forms 

of method complementarity, primarily in terms of notations and processes, we suggest 

[Paige99]). In particular, in the case of formal/semi-formal integrations, it is always possible 

to “fine tune” the formality level and adjust the balance between the less rigorous 

diagrammatic representations and the formal specifications to best answer the needs of a 

given application. An important point we must not forget about integration is, as well stated 

by Clarke et al., that the end result should be a compound, and not a mixture (in other 

words, a solution in which the components are tightly united, and not one in which the 

components simply intermingle) [Clarke96].   

 

Within the research space introduced in Section 2.1, we look next at a number of integration 

approaches that propose a formal/semi-formal combination of notations.    

 

4.3 Semi-formal/Formal Integrations of Notations Not Involving Z 

 

By resorting again to the classification proposed in Table 2.I and to the research space 

presented in Fig. 2.1 we can detail now the areas that neighbour our thesis’ C3+ topic 

location and have a look at research approaches that “reside” in these areas. Figure 4.1 

contains an enlarged depiction of a major portion of Fig. 2.1, which covers all 16 

combinations of  integration as  defined in Section 2.2 (recall that the classes –or areas– C1• 
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RT

non RT

uml

OOnon OO

formal

Z

OOZ

C3+

A1+ A2+

A1.

A3+

B1+ B2+ B3+

C2+

C2. C3.

B1. B2. B3.

A2. A3.

Legend:
A  Formal but not Z-based  1  Not an OO methodology .   Non RT

B   Formal, Z, but not OOZ 2  OO but not UML-based +   RT

C  Formal, OOZ 3   OO, UML-based
 

 

Fig 4.1 First Zoom-In on the Research Space 
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and C1+ are discarded). In this section we focus only very briefly on some examples of 

projects that fit in the A1• to A3+ areas, as an introduction to the next section, where Z-

based approaches are discussed. This introduction is intended to be simply illustrative and by 

no means comprehensive (areas A1 to A3 are quite large, because they include “everything 

but not Z” of all possible semi-formal/formal combinations of notations that cover our 

research space).  Examples of A-type approaches, with succinct descriptions, are presented in 

Table 4.I. It can be inferred from this table that the topic of semi-formal/formal integration 

has been pursued constantly by researchers, and no remote area (“remote” in the sense 

defined by our classification) has been left uncovered.       

 

Table 4.I Examples of Semi-formal/Formal Integrations Not Involving Z 

 
Area 

 

 
Area 

Characteristics 

 
Example 
Approach 

 
Summary Description 

of the Example 
 

 

A1• 
 

Formal non-Z, 
Non OO, 
Non RT 

 

[D’Almeida92] 
Translation from Modified Entity-
Relationship diagrams (MER) and 
textual Keyboard-based Formatted 
Descriptions (KDF) to VDM 

 
A1+ 

 

Formal non-Z, 
Non OO, 
RT 

 
[Sahraoui97] 

DFD-based methods integrated with 
TL constructs of the Zaman language 
[Sahraoui92] 

 
A2• 

 

Formal non-Z, 
OO non UML, 
Non RT 

 
[Cheng94] 

The VISUALSPECS environment 
supports the formalisation of OMT 
models in algebraic languages such as 
Larch 

 
A2+ 

 

 
Formal non-Z, 
OO non UML, 
RT 

 
 
[Chen98] 

Integration of HRT-HOOD (Hard 
Real Time- Hierarchical OO Design) 
models [Burns95] with TAM 
(Temporal Agent Model) specifications 
[Scholefield92] 

 
A3• 

 

Formal non-Z, 
UML, 
Non RT 

 
[Laleau00] 
 

B specifications generated from UML 
diagrams 
 

 
A3+ 

 

Formal non-Z, 
UML, 
RT 

 
[Bordbar00] 

Petri Nets serve for representing and 
analysing dynamic models in a UML-
based approach aimed at modelling 
discrete-event dynamic systems 
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4.4 Semi-formal/Formal Integrations of Notations Involving Variants of Z 

 

After the introduction to semi-formal/formal integrations of notations based on examples 

that do not involve Z, it is now time to look at the closer neighborhood of the thesis topic, 

represented by areas B2• to C3+, which make up the “Z sub-domain”. The best way to do 

this is to enlarge again the original representation of Fig. 2.1 and discard the peripheral areas 

A1• to A3+, thus resulting the depiction shown in Fig. 4.2. Examples that serve the 

 

RT

non RT

uml

non OO

Z

OOZ

C3+

B1+ B2+ B3+

C2+

C2. C3.

B1. B2. B3.

Legend:

B  Formal, Z, but not OOZ 1  Not an OO methodology .  Non RT

C Formal, OOZ 2  OO but not UML-based +  RT

3   OO, UML-based

OO

 

 
Fig. 4.2 Second Zoom-In on The Research Space 
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illustration of integration classes proposed in Chapter 2 are given again in tabular form 

(Table 2.II).  Regarding the completion of this table, it can be noted that even though all ten 

areas of the “Z sub-domain” have been covered, examples for some classes have been more 

difficult to find than for other. In particular, the example for B1+ is the only one we find 

after a rather long search (typically, in the earlier approaches, when Z was integrated with 

notations of structured approaches, the focus was not on RT applications). Also, for the C2+ 

category we had to resort again to [Lano95], the only other candidate we found being 

[Dong97b], but there the addition of an OMT description to the Object-Z specification of a 

multiple-elevator controller is rather accidental, and not suggested as an integration approach 

per-se.  The closer categories B3 to C3 are also not very populated, and in fact the few 

approaches that fit in these areas of the thesis’ topic’s “near vicinity” constitute the more 

restricted group of “closely related approaches,” discussed next at the last and most detailed 

level of investigation of the thesis’ research space. 

