
 253

9 Towards An Integrated Environment: A

Prototype for Harmony

 “Build me straight, O worthy Master!

Staunch and strong, a goodly vessel,
That shall laugh at all disaster,

And with wave and whirlwind wrestle!”

[H. W. Longfellow, The Building of the Ship, 1849]

9.1 Introduction

In this chapter the overall design of the specification environment entitled Harmony is

presented and details are given regarding both its operational capabilities and its GUI

appearance. This tool is intended to fully support the modelling process proposed in Chapter

7, with special attention paid to provisions for sustaining the formalisation of UML classes

and state diagrams described in Chapter 6. Deformalisation is also supported and aids are

included for easy manipulation of Z++ symbols in the process of writing formal

specifications. A “tandem” mode of operation is introduced, consisting essentially in the

synchronised presentation of a UML class compound and its corresponding Z++ class

specification. A more complete description of this CASE tool, currently evolving into a

prototype, is provided in Appendix C. In this chapter, the general principles of Harmony are

presented first, followed by an overall view of the environment, and then by successive

descriptions of Harmony’s main components: the Project Pane, the UML Space, and the

Z++ Space. A number of additional features of the environment, including specific toolboxes

and buttons, are also presented.

 254

9.2 General Principles

Because we attempt to combine the benefits of “both worlds” (“formal” and, respectively,

“informal,” as well put by Alexander in the title of his paper [Alexander95]) and to

“harmonise” the use of the UML and Z++ notations we have assigned the name Harmony to

the environment that supports our modelling approach. In its present form, Harmony is

intended to fully support the modelling process outlined in Chapter 7, with particular

emphasis on the formalisation and deformalisation activities described in Chapter 6. Both

UML and Z++ specifications can be “simultaneously” developed in Harmony and a bi-

directional link exists between the formal and the graphical representations of the system,

ensured by the translation mechanisms described previously in the thesis. This allows

changes in the graphical representations to be reflected into the formal specifications, as well

as the modifications of the formal part to be fed back into the diagrammatic description of

the system.

Reflecting our philosophy for a rigorous yet pragmatic modelling approach, our goal for this

stage of Harmony's development was to keep things simple and focus on those aspects of

TCS that must be completely and correctly captured during the early stages of software

development. Further extensions for the environment are possible, some of them outlined in

the Conclusions of this thesis, and provisions for interfacing with external tools are included.

Presently, Harmony’s designed capabilities are adequate for the development of the Elevator

case study described in Chapter 8, as well as for modelling other TCS. Of course, software

systems in which the focus is not on temporal restrictions (“non TCS”) can also be specified

using Harmony.

The environment operates on specification projects, which are sets of specifications

represented in diagrammatical (UML) and/or mathematical (Z++) forms. For this reason

Harmony is referred to as an integrated specification environment (ISE). The combined

result of the specification activities supported by Harmony, more exactly the sum of the

artefacts (model elements) produced in these activities within the procedural frame presented

 255

in Chapter 7, constitutes the integrated model of the system. Since a total formalisation of

the system is typically not required, the environment can be used for a partial formalisation

within a complete specification of the system. In practical terms, this means that it is not

necessary that a one-to-one correspondence between UML and Z++ components is achieved

–some parts of the system will be described both in UML and Z++, while other only in UML

or only in Z++. In principle, it is possible to have the entire system specified solely in Z++,

but this can be efficient only in the case of small-sized systems (it also comes against our idea

of combining formality and informality in software specification).

One of the distinguishing characteristics of Harmony is that it is monolithic in the sense

defined in Section 4.2. By itself, it is sufficient to sustain a complete specification of the

system and through its provisions for interfacing with external tools it is also capable in

principle of supporting further development (in particular, we envisage interfacing with

external tools for formal proof and formal refinement). Thus, it can be used as the “root”

instrument from which other applications can be started –this is in contrast with other

approaches, for instance RoZeLink’s, where three applications need be separately started

from the operating system in order to perform the formalisation and deformalisation

processes [RoZeLink99]. As shown in next section, it also “monolithically” integrates two

“worlds,” the visual world of UML, and the textual, intensively symbolical world of Z++.

