

1 Introduction

“ ‘Where shall I begin, please your Majesty?’ he asked.
‘Begin at the beginning,’ the King said, gravely,

‘and go on till you come to the end: then stop.’ ”

[Lewis Carroll, Alice's Adventures in Wonderland, 1865]

1.1 Three Paradigms and a View of the Field

1.1.1 The First Paradigm or Objects as Conquerors

Few paradigms have had such a significant impact on the field of software development as

the object-oriented approach. One can argue that actually there is nothing really new under

the sun of technology, and that the object-oriented paradigm simply built upon the results of

many honest structured methods exercised intensively on various domains of application

over a significant number of years. The time of object-orientation just had to come, one may

say, and this is probably true considering the constant progress within the computers’ world,

but we still cannot stop admiring its fundamental naturalness and the benefits it made

possible.

The object-oriented paradigm has shifted the developers’ focus from the solution domain

(computer implementation) to the problem domain (the real -world that we relentlessly try to

model and control) and brought with it a much greater modelling power –resulting primarily

from the natural correspondence between objects and real-world entities. The object-

oriented approach has also come with solutions for improved control of complexity –mainly

 2

through abstraction, information hiding, and localisation, and provided effective answers for

code reusability and extensibility via encapsulation and inheritance. The object concept

proves to be remarkably powerful while essentially simple –the key characteristics of any true

successful solution. And of any true conqueror.

1.1.2 The Resilient Field of Real-Time Applications

While a large variety of general-purpose object-oriented development methods have been

proposed, among the most notable Shlaer and Mellor [Shlaer88, Shlaer91], Coad and

Yourdon [Coad90, Coad91], OMT (Object Modeling Technique) [Rumbaugh91], Booch

[Booch94], OOSE (Object-Oriented Software Engineering) [Jacobson94], Fusion

[Coleman94], and more recently the Unified Software Development Process [Jacobson99],

there has been comparatively a smaller production of object-oriented methods dedicated to

real-time systems. This type of applications seemed to be more resilient to potential

conquerors, including the objects. The explanation resides mostly in the efficiency concerns

developers of real -time systems may have. As Bran Selic points out, even though the object

paradigm is suitable for real -time applications (due to its equal emphasis on both structure

and behaviour, which appropriately answers the needs of real-time systems development

methodologies) it nevertheless extended over the real-time domain more slowly than over

other areas of software development [Selic98]. The cause, the author indicates, lies in the

rather scarce attention paid to important aspects of real-time execution, such as concurrency

and efficient allocation of memory. Indeed, the constraints on execution speed and memory

space are much stricter for real-time systems which, among other things, must meet

deadlines and operate in typically unfriendly environments. Consequently, the traditional

solution for ensuring both high execution speed and low memory utilization was to write

lower level code using assembly language or languages such as C, Ada or Occam. These

languages in turn provided relatively little support for the implementation of object-oriented

designs. On the other hand, where support was provided (e.g., C++, Smalltalk) the overhead

for manipulating objects at run time seemed to be costly, precluding the implementation of

real-time systems in all but the more relaxed (softer) cases.

 3

Nevertheless, some newer object-oriented approaches for real-time development such as

ROOM [Selic94], Octopus [Awad96], and Comet [Gomaa00] have been successfully

developed over the last years. This is certainly related to the constant improvements in

hardware –faster, more powerful, and more compact processors being able to alleviate a

number of issues related to the development of real -time systems in the “object-oriented

way” and extend the application range of the OO paradigm in areas never tackled before.

Commonly, the object-oriented analysis and design techniques that focus on real-time

systems extend the traditional capabilities of general -purpose object-oriented methodologies

with support for modelling aspects such as concurrency, distribution, timing constraints,

synchronisation, communication, interrupts, and exceptions. At the implementation level,

newer languages such as Ada95 [Barnes96] and Java [Gosling96] offer good support for

writing real-time applications in an object-oriented manner (Java’s capability for real-time

programming is amply illustrated in [Bollella00]). These realities provide solid grounds for

us to predict, for the near future, an increased interest in applying the object-oriented

technology to the field of real-time applications. In other words, the field’s resilience has

been eroded to the point of the complete acceptance of the conqueror objects.