 

 

4.5 Closely Related Approaches 

 

While, as previously shown, there are numerous approaches that integrate in various degrees 

graphical, semi-formal representations with formal notations, very few are aimed at explicitly 

dealing with TCS using a Z-based formalism incorporated in the larger frame of the OO 

paradigm. We have identified five specific approaches that in our view are the closest to the 

direction of work that we have pursued. However, of the five approaches, only two include 

provisions for explicitly dealing with temporal properties of the systems, as we also have 

attempted.  

 

4.5.1 Jia’s Augmented Object-Oriented Modeling Language 

 

Xiaoping Jia, the author of the well-known Z type checker ZTC [Jia98a], takes a pragmatic 

approach in combining the strengths of semi-formal graphical OO notations with those of 

formal specifications [Jia97, Jia98c]. The  author  indicates that  only a partial automation of 
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Table 4.II Examples of Semi-formal/Formal Integrations Involving Z 

 
Area 

 

 
Area 

Characteristics 

 
Example 
Approach 

 
Summary Description 

of the Example 
 

 
B1• 

 

Z but not OOZ, 
Non OO, 
Non RT 

 
[Aujla94] 
 

ERD and DFD formalised using Z 
within the Rigorous Review Technique 
(RRT)   

 
B1+ 

 

Z but not OOZ, 
Non OO, 
RT 

 
[Coombes92] 
 

Formalisation in Z of casual timing 
diagrams (diagrams inspired from those 
used by electrical engineers to illustrate 
temporal properties of digital devices) 

 
B2• 

 

Z but not OOZ, 
OO but not UML, 
Non RT 
 

 
[Lee95] 

Constructs of Bailin’s OOS method 
transformed into equivalent Z 
specifications (also mentioned in Section 
4.2) 

 
B2+ 

 

Z but not OOZ, 
OO but not UML, 
RT 

 
[Bruel96] 

Fusion models translated into Z 
specifications (precursor of [France97] 
shown in the B3+ area) 

 
 

B3• 
 

 
Z but not OOZ, 
UML, 
Non RT 
 

 
[Jia97] 
 
[Noe00] 

 
Formalisation in Z of UML constructs 
(details in Subsection 4.5.1 and, 
respectively, 4.5.2) 

 
B3+ 

 

Z but not OOZ, 
UML, 
RT 

 
[France97] 
 

Structural and behavioural Octopus 
analysis models expressed in UML are 
formalised using Z (details in  Subsection 
4.5.3) 

 
 

C2• 
 

 
OOZ, 
OO but not UML, 
Non RT 

 
 
[Nguyen96] 

Proposal of a 4-submodel specification 
based on the integration of OMT and 
Object-Z* (a slightly modified version of 
Object-Z); RT properties not explicitly 
targeted 

 
C2+ 

 

OOZ, 
OO but not UML, 
RT 

 
[Lano95] 

Formalisation of OMT constructs in 
Z++ (more details in Chapter 6) 
 

 
C3• 

 

OOZ, 
UML, 
Non RT 

 
 
[RoZeLink99] 
 

Two-way link between UML constructs 
supported by Rational Rose 98 and 
ZEST specifications (details in 
Subsection 4.5.4) 

 
C3+ 

 

OOZ, 
UML, 
RT 

 
[Kim00b] 
 

UML and Object-Z combine forces for 
describing a lights control system 
(details in Subsection 4.5.5)  



 98 

code generation can be achieved from semi-formal OO models, in the form of a skeletal 

implementation. Thus, in his approach formal notations are used for partial description of 

the system, as a complement of the traditional OOAD models (as indicated in the definition 

of complementary formalisation proposed in Section 4.2). The approach is driven by 

practical reasons and its aim is to minimise changes and extensions of widely-used semi-

formal and formal notations while providing an intuitive and easy to use, yet powerful 

software development method. Specifically, Jia proposes a language denoted AML 

(Augmented Object-Oriented Modeling Language) that essentially combines notations from 

UML and Z. For pragmatic reasons, minimal additions to the Z notations have been 

included (mostly for handling the specification of classes), making up the slightly extended Z 

notation referred to as Zext. A supporting tool called Venus was developed to provide the 

very useful capabilities of model analysis, animation of a large subset of Z specifications, 

refinement of the design based on a fixed, yet comprehensive library of data structures and 

algorithms, and extensive C++ code generation.  