Another point that needs be further highlighted about Harmony is that it is designed for

producing pragmatic, efficient, and precise models through the combined used of semi-

formal diagrams and formal specifications. In this respect, the use of Z++ has primarily the

role of supporting better understanding of the system and, generally speaking, of enhancing

the intellectual control over the system. As discussed in Chapter 2, this is one of the main

advantages of using formal methods and, consequently, although more intricate features for

formal processing can be added later through Harmony’s “add-ins” feature, they nevertheless

are beyond the scope of this thesis. Only a syntax and consistency checker is envisaged to be

included directly in Harmony, this being a useful tool for enhancing the developer’s

confidence in the accuracy of his or her Z++ specifications.

 256

As a matter of overall organisation of the two modelling spaces it is necessary to mention that

while a project may consist of several class diagrams there is a unique Z++ specification for

the system. Because a Z++ specification encompasses not only classes but also statements

external to classes (such as definitions of global types and operations on classes) and because

we have attempted to ensure a consistent way of accessing the groups of artefacts within the

project, a Global Spec component has been included in the Z++ Space. When fully

expanded, as detailed in Section 9.6, it shows the entire text of the formal specification.

On a more detailed level, support for the class compound construct introduced in Chapter 7

is available, the idea being that the key classes of TCS need be detailed not only in respect

with their attributes and their operations, but also with the sequencing of their operations (as

captured in state diagrams). From a GUI point of view, a simple splitter bar between the

space in which the UML class is represented and the one that corresponds to the class’ state

diagram is introduced, the two regular UML constructs being syntactically associated in the

graphical model (they are also inherently associated in Z++ class declarations, where, within

the CLASS construct, the HISTORY clause describes the temporal properties of the class’

objects).

Also, since an intense work on UML class compounds and on their corresponding Z++

classes is expected, a synchronisation mechanism of on-screen presentation of the

corresponding COMP and ZPPC constructs is proposed (the abbreviations introduced in

Table 7.I are used again in this chapter). This mechanism defines a mode of operation that

can be viewed as a manifestation, in our terminology, of the tandem principle (simply put, it

means that two entities are working together for accomplishing a common goal). This mode

of operation that allows in essence the “simultaneous” development (or the simple

inspection) of a class in both its UML and Z++ forms is further described in the next section.

Before describing further the organisation of Harmony, we need to point out that only the

design of the environment has been completed, but not its implementation. Therefore, the

screen shots that follow are only aids for further development and do not represent actual

 257

captures of the running environment. The examples of UML and Z++ model elements

included in Fig. 9.1, showing the Elevator class compound and its corresponding Z++ class

specification have been pasted into the environment panes, and have not been developed

with Harmony. The design of Harmony’s user-interface presented in this chapter and

further described in Appendix C, a “mock-up” prototype written in Java, includes

nevertheless the necessary details for fully sustaining Harmony’s implementation.

9.3 Overall Organisation

Fig. 9.1 presents Harmony in a typical situation, in which a project is loaded and work is

undergoing in the UML and Z++ spaces on several modelling elements, specifically a use

case, a scenario, a sequence diagrams, two UML class compounds, and two Z++ classes. As

seen in the figure, the environment consists of a main window (or browser), divided into

several panes and containing other GUI elements such as a menu bar and toolbars. Since a

systematic description of Harmony’s user interface is included in Appendix C, we focus in

this chapter only on those aspects that distinguish the most this ISE. From this perspective, it

is notable that Harmony has three main panes, referred to, respectively, as the Project Pane,

The UML Space and the Z++ Space. In addition to these panes, to the menu bar, and to the

environment’s toolbars, a message console and a status bar are also included.