1.1.3 The Second Paradigm or Formalisation as a Controlling Factor

Software developers need to be resourceful, imaginative, alert, and quick to react to new

challenges. This is due to the dynamics of their profession, in which daily novelties represent

the only constant characteristic of the work environment. The need for fast and efficient

solutions for new problems exercises tremendously the creativity of developers. But in the

rush for delivering the expected solutions errors happen and bugs sneak in the software

produced. Sometimes, the entire architecture of a program turns out to be erroneous. The

craft of software developers needs reality checks, more so if the application domain is safety-

critical or security-critical. Formalisms are needed as controlling factors of a developer’s

work; creativity must be channeled properly, and some moderation in art is necessary. It is

well known that the best masterpieces brightly combine inspiration with rigor. In software

development, formal methods are precisely employed to bring in the latter.

 4

As shown by Gerhart et al., “formal methods are mathematical synthesis and analysis

techniques used to develop computer-controlled systems” [Gerhart94, pp.5]. While it is

observed that the technological transfer of formal development approaches from the

academia to the industry is rather slow, an increased interest in the application of formal

methods to software construction has been signaled over the last years [Fraser94, Clarke96,

Hall98, Abernethy00]. Typically, what prompts the usage of formal techniques are safety

concerns, regulatory standards, or the need to demonstrate that the implementation of a

system corresponds to the system’s requirements. However, we believe that the most

important reason for applying formal methods in industrial applications lies in the improved

understanding of the system under construction and, generally speaking, in increased

intellectual control over the software being developed.

Numerous formalisms or formal development frameworks have been proposed, among the

most notable being Temporal Logic (TL) [Rescher71, Pnueli77], the Vienna Development

Methodology (VDM) [Bjørner78, Jones90], Communicating Sequential Processes (CSP)

[Hoare78, Hoare85], Calculus of Communicating Systems (CCS) [Milner80], Larch

[Gutag85, Guttag93], Statecharts [Harel87, Harel96], and the Language of Temporal Logic

Specification (LOTOS) [ISO89], but we will focus our attention on the formalism that

emerged as one of the most popular over the last decade: the specification language Z,

originated from the Oxford University Computing Laboratory, U.K., and currently used by

many organisations all over the world. Very good classifications of formal approaches can be

found in [Fraser94], [Gaudel94], and [Liu97], while authoritative references on Z are

[Spivey92] and [Wordsworth92].

While successfully employed for formally describing and analysing numerous data-intensive,

non real-time applications, the specification language Z has been only occasionally utilised

for the development of time-constrained systems. Although mathematically sound, mature,

expressive, and elegant, Z has been traditionally deemed of limited applicability in describing

systems essentially characterised by strict demands on their meeting of prescribed deadlines,

systems that most often are also concurrent in nature and complex, and possibly even safety

 5

critical. This limitation is due mainly to Z’s intrinsic lack of support for capturing temporal

properties of systems and to its reduced capability for simulation, which makes difficult the

construction of executable prototypes that could allow developers to interactively refine and

validate the specifications. In addition, due precisely to its generality and expressiveness, Z

does not typically allow for automated translation of specification into implementation code.

However, newer studies have been focused on finding modalities of using Z for specifying

real-time systems [Fidge97, Periyasamy97, Mahony98] and it has also been shown that by

employing additional conventions and structuring mechanisms it is possible to animate a

large subset of Z descriptions [Utting95, Jia98b]. Both these studies and the well-known,

solid mathematical foundation offered by Z for formally capturing various properties of

systems have encouraged us to investigate the possibility of using Z (more precisely, an

object-oriented extension of Z) in the development of real-time systems (which, for reasons

explained later in this chapter, we will refer to as time-constrained systems). In short, to

approach successfully the field of real-time systems, we believe that objects alone are not

sufficient: mathematical rigor is needed, and should be provided as early as possible in the

software development process.

1.1.4 The Third Paradigm or The Power of Pictures

Descriptions of computer applications, at least in what regards the software components,

used to be mostly if not entirely textual. There were hardly any other forms of representation

but text and perhaps formulae and tables (both of them in essence some other forms of

organised text). Driven by the technological engine that has produced increasingly faster

processors and constantly larger-capacity devices, the world of software itself has changed in

the last decade or so. The words of David Harel, in a 1988 seminal article, proved to be

prophetic: “We are entirely convinced the future is visual. We believe that in the next few

years many more of our daily technical and scientifical chores will be carried out visually, and

graphical facilities will be far better and cheaper than today’s” [Harel88, pp. 528]. While

after more than a decade we can extend this prediction to incorporat e multimedia facilities,

today we feel fortunate to witness the truthfulness of Harel’s prediction and admire the

 6

accuracy of his vision. The graphical symbols (for practical purposes we exclude from them

the classical letters of the alphabet), the icons, the visual metaphors, the animation, are now

common parts of our daily interaction with the computers. Actually, it is hard to imagine

today any significant software development environment based exclusively on text. Even the

more conservative Unix systems have included graphical interfaces into their environments.