 

   UML specifications

  - class diagrams
  - class interfaces
  - statechart diagrams

UML to Z mapping

  Z specifications

  - class states
  - class operations (partial)
  - data types and subtypes

AML model

UML and Zext
specifications

 

Fig. 4.3 Jia’s AML-based Approach 

 

Jia’s AML-based approach can be related to the relatively new research direction of light-

weight formal methods, succinctly discussed in Subsection 2.6.5. As described by Jia, the 
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integration of UML and Z is focused on compensating for the limitations of UML, primarily 

the fact that data types and operations are not formally specified. In essence, as shown in Fig. 

4.3, adapted from [Jia97], the UML notation is used to specify the system’s class 

organisation, the class interfaces, and the related state diagrams, while the Z language is 

employed to provide supplementary details, specifically class states, data definitions, and 

partial descriptions of operations.   

 

While excellently addressing the practical barriers that hinder the large-scale use of formal 

methods in practice, Jia’s approach differs from ours in a number of ways. Firstly, there is no 

particular emphasis on capturing time-related property of systems, thus making its 

application dependent on the modeling ability of UML and on the limited time-capturing 

capability of the regular Z. Secondly, even though the UML notation is employed, the 

formal part of the object-oriented model is expressed via a minimal set of extensions of Z, 

and we believe that by employing a full-fledged object-oriented version of Z additional 

modeling power would be available, without significant increase of the notation’s 

complexity. Thirdly, it is not indicated whether the opposite translation, the mapping from 

Z to UML is included. The diagram on which we have based Fig. 4.3 indicates that Z 

specifications are only fed forward to the complete model, without a corresponding feedback 

from the integrated AML model to Z descriptions.     

 

4.5.2 Noe and Hartrum’s Extension of Rational Rose 98 

 

More recently, Capt. Penelope Noe, from the Air Force Personnel Center, Randolph, Texas, 

and Prof. Thomas Hartrum, from the Air Force Institute of Technology (AFIT), Ohio, have 

proposed the extension of Rational Rose 98 for the inclusion of formal specifications 

[Noe00]. In summary, their approach is to exploit existing features of Rational Rose, 

specifically Rose’s scripting language and available textual fields that can be used for 

embedding formal expressions, and produce a formalised model that can be fed into the 

AFITtool transformation system. Based on this input, the AFITtool is capable of generating 

Ada code (Fig.4.4). From Rose’s set of graphical representations, only the class diagrams and 

the state diagrams are considered, and an additional non-Z and non-UML state transition 
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table is also employed in the semi-formal specification process. Using primarily the 

Documentation field associated with classes, operations, and state transitions, Z 

specifications that supplement the description of the system can be embedded into the 

extended Rose model. These formal specifications are partially written in the LATEX format.  

  

Rational Rose 98

AFITtool
-correctness

and consistency
checking

- Ada 95 code
generation

Ada 95 codeZ LATEX file
(.zed)

extended
Rose model

(.mdl)

Rose Script

OMT models via

- class diagrams
- state diagrams
- state transition  table

Z added descriptions
through Rose text fields

- class constraints
- operation details
- state transitions details

Fig. 4.4 Noe and Hartrum’s Approach 
 

The approach follows the OMT methodology [Rumbaugh91] and consists of building three 

models: the object model, which defines the class structure of the application, the functional 

model, which describes the desired interaction of the system with its environment, and the 

dynamic model, which expresses the state changes of the system. In summary, the object 

model is created by augmenting the UML class diagram with Z-specified user defined data 

types and constraints on classes and attributes, the dynamic model is built using regular finite 

state machines whose states and events are represented in Z using static schemas, and the 

functional model is obtained through the description of class operations, details such as pre– 

and post–conditions being added in Z and the operations being represented by dynamic Z 

schemas. After the extended model of the system is completed a translation procedure (a 
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Rose script) is invoked in order to produce a Z file in LATEX format, as entry for the 

AFITtool. Consistency and correctness checks are performed and Ada 95 code is produced. 

 

This approach is well explained in the [Noe00] paper and its practical utility has obvious 

merits. In addition, as indicated by the authors, it suggests a viable line of work, that of 

developing Rose scripts for interfacing with other CASE tools. This approach is different 

from ours in several ways. Firstly, as in the [Jia97] approach discussed previously, RTS are 

not targeted explicitly. Secondly, Z is used again in its regular version, which has the 

advantage of keeping the notation simple and the potential of interfacing with a larger 

variety of analysis tools, but this solution is less direct than employing an OO variant of Z 

for OO specifications. Thirdly, many Z descriptions are entered in the LATEX syntax, which 

is clearly not user-friendly. Fourthly, the internal format of the “.zed” file is custom-made 

(tailored to the AFITtool), and thus its usage in connection with other tools is restricted. In 

addition, as in the [Jia97] example, this approach also fits in the complementary 

formalisation category of integration, and ours proposes a tight-integration solution. Lastly, 

it can be noted that although Rose 98 acts as the sole front-end modelling tool, Noe and 

Hartrum’s integration of notations is not entirely monolithic. This is due to the fact that a 

separate program, the AFITtool, with its own set of commands and interface demands, is 

invoked outside the main environment, Rational Rose.  