In short, the entire organisation of the project can be viewed in the Project Pane, which

shows the collections of artefacts grouped as indicated in Chapter 7. Work on the semi-

formal model is performed in the UML Space, and formal specifications are written in the

Z++ Space. It is important to note that in this organisation the three panes can all coexist on

the screen at any given moment, but they can also be individually turned off, as shown in the

View Menu presented in Fig. 9.2. Thus, work can proceed either in parallel in the semi-

formal and the informal spaces, or can be focused on one of the to modelling “worlds”. The

specifier can turn off either “world” and use only half of Harmony’s capabilities, either for

 258

Fig. 9.1 Harmony’s Look

Fig. 9.2 The View Menu

 259

developing solely UML models or for exclusively representing the system formally. As

indicated in Fig. 9.2, all the panes of Harmony can be shown or hidden, although it will be

of little value to have both the UML Space and the Z++ Space turned off simultaneously.

The same figure also allows the further description of the tandem mode of operation. In

short, this mode of operation brings to the front of both modelling spaces (UML and Z++)

the pair of corresponding COMP and ZPPC descriptions, irrespective on which space the

developer is actually working. As such, all the relevant information about a class, specifically

its UML structure in CLS, the UML state diagram CLSTD, and the formal ZPPC

representation are visible at the same time on the screen provided that the “tandem option”

is turned on and, of course, both UML and Z++ panes are open. The tandem mode of

operations extends to class diagrams and their counterpart, the entire Z++ specification as

reflected by Global Spec.

9.4 The Project Pane

The Project Pane, shown in Fig. 9.3 with the ELS project loaded and partially completed, is

one of the three principal areas of the Harmony window. Its role is to visually present the

project’s structure in terms of artefacts and groups of artefacts as described in Chapter 7 and

to support a number of operations that allow the gradual development and organisation of

the project. These operations consist of creating a new artefact or group of artefacts, moving

an element from a group to another, and deleting an artefact or a group of artefacts. They are

invoked by mouse actions within the pane’s area, for instance a right-mouse click on the

empty space of the pane opens the New Model Element Selector shown in Fig. 9.4. Two of

the above operations are also available through other interface elements of Harmony, more

precisely New is included in the File, UML, and Z++ Menus, and both New and Delete

have icons on the environment’s main toolbar (again, we refer to Appendix C for further

details).

 260

Fig. 9.3 The Project Pane

Fig. 9.4 The New Model Element Selector

 261

From an operational point of view, immediately after Harmony is started all the

environment’s panes are empty, including the Project Pane. If from this state a new project is

created, the view of Harmony is the one indicated in Fig. 9.5, which highlights the initial

structure attributed by default to any project. This structure, following the guidelines of the

procedural frame presented in Chapter 7, consists of the five major groups of artefacts

considered there: the UC Collection, the SC Collection, the SQD Collection, the Class

Diagrams and Compounds Section, and the Z++ Specification. (We prefer not to use the

term collection for UML diagrams and compounds, since it may hint to an unstructured

type of organisation, which is acceptable in the case of use cases, scenarios, and sequence

diagrams –which need not, and typically cannot be completely specified,– but is not well

suited for classes, which must be fully and correctly defined and organised).

Fig. 9.5 Harmony with New Project Just Created

 262

9.5 The UML Space

In the UML Space the specifier can work on one or more model elements, each model

having its own tabbed-pane within this space. In Fig. 9.1, it can be seen that several such

elements are opened at the same time, the one active being the Floor Class compound, with

both its class specification and state diagram shown. Various options for working on the

UML Space are available through the environment’s menus and its toolbar. Among other

things, the UML menu shown in Fig. 9.6 indicates that it is possible to disable the current

UML toolbox (e.g., for inspection purposes, its elimination resulting into an increase of

UML Space’s visible area), as well as the state diagram part of a class compound (there are

classes that have a trivial state diagram).