As Harel predicted, the present is and indeed the future will continue to be visual. We have

complied with this reality by incorporating a graphical notation in our modelling approach

and by providing a graphical user interface to the tool that supports this approach.

1.2 Motivations

The motivations for our research approach can be summarised as follows:

1.2.1 Effectiveness and Simplicity

First and foremost, we have the fundamental belief that any new, practical approach should

necessarily be both effective and simple –or, to be more precise and use one of Einstein’s

well known quotes, “as simple as possible, but no simpler” (this quote is cited, among others,

by Stroustrup in his landmark book on C++ [Stroustrup97, pp. 723]). Obviously, any

academic research should have a motivation that ultimately relates to practical needs.

Overcomplicated software development approaches have difficulties gaining widespread

acceptance in industrial environments, and as such they take the risk of remaining mere

exercises in abstraction. The point here is not to underestimate the need for complex, sound,

thoroughly refined theoretical foundations for new software development techniques, but

rather to emphasise the necessity of hiding such foundations under apparently

unsophisticated facades. In other words, we are driven in our approach by the desire to

“engineer the illusion of simplicity” [Booch94, pp. 6].

1.2.2 Capability of Tackling Complex Tasks

We see the real-time systems as a complex, challenging field of investigation that is open to

new research and offer the promise of rewarding methodological improvements. Benefits of

 7

effective application development in this area are potentially enormous [Kopetz97,

McUmber99, Douglass99].

1.2.3 Early Detection of Errors

Cost-benefit considerations also provide for us the compelling reason to focus on the early

stages of the software development process, where detecting and correcting an error is usually

between tens and hundreds of times less expensive than later, during implementation and

maintenance [Boehm84, Schach99].

1.2.4 Powerful Combination of Paradigms

We consider that the accurate combination of several major paradigms that emerged

vigorously within the software development world can provide the basis for a technologically

sound, useful, and efficient methodological solution.

1.2.5 Understandability and Practicality

Effectiveness requires excellent communication and minimal departure from the problem

domain in terms of description of functionality. As such, we see use cases and scenarios as the

most appropriate means of interactivity, as key elements for bridging the gap between the

users’ understanding of the system under development and the developers’ view of the same

thing (the system). In software specification, capturing the behaviour of a system is probably

more important than describing the system’s structure, because the latter can generally be

subjected to some approximations and refined in later stages.

1.2.6 Ease of Communication

Speed of communication and shared understanding depend on the way the information is

organised and on the quality of the information’s conveyor. Visual representations and

graphical symbols are very powerful means of transmitting information. One cannot rely

exclusively on unadorned text for capturing the intricacies of real-time systems. We are

 8

compelled by today’s technology, in which visual descriptions play a very important role in

conveying information, to incorporate in our approach forms of graphical representation.

1.2.7 Expressiveness and Modernity

Because we deal with the specification of software systems we are compelled, for reasons

outlined in Subsection 1.1.1, to proceed in an object-oriented manner. We use object-

orientation as the wrapper paradigm of our approach that also incorporates formality and

focuses on real-time issues. The widespread success of this paradigm accounts for our choice,

there is no real competition for objects at this point in time.

1.2.8 Rigor and Precision

Formality or, in other words, mathematical rigor is a condition for dependability and

assurance when dealing with real-time systems. Not only are we convinced that the key parts

of the more complex software specifications should be treated formally, but we make out of

formalisation an important component of our approach.

1.2.9 Refinement

Finally, to supply our approach with the necessary characteristic of “naturalness”

(synonymous to “developer-friendly”) we have included the classical technique of refinement

in the modelling approach proposed (the term is used here in the sense of iterative revision of

the model for gradual improvement, not in the sense of successive detailing of the model up

to executable code). It should be point out that refinement is not used simply as a universal

remedy, but as an important constituent of our approach, as shown in Chapter 7 of the

thesis.