 

4.5.3 Blending Octopus and Z 

 

The approach described by France et al. in [France 97] represents one of the relatively few 

attempts of integrating OOAD methods with formal specification techniques for developing 

RTS (work connected to this approach is described as well in [Bruel96], [Shroff97], and 

[Bruel98a]). The formal specification language used is Z, which was chosen, as indicated by 

the authors, because of its maturity and the availability of related analysis tools. Here, the 

combining of an OO approach with a formal specification technique consists of translating 

the three analysis models of the Octopus method [Awad96] into equivalent Z specifications. 

The formal specification language Z is used to enhance the modelling capability of Octopus 
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by allowing consistency checking across models (thus opening the way for the application of 

automated analysis tools) and by providing the developer with a better insight into the 

problem’s requirements. Octopus analysis models are translated into Z constructs using 

procedures that could be partially automated. The formalisation process is applied to all 

three analysis models of Octopus: the object model is formalised using class schemata, while 

the derivation of the other two models, dynamic and functional, which capture system 

behaviour, involves four steps: definition of states, definition of subsystem responses to 

events, Z modelling of transitions described in the dynamic model, and description in Z of 

statechart actions and activities, including those represented in the functional model (Fig. 

4.5, based also on the earlier [Bruel96] paper on FuZE, which combines Fusion and Z).    
 

Octopus models

- object model
- functional model
- dynamic model

(real-time properties
captured  in
Statecharts)

Z specifications

(temporal properties
included)

Octopus to Z mapping

- object model formalisation:
classes and generalisations

- behaviour formalisation:
states, events, transitions,

actions, and activities

Analysis tools
feedback

feedback

 
 

Fig 4.5 The Octopus and Z Integration Approach 

 

Feedback from analysis tools to both the diagrammatic and the formal models is considered, 

but we can note however that in this approach the integration of notation is not tight in the 

sense defined in Section 4.2. Also, even though the object model is translated into regular Z 

constructs that model classes, a translation into an object-oriented version of Z would be 

more natural and direct, and the specifications would have similar structure in terms of 
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classes. Additionally, the OMT-based notation of Octopus has currently less exposure than 

UML, which has enjoyed a constantly growing expansion over the last few years.  

 

4.5.4 Headway System’s RoZeLink  

 

Most probably, the only tool that has been developed commercially to support an object-

oriented modeling approach and combine the advantages of graphical, semi-formal notations 

with those of formal notations is RoZeLink [RoZeLink99], produced by Headway Software 

Inc. as a bridge between the UML notation supported by the 1998 version of the Rational 

Software Corporation’s Rose environment and the ZEST object-oriented formal 

 

 

  Rose World
   (UML models)

- class attributes
- class interfaces
- class operations

  (partial)
- aggregations
- inheritance

   

RoZeLink:
Two-way mapping

Formaliser World
(ZEST

specifications)

- class structure
- attributes

- operations

 
Fig. 4.6 The RoZeLink Tool 

 

specification language supported by Logica’s Formaliser [Formaliser01]. RoZeLink, which 

apparently has not been further developed since the producing company has changed its 

direction of work (see the web-site in the [RoZeLink99] reference), provides the necessary bi-

directional link between the two notations and achieves the goal of maintaining 

specifications consistent between models. RoZeLink operates between a Rose UML model 

and a collection of Formaliser documents, and through a continuous translation mechanism 

maps elements from the semi-formal model into the formal model and vice-versa. This 
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implies that changes in one “world” are reflected during the modelling process in the other 

one (Fig. 4.6). We borrowed from RoZeLink this idea and also pursued a tight integration of 

notations.    

 

Although practical and comprehensive in its dealing with structural aspects of the system, the 

Headway Systems’ approach has its limitations, primarily because there are no particular 

provisions for dealing with time-related properties of the systems. In addition, only the class 

structure of the system is involved in formalisation, the statecharts are not. Also, the 

RoZeLink approach does not propose a truly monolithic integrated environment, its role 

being to act as an intermediary that interconnects two already existing commercial software 

development tools. In order to work both “graphically” and “formally” on his specifications, 

a user must first start up three separate applications.     

 

4.5.5 Object Z and UML  

 

The closest approach to ours (it belongs in the same C3+ class) and also the most recent is 

presented in [Kim00b] (earlier work by the same authors on formalising UML diagrams is 

described in [Kim99a] and [Kim00a]). In many ways, our work is similar to Kim and 

Carrington’s alternative for integrating UML and an object-oriented variant of Z, but there 

are also some notable differences, as indicated below. First, however, we would like to 

indicate that we started to develop our approach in the form presented here sometime in 

1998 and an early outline of the integration and of the proposed Harmony tool was 

presented by the author of this thesis in August 1999 as part of the requirements for the 

Visual Languages course taught by Prof. Phil Cox at Dalhousie University, Halifax, Nova 

Scotia [Dascalu99]. Therefore, we have worked independently in the same topic area, and 

only very recently have learned about Kim and Carrington’s approach. 

 

In summary, as shown in Fig. 4.7, their proposal is to translate UML models into Object-Z 

models, temporal properties of the systems receiving adequate treatment via a time trace 

notation based on time refinement calculus. Kim and Carrington’s approach proposes not 
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only a formalisation of the class structure but also a formalisation of dynamic properties 

based on use case diagrams, sequence diagrams, and statechart diagrams. Very briefly, there is 

a direct correspondence from UML classes to Object-Z classes that “makes the semantic 

translation between the two languages less complex” [Kim00b, pp. 241], and the dynamic 

behaviour of the system is formalised using detailed translation rules for all elements of the 

statecharts (initial state, regular states, entry and exit actions and activities, events, and 

guards).                