Fig. 9.6 The UML Menu

 263

The same figure shows that creating new model elements, opening existing ones, saving

them, or closing them are operations also possible through the UML Menu. An important

function accessible via this menu is “Translate to Z++,” which allows the user to propagate

new UML specifications or changes to existing ones into the Z++ Space. The rules for

automated formalisation described in Chapter 6 are applied in this process.

The UML Space also contains a toolbox specific to each type of artefact created using the

modelling approach proposed in this thesis. Since there are five distinct types of such

 artefacts, five types of UML toolboxes are provided, the one visible at a given moment

corresponding to the type of artefact currently shown in the front tabbed-pane of the UML

Space. One of these toolboxes is presented in Fig. 9.7, and all five are included in Appendix

D. Some general symbols, such as “select item,” “text,” and “annotation” (the first three on

the left-hand side of Fig. 9.7) are a common presence in most if not all UML toolboxes. The

SQD Toolbox presented below includes additionally the “state,” “activation bar,” “message,”

“message to self,” “asynchronous message,” “return message,” and “destroy object” symbols.

Fig. 9.7 A UML Toolbox

9.6 The Z++ Space

In Harmony, the Z++ space is the equal partner of the UML space and as such its dedicated

menu has an organisation similar to that of the UML menu, as shown in Fig. 9.8. For

instance, the reverse process of formalisation, the transfer of information from Z++ to UML,

with its inherent simplifications discussed in Chapter 6, is invoked via the “Translate to

UML” option, which has the counterpart “Translate to Z++” in the UML Menu.

 264

Additionally, there are several functions specific to the Z++ space, all available through the

Z++ menu.

Firstly, there is the “Analyse” option, which is intended to allow the syntax and consistency

checking of the formal specifications. Secondly, due to the specific organisation of the Z++

specification, options for the presentation of the Global Spec as well of the Z++ classes are

provided. More precisely, the Global Spec can show only the Z++ contents extraneous to

classes, such as names of global types and hiding operations on classes (in case option Classes

Hidden is selected); this contents together with the names of Z++ classes (if option Classes

Collapsed is chosen); or the full text of the Z++ specification, i.e. the Z++ statements

extraneous to classes and the detailed description of classes (if option Classes Expanded is

selected). Also, an individual Z++ class can be presented within the UML space either alone

(Hide Context option selected) or accompanied by the Z++ contents not included in classes

(Show Context option selected).

Fig. 9.8 Harmony’s Z++ Menu

 265

A further distinction from the UML counterpart comes from the fact that a Symbol Box

instead of a Toolbox is available when working in this space. This “palette of mathematical

symbols” provides a practical alternative to the use of combinations of keystrokes for

inserting special symbols in the formal specification (a similar Symbol Pallette is available in

Logica’s Z Formaliser [Formaliser01]). The Symbol Box for the Z++ Space, with its

comprehensive set of items is presented in Fig. 9.9. The Z and Z++ specific symbols have

been compiled from the indexes available in [Spivey92, pp. 153] and [Lano95, pp. 417-418]

and the Symbol Box includes only those items that cannot be written using a standard font

such as Courier or Times New Roman. For instance, in order to keep the Z++ Symbol Box

as small as possible the arithmetic operators +, -, *, and / are not included, nor are Z specific

notational elements such as ::=, < .. >, or >> that can be represented using regular fonts.

Because in Z++ there is a need for subscripts (and sometimes for superscripts) two non-Z

symbols, the superscript and the subscript indicators are also included as the last two

elements of the Z++ Symbol Box. As for the organisation of this toolbar, a “topic related”

criterion has been applied, the symbols being grouped according to their use: existential and

universal quantifiers first, followed by statement separators, then by operators pertaining to

sets and bags, then by function related symbols, etc. The nine elements in the Symbols Box

that precede the superscript and the subscript indicators on the last row are Z++ specific (do

not pertain to the regular Z). Further details on the Z++ Symbol Box are available in

Appendix C.