1.3 Challenges

Based on the above-mentioned considerations, our essential goal, stated briefly, is to propose

a new, theoretically sound, yet user-friendly and pragmatic methodological approach for

 9

specifying time-constrained systems. The approach aims at incorporating both object-

oriented principles and formal techniques for describing the software under construction.

We have identified a number of major challenges for our endeavor, as outlined below.

1.3.1 Efficient Combination of Techniques and Notations

There is an apparent dichotomy between graphical (specifically, semi-formal or informal)

and formal techniques for software specifications, but there is also a growing number of

approaches that attempt to integrate them and reap the benefits of both, as shown in

Chapter 4. (To be precise, graphical notations can be formal, as discussed more in Section

2.5 of this thesis, but unless specified otherwise we refer in our dissertation to the larger

category of semi-formal and informal graphical notations –see also the notes on terminology

in Section 1.5). Typically, specification approaches based on semi-formal or informal

graphical representations are designed to provide a user-friendly apparatus for software

development, and focus primarily on suitable methodological steps and on the inclusion of a

an easy to manipulate set of modelling symbols. The concern for rapid development plays an

important role in the definition of such approaches. Conversely, formal techniques are

employed rather as sophisticated tools for demonstrating properties of the systems, and are

generally used only in situations that require special attention, such as safety analysis or

security enforcement. Formal methods can provide greater intellectual control even though,

as pointed out by Gerhart et al., no single method is general enough to completely cover an

application domain, and it is rather unclear how to combine formal methods with other

methods [Gerhart94]. However, as indicated by Perry Alexander, the two types of models,

formal and informal, are not competitive, but complementary [Alexander95]. On the one

hand, graphical models are natural and easy to understand and on the other hand formal

models ensure precise specification and proof capability. The integration of the two models

would combine, as well said by Alexander, “the best of both worlds,” thus offering a solution

for reliable, efficient software development. The challenge remains, obviously, to seamlessly

integrate them in an efficient, unified approach, balanced between formal and informal,

flexible enough to be used for a large class of applications, and able to adapt to various

degrees of rigorousness demands.

 10

1.3.2 Approaching Time-Constrained Systems from an Object-Oriented Perspective

The application of the object-oriented paradigm has been extended relatively recently to the

area of real-time systems (more details are presented in Chapters 2, 3, and 4 of the thesis).

However, there are numerous aspects of such systems that need particular attention when

dealt with from an object-oriented point of view. As pointed out by numerous authors, the

specification of real-time systems using the object paradigm remains an area of ongoing

research [Yang96, Evans99, McUmber99]. The modelling challenges in the case of time-

constrained systems embrace both structural aspects (such as identification and structuring of

classes, establishing relationships, and deciding on object responsibilities) and behavioural

aspects, including message passing, synchronisation, communication, parallel execution and,

of course, capturing of time properties in the form of precise temporal constraints imposed

on the run-time execution of the system.

1.3.3 Developing Mechanisms for Formalisation of Graphical Representations

The translation of models described using a semi-formal graphical representation into their

formal, mathematically sound counterparts has been the object of previous research work, as

presented in more detail in Chapter 4 of the thesis. However, rules for formalisation have

been designed primarily in the context of structured methods, such as SSADM (Structured

Systems Analysis and Design Method) [Pollack92] or the RRT (Rigorous Review

Technique) [Aujla94], while relatively few attempts have targeted the object-oriented

models, and even fewer have been dedicated to the specification of real-time systems. With

the emergence of the modelling standard UML (Unified Modelling Language) [Booch98]

some recent approaches have focused on translating UML notations into formal equivalents

or on employing UML in conjunction with formal notations, as discussed in more detail in

Chapters 3 and 4. Yet, there is still a need for continued work in this new direction,

especially if we take into consideration real-time aspects of the systems.

 11

1.3.4 Rigorous Treatment of Temporal Constraints

In a frequently cited paper, Dasarathy stresses the importance of specialised constructs in

requirements languages for capturing timing constraints [Dasarathy85]. He points out that

temporal restrictions typically considered are performance constraints (placed on the system’s

response) although the same importance should be given to behavioural constraints, which

impose limits on the rate of stimuli on a system. Dealing with time in a rigorous fashion is in

itself a complex problem. Accurately capturing timing properties of systems has been for

some time the subject of considerable research work [Hoare78, Dasarathy85, Ostroff89,

Shaw92, Mathai96, and many others]. However, including temporal aspects in object-

oriented models is an even greater issue, a subject that over the last few years has increasingly

attracted the attention of researchers (examples of research in this direction include

[Vishnuvajjala96], [Selic99a], [Alagar00], and [Kim00b]). We strongly agree with Leung and

Chan that “being such an important notion, time deserves a proper treatment” [Leung96,

pp. 246]. Consequently, we attempt to include in our notation a set of modelling constructs

capable to provide the necessary support for expressing our expectations of punctuality and

collaboration regarding the components of the system being developed.