 

  UML models

- class diagrams
- use case diagrams
sequence diagrams

- statechart diagrams
(including time events)

Object-Z

- classes (temporal
properties expressed

as time traces)
- formal functional
model (Actor and

Event free  types and
Scenarios function)

UML to Object-Z
formalisation

 
 

Fig. 4.7 The UML/Object-Z Combination 

 

Kim and Carrington’s approach is one of the most mature solutions for UML and Z 

integration and has been developed in one of the strongest research groups on formal 

methods, the Software Verification Research Center at Queensland University, Brisbane, 

Australia (their web-site is mentioned in the [Cogito97] reference). It builds on extensive 

research developed over more than a decade by prominent scientists in the field, and benefits 

from a suite of tools and techniques that have been validated through numerous applications.   

Nevertheless, our approach also has its merits. It uses Z++ instead of Object-Z and we 

believe that Lano’s OOZ proposal fares better than Object-Z in some respects, specifically in 

the details included in the class specification (see class definition in Subsection 3.2.3) and in 

the integration of the RTL semantics and syntax for explicitly dealing with temporal 
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properties. In our view, RTL, described in Chapter 5 in conjunction with our formalisation 

process, has an intuitive and natural syntax and its semantics are easier to grasp by developers 

not trained in formal methods. Z++ and RTL offer therefore a friendlier user-interface and 

sustain our lightweight alternative for pragmatic TCS specification. Also, the approach 

presented by Kim and Carrington does not propose a tight integration of notations (there is 

not a two-way mapping between semi-formal and formal models) and there is no specific 

mention of a development tool in their paper, so we cannot ascertain its characteristics under 

the monolithic/non-monolithic environment criterion.        

 

 

4.6 Modalities of Specifying Temporal Constraints in Z 

 

Capturing time-related properties of systems is not a simple task. Actually, it is one of most 

demanding challenges faced by the developers of timed-constrained systems, as emphasised 

by the profusion of approaches proposed in this direction, including numerous variants of 

Temporal Logic (comprehensively reviewed in [Bellini00]) and all sorts of “timed” 

formalisms, including Timed Petri Nets [Ramchadani74], Timed CSP [Schneider92], 

Timed CCS [Moller92], Timed Statecharts [Kersten92], and Timed LOTOS [Léonard98], 

(Interestingly, although various alternatives of using Z for specifying RTS have been 

proposed, the term “timed Z” appears nevertheless in surprisingly few references –and in a 

rather general way,– so we cannot speak of an established Timed Z notation.) Since a general 

discussion of the various solutions proposed over the years for capturing temporal properties 

of systems exceeds the scope of this dissertation we summarise in this Section only some of 

the most important ways of tackling the “time issue” within Z-based specification 

approaches.  In general, enhancement of Z with constructs and symbols borrowed from 

other formalisms have been proposed (e.g., [Mahony92, Fidge97, Mahony98, Yuan98]), 

much fewer being the approaches that attempt to capture timing constraints using 

exclusively the constructs of regular Z (e.g., [Evans97]). In all cases, special mechanisms for 

modelling temporal properties have proved to be necessary. 
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4.6.1 Time Refinement in Z 

 

In one of the earlier approaches that employ Z for modelling time-constrained systems, 

Mahony and Hayes propose an extension of the notation and the use of refinement calculus 

to allow a unified treatment of both analog and discrete properties of such systems 

[Mahony92]. Three “notational devices” are introduced: topologically continuous functions 

for expressing both analog and discrete quantities, physical units attached to variables, and 

specification statements describing the assumptions made by the system about its 

environment and the effect the system is expected to achieve provided the assumptions are  

satisfied. In order to declare a variable  such as the  temperature at a given location (say, in an 

aquarium), a TEMPERATURE type with associated physical units can be first defined by 

resorting to the set ƒ of real numbers: 

 

TEMPERATURE == ƒ [Celsius]      (4.1) 

 

Then, by introducing the type TIME through syntactic equivalence with the set of real 

numbers (and with an appropriate physical unit attached):  

 

TIME == ƒ [Second]        (4.2) 

 

the evolution of our variable of interest can be modelled as a continuous total function: 

 

| aquariumTemperature : TIME ÄÄÄ� TEMPERATURE   (4.3) 

 

On the other hand, discrete variables, such as the following one, which indicates whether or 

not fresh water is pumped into the aquarium, can be modelled as a partial continuous 

function from time to Boolean (“partial” because they are possibly times when the variable is 

undefined or its value is changing): 

 

|  waterIn : TIME ÄÄÄ� √       (4.4) 
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Other important concepts used in Mahony and Hayes’ approach include the notion of open 

time interval (α ... β), the collection uTIME of all open intervals of time, the time topology 

UTIME, which encompasses all periods of time consisting of open, disjoint intervals, the 

cov(Period) function, which gives the collection of disjoint, open intervals of time that 

comprise the Period set of time, and timed history predicates such as Pred on Period, 

Pred in Period, and Pred at t, where Pred is a logical predicate, Period a period of 

time consisting of a set of open intervals of time, and t a moment in the passage of time.     