Fig. 9.9 The Z++ Symbol Box

 266

9.7 Other Features

There are other features available in the Harmony environment, which is nevertheless kept as

simple as possible without jeopardising either its ease of use or its full support for the

formalisation activities described in Chapter 6 and for the combined UML/Z++ modelling

process proposed in Chapter 7. Some of these features are briefly described below, while

additional details are available in Appendix C.

For instance, there are five environment-specific buttons visible on Harmony’s main toolbar,

namely the Translate to Z++, Translate to UML, Tandem Off, Tandem On, and Analyse

buttons. In addition, the logo used for Harmony (taken from [RogersGifs01] Clipart

Gallery), can also be considered environment specific. In order to exploit a bit the harmony

metaphor, the first four symbols presented in Fig. 9.10 have icons related to the acoustic

domain, specifically a metronome for the Harmony logo, a single (mono) audio-speaker for

the Tandem Off button, a pair of speakers (a stereo system) for Tandem On, and a sound

analyser for the Analyse Z++ Specifications function. The last three icons have been

downloaded from [LeosIcons01] while all the other icons present in Harmony have been

either taken from the “Java Look and Feel Graphics Repository” (standard symbols such as

New, Open, Delete, etc.) [JavaLook01] or created by us from the scratch (all the symbols for

the artefacts and all the elements of the UML and Z++ toolboxes). For translation operations

between the “worlds” of UML and Z++ two new symbols have been designed, both using

“transfer arrows” and cubes in their representation, the latter suggesting complex, well

defined “worlds” (of modelling, in our case). These translation buttons are represented on

the last two positions of Fig. 9.10.

Fig. 9.10 Harmony Specific Symbols

 267

Regarding the Harmony logo it is interesting to note that it can be viewed as conveying a

combination of suggestions about the two most distinguishing characteristics of our

modelling approach: focused on smooth integration of notations (“harmony”, suggested by

an instrument associated with the rhythm of music), and focused on temporal properties of

systems (“the metronome,” a device which punctuates the passage of time).

Other icon-centred elements of Harmony’s user interface include a Legend Pane for the

symbols used in the modelling process, accessible via the Help menu. One of the tabbed-

pane of the Legend Pane is shown Fig. 9.11.

Fig. 9.11 The Legend Pane

Beside these detailed aspects of Harmony’s design there are some other, higher-level

functional features that deserve to be mentioned. As shown in Appendix C, they include

tools for customising the properties of the editor, of the project, or of the environment as

whole, provisions for “add-ins,” zoom-in and zoom-out features, options for the export and

the import of Z++ specifications, and creation of additional Harmony windows. In

 268

particular, through the Add-Ins feature present in the Tools Menu, connections with

external software tools are envisaged, and through the Export Z++ Specification included in

the File Menu an independent file containing solely the Z++ description of the system can be

generated for the purpose of being used in a separate development context. The counterpart

of the latter feature, the Import Z++ Specification, has the role of allowing the inclusion of

Z++ specifications developed externally into a Harmony project. This capability would

permit the subsequent generation of the corresponding UML class structure through

deformalisation.

9.8 Chapter Summary

In this Chapter the Harmony integrated specification environment has been introduced

through the description of its user-interface and of the functionality available through this

interface. This environment is intended to provide a monolithic integration of UML and

Z++ notations by fully supporting the formalisation and deformalisation activities presented

in Chapter 6 as well as the modelling process of TCS proposed in Chapter 7. The principles

that permeate Harmony’s design, the environment’s general organisation, as well as its three

major components, the Project Pane, the UML Space, and the Z++ Space have been

described in a fair level of detail. Remarks on some secondary aspects of Harmony, such as

specific icons and symbols, have also been included. Although Harmony is only in the design

stage, the description presented in this chapter provides a good foundation for its

implementation and allows the consideration of possible enhancements, some of them

outlined in the next chapter.