1.3.5 Provisions for User Acceptance

As previously mentioned, one of our goals is that of understandability and practicality. We

advocate the application of formal techniques in software development, particularly in

software specification, but we are aware that the acceptance of such techniques by the

software development community can be achieved only by proposing a well-defined,

relatively small, yet expressive set of notations, incorporated into a straightforward and easy-

to-follow modelling technique. Therefore, the challenge is to reach the equilibrium between

the true expressiveness of the approach and its apparent complexity, which must not be

perceived as too complicated to its intended users. Of course, it will not be possible to

completely hide the mathematical foundation of the approach behind graphical symbols but,

as pointed out by Gerhart et al., the main challenge for applying formal methods consists not

of teaching the developers the mathematics involved, but of training the users how to model

 12

the systems properly [Gerhart94]. Hence, we need work on the notation, but must not forget

the method.

1.3.6 Tool Support

A recognised issue with the formal techniques in general is the lack of tool support

[Gerhart94, Dill96]. Software tools are necessary for enhanced interaction with the user,

including navigation and visualisation, for type checking, and for reasoning about the

consistency of specifications across larger projects. Also, improved mechanisms of version

control, as well as facilities for maintaining conformance between formal specifications and

their corresponding design rationales are needed [Johnson96]. Consequently, our intention

is to supply the theoretical results of our work with suitable tool support, in the form of an

environment for object-oriented, visual and formal modelling of systems. Even though some

desirable capabilities of this environment, such as formal proof and animation, would not be

included in our tool at this stage (such features would require separate, complex research

investigations) our intention is to include sufficient functionality in the tool to illustrate the

practicality of our approach.

1.3.7 Capability of Extension

Even though potentially very rewarding, dealing with formal aspects at the specification level

must be seen only as a starting point towards the application of the proposed dual approach,

formal and semi-formal, to the entire software development process. We would like to see

beyond the present dissertation and leave the door open for potential extensions beyond the

modelling phase, for instance for prototyping and simulation, refinement to executable code,

specification based testing, and formally-conducted maintenance. In practical terms, the

challenge is that both the notation and the deliverables of our specification approach should

be ready for use in subsequent software development phases as well as in association with

alternative software construction techniques and tools.

 13

1.4 Notes on Terminology

Before outlining the approach proposed in this thesis several notes on terminology are

necessary.

First of all, we rely on Fraser et al. to distinguish between formal, semi-formal, and informal

specification techniques [Fraser94]. Specifically, informal techniques, represented by natural

language and unstructured pictures, “do not have complete sets of rules to constrain the

models that can be created,” semi-formal techniques have well-defined syntax and their

“typical instances are diagrammatic techniques with precise rules that specify conditions

under which constructs are allowed and textual and graphical descriptions with limited

checking facilities,” while formal techniques, such as specification languages based on

predicate logic, have precise syntax and semantics and “there is an underlying model against

which a description expressed in a mathematical notation can be verified.” [Fraser94, pp.

79].

Secondly, as many other authors, for instance [Spivey92] and [France97], we use the term

notation as a substitute for language, although rigorously speaking notation refers only to the

set of symbols belonging to the language. This commonly used promotion of the term helps

avoiding tedious repetitions and simplifies the discourse of the thesis.

Thirdly, we use the word specification in the sense defined by Alan Davis, that of a

document containing a description (in our case, of the software under construction).

According to this definition, one can use terms such as requirements specification, design

specification, or test specification [Davis93, pp. 372].

Fourthly, the word modelling, which also appears in the title of our thesis, is used to denote

the activity of creating a model; that is, of developing a representation of the real thing

(which, again, in our case is the software system being built). We see the two concepts,

specification and modelling, closely connected and the difference between them of rather

 14

fine nuance. Specification, in our view, is a description that may propose a model, while a

model, in its analytical form, is recorded in a specification (for the sake of completeness,

generally speaking a specification may not contain a model and a model may not have a

specification). In our approach the distinction between specification and modelling is

especially difficult to highlight; using well-established terminology, we employ the modelling

notation UML and a variant of the specification language Z to create object-oriented models

of the system, described in documents (specifications) that encompass both analysis and

design aspects.