 

This approach allows the description of both analog and discrete properties of systems –two 

aspects of TCS that usually are modelled separately– within a unified framework that at the 

same time supports the capturing of temporal properties over intervals of time. By 

associating physical units to variables it helps both the understanding and the type 

compatibility checking of the specifications.  While this approach is expressive and practical 

for specifying various properties of RTS, including concurrency aspects, it has been pointed 

out that by modelling variables as constant functions over all time the focus is shifted away 

from important features of Z, such as state schemas and operation schemas, which become 

“buried in the specification” [Dong97a, pp.26].  

 

4.6.2 The Quartz Alternative 

 

The Quartz approach [Fidge97] is similar to the previously described work of Mahony and 

Hayes in that it deals with time and functional behaviour in a unified way, and places equal 

emphasis on capturing temporal constraints and on specifying functional requirements. The 

proposed scope of the Quartz approach is however different since it aims at integrating RTS 

specifications (in a variant of Z) with program refining techniques leading to the generation 

of Ada-like high-level programs augmented with time constraints. In the words of its 

authors, “Quartz encompasses real-time software development from specifying the formal 

requirements through writing the high-level language code” [Fidge97, pp. 100]. The major 

principles of the method are that program development and verification are performed in 

lockstep at all levels of abstraction and the same rules are applied throughout the entire 
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refinement process.  In outline, Quartz proceeds as follows: first, top-level specifications are 

created, defining the behaviours of the system via allowable traces of observable variables 

(histories indexed by the absolute time); then, the specifications are refined to a set of 

concurrent components that constitute the basis for a skeletal program design; next, each 

individual component is refined using sequential refinement rules, leading to the 

identification of low-level state changes and descriptions in an executable subset of the 

specification notation that correspond to constructs of the target high-level language; finally, 

since some time constraints may not be yet fully verified, they are subject to further analysis 

at the executable code level. 

  

Conceptually, time is modelled in Quartz using an additional variable that in the refinement 

process receives the same treatment as the other variables of the system do. The time domain 

can be either discrete (U == ø) or continuous (U == ƒ) and the variable now can be introduced 

to model the passage of available processor time. The concepts of action systems are brought 

in to allow the expressing of concurrency and timing and, from the notational point of view, 

Z schemata are combined with guarded-command language constructs.  

 

The goal of the authors of Quartz, that of proposing a formal development method that 

iteratively transforms top level RTS specifications into executable time-verified executable 

code is undoubtedly ambitious, but what strikes the reader of the [Fidge97] article is the 

complexity of the approach, a relatively simple example necessitating a rather long 

refinement and long explanatory descriptions. Of course, this is the general case with formal 

refinement and analysis, but questions can be raised regarding the applicability of the 

method in all but smaller-sized or highly critical applications.   

 

4.6.3 Andy Evans’ Approach 

 

Andy Evans also shows that even though traditionally it has been considered that Z in itself 

is insufficient for specifying RTS, it is nevertheless possible to introduce extensions to the 

standard Z language that provide the capability of capturing the dynamic aspects of the 
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systems [Evans97]. In his approach, Evans proposes four extensions to Z addressing the issue 

of specifying reactive systems: genericity, generic operations being used as instruments for 

describing concurrent behaviour; real-time extension, allowing the specification of dynamic 

properties of the system, including timed computations; modularity, that permits the 

encapsulation of concurrent behaviours; and synchronized communication, which allows 

modules to communicate via a CSP-like mechanism. Notably, Evans uses only regular Z 

constructs, thus eliminating the need for specialised specification and analysis tools.  

 

The key idea of Evans’ approach is to specify the dynamic behaviour of the system as the set 

of allowable sequences of system states.   States and operations are specified in the classical Z 

style, thus providing the static specification of the systems, while the dynamic specification is 

achieved using a model based on the notions of infinite computations, atomic events, and 

non-deterministic interleaving of atomic operations. Infinite sequences are specified using a 

new data type (in the following, X is a type): 

 

comp X == ø1 Ñ X        (4.5) 

 

a next-state schema is introduced, and a generic operation validcomp is proposed as an 

extension to Z for specifying the valid behaviours (computations) of the system: 

 

ÚÄÄÄ [STATE]  ÄÄÄÄÄÄÄ���ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ���������� 
³_validcomp_ : comp STATE Ö (� STATE x (STATE Ö STATE)) 
Ã���������������������Ä 
³�Ï : comp STATE; I : � STATE; R : STATE Ö STATE •      (4.6) 
³        Ï validcomp (I, R) �� Ï(1) î I  �   
³          (�n : ÷1 • Ï(n) R Ï(n+1) � Ï(n+1)= Ï(n)) 
À���������������ÄÄÄÄÄÄÄÄ���ÄÄÄÄ�������Ä�������Ä���������ÄÄÄ 

 

Timed computations explicitly capturing temporal constraints imposed on the system are 

modeled using the notions of discrete time (Time == ø) and of infinite sequences of states 

with associated time values. A generic relation validcompt, similar to the one in (4.6), is 

proposed in order to specify the allowable behaviours of the system. Evans’ approach makes 

an elegant use of generic constructs to provide Z with extensions for specifying real-time 
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systems. However, using infinite sequences of states to describe the system’s dynamic 

properties brings a level of mathematical complexity that may hinder the adoption of the 

proposed extensions by the larger community of software developers. 