Finally, we use the term time-constrained systems (TCS) as an alternative to real-time or

reactive systems in order to emphasise the temporal restrictions imposed on such systems and

to shift the focus from specialised, less approachable products confined to rather restricted

domains (military, nuclear energy generation, or medical devices), to more accessible

products such as operating systems, transaction processing systems, cellular phones, and

microwave oven controllers. In our view, one can consider the term time-constrained systems

a substitute for both hard and soft real-time systems –a substitute that stresses the

importance of timing properties that characterise these systems. Nevertheless, in order to

avoid repetitions and employ recognised terminology when necessary, the terms time-

constrained systems and real-time systems are used interchangeably in this thesis.

1.5 The Proposed Approach

This thesis is about the integration of semi-formal, graphical representations with formal

notations within a modelling approach aimed at the construction of time-constrained

systems. We believe that the two types of notation, graphical (semi-formal) and, respectively,

formal, can efficiently complement each other and provide the basis for a software

specification approach that can be both rigorous and practical. The former notations, relying

on graphical symbols and diagrams, bring the “power of pictures,” which manifests through

better representation of abstractions and higher expressiveness. The latter notations, precise,

based on mathematics, increase the developer’s assurance and intellectual control and make

possible automated synthesis and verification. Although many authors have envisaged the

 15

advantages of combining informality with formality in software construction, there are very

few reports that address the problem within the context of object-orientation and project its

solution over the canvas of TCS modelling.

The pillars of our approach are the following: the combination of formal and semi-formal

notations for specification purposes, the integration into an object-oriented approach of

modelling capabilities that target properties of TCS, the elaboration of detailed translation

algorithms from diagrammatic representations to formal specifications, and the proposal of a

procedural frame for effective and reliable development of TCS. Principles and an outline for

the reverse translation, from formal specifications to graphical representations, an auxiliary

process intended to support the understanding of the system’s model by developers and users

not trained in formal methods, are also included in the approach.

While the graphical notation employed is a subset of the UML, the formal notations used are

Lano and Haughton’s Z++ object-oriented variant of Z [Lano91, Lano94a, Lano95] and

Jahanian and Mok’s Real Time Logic [Jahanian86, Jahanian94]. Both structural and

dynamic aspects of the system are considered and a new modelling element, denoted class

compound and consisting of a simple yet practical aggregation of the UML class and state

diagram constructs, is proposed in order to facilitate the specification process.

From a methodological point of view, after several UML-based modelling steps are

completed the formalisation process can take place, the result being a formal specification

derived from the graphical representations obtained in the earlier steps. The integrated, semi-

formal and formal model of the system can be subsequently enhanced while the designed

translation mechanisms allow changes in the graphical representations to be reflected into the

formal specifications as well as modifications of the formal specifications to be fed back into

the diagrammatic descriptions of the system.

A case study, an Elevator System, is included in the thesis to illustrate the application of the

proposed approach and the GUI-centred design of Harmony, an integrated specification

environment intended to support the approach, is also presented.

 16

Although we believe the proposed approach offers a viable solution for modelling software

systems, it has nevertheless a number of limitations that need be pointed out. Firstly, the

translation of UML constructs is restricted to a subset of the notation, and the treatment of

state diagrams is confined to sequential, non-composite executions (composite states and

aspects related to concurrency are not covered), which reduces the applicability of the

translation algorithms to modelling TCS. Secondly, although temporal constraints can be

attached to structural UML constructs in the regular way (using UML time marks, time

expressions, and timing constraints –see Table 3.VI for details), we have not tackled their

mechanised translation to Z++, and there is a limited incorporation of such constraints in the

state diagrams employed. More precisely, the timing information pertaining to state

diagrams considered in the formalisation process is only in the form of bounds [lower, upper]

included in the label of transitions and in the form of transition triggers of the kind passage

of time events (all other sorts of temporal constraints need be added manually by the Z++

specifier). Thirdly, the formal language employed, Z++, is currently lacking in supporting

tools, which can be an impediment to the use of the proposed approach in industrial

applications (our Harmony tool is not yet implemented, and we have not intended to deal

with tool-supported formal analysis and formal refinement in the present thesis). In fact, we

are aware of tools for Z++ only via [Lano94d], in which it is mentioned that such tools have

been written in Quintus Prolog and ProWindows, but we have not investigated the possible

connection of our approach to these tools. Fourthly, for the formalisation algorithms a set of

rules for well-formedness and a set of principles for translation are given without using meta-

models for UML and Z++/RTL, yet the use of these meta-models would have probably

allowed a more concise and precise description of the algorithms. Also, there are a number

of issues related to the application of the formalisation and deformalisation algorithms,

indicated in Section 6.6, that deserve further investigation and require additional work.

However, our belief is that, through future work, the above limitations can be overcome and

our proposal can thus become a stronger contender in the landscape of object-oriented

approaches for modelling TCS.

 17

1.6 Overview of the Thesis

The present thesis, in its remaining chapters, is organised as follows. Chapter 2, Background:

Context and Concepts, defines the space of our research, localises in this space the topic of

our dissertation, and presents the most significant aspects of the “domains” that belong to

the space of our investigation. The distinguishing characteristics of real-time systems are

examined, essential object-oriented principles and concepts are surveyed, observations on the

value of graphical notations are presented, and the utilisation of formal methods in software

development is discussed. In Chapter 3, Background: Notations, the focus is shifted from

general concepts to the two particular specification languages employed in our integrated

approach. A description of the specification language Z is given, together with a short

presentation of some of Z’s variants. In particular, Z++, the object-oriented variant of Z used

in the proposed approach is briefly introduced. Also, an overview of UML, including its

capability for modelling real-time systems, as well as a look on UML’s perspectives are

included. A survey of reported research that is similar to ours is taken in Chapter 4, Related

Work. In this chapter, the major ways of integrating informality with formality in the

specification phase are identified, related approaches focused on real-time systems are

examined, and existing ways of dealing with time in Z-based approaches are discussed.

Details on the formal resources employed for dealing with time in a rigorous manner are

presented in Chapter 5, Formal Specification of Temporal Constraints. This chapter

includes a section on the major types of timing constraints that are considered when

modelling time-constrained systems and gives details on the specific RTL constructs

employed for capturing time-related properties of the systems. Details on the translation

processes from UML class diagrams to Z specifications, including the automated

formalisation of classes, relationships, and state diagrams are given in Chapter 6, Translations

between UML and Z++: Formalisation and Deformalisation. Guidelines for completing the

reverse translation, from Z++ to UML, are also suggested in this chapter. Chapter 7, A

Procedural Frame, brings the translation mechanisms proposed in the previous chapter under

the methodological umbrella of a complete modelling approach. The proposed dual (semi-

formal and formal) modelling process is detailed through a series of steps organised in stages,

 18

in each step a set of artefacts being produced, making up the combined diagrammatic and

formal model of the system. An illustration of applying the proposed dual, integrated

approach to modelling time-constrained systems is provided in Chapter 8, An Application:

The Case of the Elevator System. Since any new methodological approach for software

development is best served by an accompanying tool, Chapter 9, Towards an Integrated

Environment: A Prototype for Harmony, presents the GUI-centred design of the software

specification environment that we have envisaged as supporting tool for the proposed

modelling approach. Finally, Chapter 10, Conclusions, analyses the merits and limitations of

our approach, presents a summary of our contributions, and opens a window to the future

by pointing to a series of connected research directions that we believe deserve further

investigation.

1.7 Chapter Summary

In this chapter we have taken a view on the big picture, that of today’s computer-related

technologies, and introduced the larger scene of our research. We have explained the

motivations of our endeavor, pointed out the major challenges related to our work, and

outlined the proposed dual, integrated formal/semi-formal software specification approach.

This approach, aimed at the development of time-constrained systems, has the main goal of

harmoniously integrating graphical (semi-formal) and mathematical notations in a

theoretically sound, yet friendly, flexible, and easy-to-use software specification

methodology. An overview of the chapters that follow has been presented as well. In this

initial chapter a brief analysis of three major paradigms that pervade today’s software

development world was also included. We believe that the foundation for sound, effective

improvements of software development methodologies resides in the right combination of

the three paradigms, object-orientation, formal specification, and visual representation. At

the convergence of these powerful paradigms we place the topic of our thesis.