 

4.6.4 RTOZ 

 

Another approach that employs a variant of Z, specifically Object-Z, in a formalism aimed at 

specifying RTS is Periyasamy and Alagar’s Real-Time Object Z (RTOZ) [Periyasamy97, 

Periyasamy98]. RTOZ addresses both time-dependent data and time-constrained processes, 

and allows for a separation between temporal constraints and functional specification. The 

philosophy of RTOZ is based on the notion of filter specifications (classes that specify 

timing constraints) and a model of time that relies on the history of data objects.  

 

A specification in RTOZ is composed of two sets of classes: regular classes, that capture the 

structural and the behavioural requirements of the system without regard to temporal  

restrictions, and timing classes (filters) that model timing properties of the system. There is a 

one-to-one correspondence between regular classes and filter specifications, a filter 

specification describing the timing constraints imposed on the behaviour of its associated 

class. Each filter specification consists of several filter schemas, and each operation in a given 

class is restricted by a filter schema in its class’ associated filter specification. 

 

The approach described by Periyasamy and Alagar is novel in that it utilizes real-time filters 

in the context of object-oriented specifications, and makes a clear separation between the 

specification of the system’s functional requirements and the description of its timing 

constraints. This demarcation between the timing aspects and the “time-abstracted” 

behaviour of the system brings a series of advantages, most notably the increased reusability 

of the functional specifications of the system, localisation of effects in the case changes in 

requirements are required (improved by the isolation of functional requirements from 

temporal constraints), and better understanding of both the operational characteristics and 
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the timing properties of systems. Also, RTOZ extends only minimally the syntax of Object-

Z, thus preserving the capabilities of Object-Z without increasing its complexity.      

 

Although RTOZ provides adequate support for the verification of properties such as safety 

and liveness, it can nevertheless be difficult to specify the characteristics of TCS only in a 

formalised way. A combination of diagrammatic and formal techniques would combine the 

advantages of both, essentially ease of use on the one hand and rigorous, verifiable 

descriptions on the other. 

 

4.6.5 TCOZ 

 

Another approach aimed at capturing RT requirements is presented in [Mahony98] and 

[Mahony00], and involves the combination of Object-Z and Timed CSP in a blended 

notation called Timed-Communicating Object-Z (TCOZ). The motivation of this notation 

is, as pointed out by its authors, to complement the expressive modelling power of Z 

regarding the static, single-threaded specification of systems with the capability of Timed 

CSP of capturing the behaviour of concurrent real-time systems. The integration of 

notations and techniques is actually multi-levelled; first, Object-Z extends Z with constructs 

suitable for object-oriented modelling, then the notion of time is added to Object-Z to 

obtain the enhanced notation Timed Object-Z. This enhancement is made possible by 

considering a global real-time clock, represented by the state attribute now, and by modelling 

environmental interactions as functions of time, included in the system state. On the other 

hand, CSP is extended with two primitives, delay and timeout that permit the 

specification of temporal aspects of sequencing and synchronisation. Finally, Timed Object-

Z and Timed CSP are blended in the TCOZ notation, whose principal characteristic is to 

model operations as terminating CSP processes and objects as non-terminating processes. 

 

The basic constructs of Timed CSP are sequencing, parallel composition of processes, and 

choice (internal and external). Sequencing has two forms, the first one describing the 

succession event-process behaviour as follows: 
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a @ t Ñ P(t)        (4.7)  

 

where a is an event, t is the time parameter , and P the process. 

 

The second one describes the sequential composition of processes, as in:   

 

P;Q          (4.8) 

 

where the sequential execution of processes P and Q is indicated by the operator “;”. 

 

Parallel composition of processes is represented using the syntax: 

 

 P |[X]| Q         (4.9) 

 

  where P and Q are processes and X is a set of events enabled jointly by P and Q. 

 

The external choice operator has the form: 

 

 a Ñ P � b Ñ Q        (4.10)  

 

and signifies that the above processes begins by enabling both a and b and then behaves (as P 

or Q) according to the event a or b that is actually enabled by the environment. The internal 

choice operator has a similar meaning, but the variation in behaviour is determined by the 

internal state of the process: 

 

 a Ñ P Ú¿ b Ñ Q        (4.11) 
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The above operators are added to Z’s set of operators and bring with them the semantics of 

CSP. The time-specific primitives delay and timeout are as well imported in the extended 

version of Object-Z.  

 

In essence, the approach proposed by Mahony et al. makes use of the complementary 

semantics of the state-based behavioural model and of the event-based behavioural model 

and offers an excellent example of multi-integration of formal notations for software 

specification. However, the very combination of the two extended formalisms may raise a 

barrier that could prevent the wider acceptance of TCOZ in practice; the result is a rather 

complex notation, not easily accessible to developers who are not trained in formal methods. 

Also, oversized specifications may result from applying TCOZ to larger systems.  

 

4.6.6 Other Approaches 

 

Besides the approaches discussed above, other proposals for applying Z to TCS have been 

made over the years. Some of them are succinctly reviewed below.    

 

In one of the earliest approaches, Duke and Smith suggest the integration of Z and TL for 

modelling TCS in a solution that allows the verification of properties such as liveness and 

safety [Duke89] but as indicated in [Johnson95] the application of temporal operators on 

both schemas and predicates can be confusing.  

 

The work of Coombes and McDermid [Coombes93] can also be placed in the traditional 

line of research, that of enhancing the semantics of Z with semantics of other formalisms that 

are more suitable for specifying and verifying TCS. In essence, the authors consider 

constructs specific to a variant of TL, namely Interval Logic, employ the grid concept to 

allow the inclusion of multiple clocks (needed in distributed systems), and adapt to time 

intervals the CSP concept of trace. Although sound and thorough, Coombes and 

McDermid’s approach seems too complex for practical application and can lead to oversized 

specifications.  
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The issue of capturing temporal properties using Z is also addressed by C.W. Johnson, this 

time in a less researched context, albeit very important, that of supporting user interface 

development in the construction of interactive safety-critical systems [Johnson95]. Johnson’s 

proposal combines Z schemas with TL formulae, structured graphics, and generic input 

events. While Johnson’s proposal successfully addresses a series of issues pertaining to the 

formal development of user interfaces (such as modelling of temporal properties that affect 

usability and synchronisation between the interface and the underlying application) and is 

supported by a prototyping system entitled Prelog there is still work needed regarding the 

refinement of specifications, as acknowledged by the author.  

 

Dong and Zucconi suggest a framework for incorporating time in Z-based formal models 

[Dong97a] and propose the use of timed refinement and the ProCoS approach [He96] to 

capture the input environment and the Quartz approach to express the requirements of the 

core system, all within the frame of an extended version of Object-Z. This is one of the most 

flexible frameworks proposed to date for extending the modelling power of Z to the RT 

domain, since it allows the integration of a variety of time formalisms (not only the ones 

mentioned above) in an OO extension of Z.  Nevertheless, the observations made previously 

regarding TCOZ can apply here as well.   

 

In a similar line of research, involving the expression of time constraints in a Z-centered 

formalism, Bolognesi and Derrick introduce an ambitious concept, constraint- and object-

oriented (C-O-O), in a highly innovative specification method that in essence combines 

object-oriented constructs (mapped to Object-Z) with constraints that define the time-

ordering of operations (modelled as transition graphs) [Bolognesi98]. In our opinion this 

solution, although very original and interesting, is too complex and involves an adjustment 

of the OO paradigm that may appear too difficult to the larger community of software 

developers.    
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Also relatively recently the proposal of a Complete-Object-Oriented-Z (COOZ) has been 

made [Yuan98], relying on an object-oriented version of Z that integrates mechanisms and 

notations from Object-Z and OOZE and employing Duration Calculus (DC) 

[Chaochen91] for describing temporal properties of objects. Yuan et al.’s solution is one of 

the most complete proposals to date and its application is supported by a set of tools, entitled 

COOZ-Tools, that consists of an editor and viewer, a syntax and semantics checker, a 

refinement tool, a help system, and a project manager. Although DC is considered by the 

authors of COOZ more powerful than TL, it is the very complexity of DC and the 

particularities of its notation that can constitute an obstacle for the larger application of 

COOZ in practice.       

 

4.6.7  The Z++ Alternative   

 

As mentioned in Subsection 2.7.3, Z++ supports the modelling of TCS by incorporating a 

TL-based formalism. In essence, the HISTORY clause of the class specification describes the 

admissible sequences of execution, in the form of TL or RTL predicates. Because we rely on 

Z++ to achieve “time capturing,” the Z++ way for dealing with time is described in more 

detail in Chapters 5 and 6 of the thesis.  We mention here only that our time specification 

solution relies on Jahanian and Mok’s RTL, whose constructs are incorporated in the larger 

frame of Z++ in the way proposed initially by Lano [Lano95]. This solution follows the 

general approach for extending Z to TCS modelling, that of incorporating constructs and 

symbols from other formalisms, and has been chosen for reasons outlined in Chapter 5 of the 

thesis. 

 

 

4.7 Chapter Summary 

 

In this chapter work related to our approach has been surveyed. The major directions of 

integrating notations in software specification have been investigated and a closer look at 

proposals aimed at dealing with systems characterised by complex temporal properties has 



 117 

been taken. The major ways of dealing with time in software specification have been 

identified and several particular approaches have been analysed in greater detail. As the 

overall result of our survey, we found out that five reported projects come significantly close 

to the line of research we have pursued; they are, respectively, Jia’s pragmatic approach based 

on AML, Noe and Hartrum’s support for formal methods in Rational Rose, France et al.’s 

formalisation of Octopus, Headway Software’s RoZeLink tool, and Kim and Carrington’s 

integration of UML and Object-Z. The major characteristics of these approaches have been 

discussed and the main differences between them and our own approach have been pointed 

out.  


