Database Management Systems
CS 457

Lecture 8: Design Theory
Database Design Process

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema

CS 457 - Fall 2018
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city.

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?
Relational Schema Design

Anomalies:
- **Redundancy** = repeat data
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone numbers?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how ?)
- Easy to delete all Joe’s phone numbers (how ?)
Relational Schema Design (or Logical Design)

How do we do this systematically?

• Start with some relational schema

• Find out its functional dependencies (FDs)

• Use FDs to normalize the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

\(A_1 \ldots A_n \) determines \(B_1 \ldots B_m \)
Functional Dependencies (FDs)

Definition
\(A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \) holds in \(R \) if:

\[
\forall t, t' \in R, \\
(t.A_1 = t'.A_1 \land \ldots \land t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \land \ldots \land t.B_n = t'.B_n)
\]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(A_1)</th>
<th>(\ldots)</th>
<th>(A_m)</th>
<th>(B_1)</th>
<th>(\ldots)</th>
<th>(B_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(t')</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

 jika \(t, t' \) agree here then \(t, t' \) agree here

CS 457 - Fall 2018
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID → Name, Phone, Position
Position → Phone
but not Phone → Position
Logical equivalence
- \((A \rightarrow B)\) means \((\text{Not } A \text{ or } B)\)
 - Truth table
 - Discrete math class?
 - \(A, B, A\rightarrow B, \text{Not } A \text{ or } B\)
 - \(T, T, T, T\)
 - \(T, F, F, F\)
 - \(F, T, T, T\)
 - \(F, F, T, T\)
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position ➔ Phone
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Do all the FDs hold on this instance?

name \rightarrow color
category \rightarrow department
color, category \rightarrow price
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Black</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-supp.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?

- name: Gizmo
- category: Stationary
- color: Green
- department: Office-supp.
- price: 59

Note:
- name → color
- category → department
- color, category → price
Terminology

• FD **holds** or **does not hold** on an instance

• If we can be sure that *every instance of R* will be one in which a given FD is true, then we say that **R satisfies the FD**

• If we say that R satisfies an FD F, we are stating a constraint on R
An Interesting Observation

If all these FDs are true:

- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

Then this FD also holds:

- name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Closure of a set of Attributes

Given a set of attributes \(A_1, \ldots, A_n \)

The **closure**, \(\{A_1, \ldots, A_n\}^+ \) = the set of attributes \(B \) s.t. \(A_1, \ldots, A_n \rightarrow B \)

Example:
1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

Closures:
- \(\text{name}^+ = \{\text{name, color}\} \)
- \(\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\} \)
- \(\text{color}^+ = \{\text{color}\} \)
Closure Algorithm

\(X = \{A_1, \ldots, A_n\} \).

Repeat until \(X \) doesn’t change do:

if \(B_1, \ldots, B_n \rightarrow C \) is a FD and
\(B_1, \ldots, B_n \) are all in \(X \)
then add \(C \) to \(X \).

Example:

1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

\{name, category\}^+ =
\{ name, category, color, department, price \}

Hence: name, category \(\rightarrow \) color, department, price
Example

In class:

R(A,B,C,D,E,F)

Compute \(\{A,B\}^+ \) \(X = \{A, B, \} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, \} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{array}{ll}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B \\
\end{array}
\]

Compute \{A,B\}⁺ \(X = \{A, B, C, D, E\} \)

Compute \{A, F\}⁺ \(X = \{A, F,\} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, B, C, D, E\} \)
Example

In class:

\[R(A, B, C, D, E, F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \{A, B\} \+ X = \{A, B, C, D, E\}

Compute \{A, F\} \+ X = \{A, F, B, C, D, E\}

Which is the key of R?
Practice at Home

Find all FD’s implied by:

\[A, B \rightarrow C \]
\[A, D \rightarrow B \]
\[B \rightarrow D \]
Practice at Home

Find all FD’s implied by:

\[
\begin{array}{c}
A, B \rightarrow C \\
A, D \rightarrow B \\
B \rightarrow D
\end{array}
\]

Step 1: Compute \(X^+\), for every \(X\):

\[
\begin{align*}
AB^+ &= ABCD, & AC^+ &= AC, & AD^+ &= ABCD, & B^+ &= BCD, & BD^+ &= BD, & CD^+ &= CD \\
ABC^+ &= ABD^+ = ACD^+ = ABCD \text{ (no need to compute– why ?)} \\
BCD^+ &= BCD, & ABCD^+ &= ABCD
\end{align*}
\]

Step 2: Enumerate all FD’s \(X \rightarrow Y\), s.t. \(Y \subseteq X^+\) and \(X \cap Y = \emptyset\):

\[
\begin{align*}
AB \rightarrow CD, & \quad AD \rightarrow BC, & \quad ABC \rightarrow D, & \quad ABD \rightarrow C, & \quad ACD \rightarrow B
\end{align*}
\]
Keys

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$

- A **key** is a minimal superkey
 - A superkey and for which no subset is a superkey
Computing (Super)Keys

• For all sets X, compute X^+

• If $X^+ = \text{[all attributes]}$, then X is a superkey

• Try only the minimal X’s to get the key
Example

Product(name, price, category, color)

name, category → price
category → color

What is the key?
Example

Product(name, price, category, color)

What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys?

Can we have more than one key?

Given $R(A,B,C)$ define FD’s s.t. there are two or more keys.
Key or Keys?

Can we have more than one key?

Given $R(A,B,C)$ define FD’s s.t. there are two or more keys

- $A \rightarrow B$
- $B \rightarrow C$
- $C \rightarrow A$

or

- $A \rightarrow BC$
- $B \rightarrow AC$
- $AB \rightarrow C$
- $BC \rightarrow A$

What are the keys here?
Eliminating Anomalies

Main idea:

• \(X \rightarrow A \) is OK if \(X \) is a (super)key

• \(X \rightarrow A \) is not OK otherwise
 – Need to decompose the table, but how?

Boyce-Codd Normal Form
Boyce-Codd Normal Form

Dr. Raymond F. Boyce
Edgar Frank “Ted” Codd

"A Relational Model of Data for Large Shared Data Banks"
There are no “bad” FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:

\[\forall X, \text{ either } X^+ = X \text{ or } X^+ = [\text{all attributes}] \]
BCNF Decomposition Algorithm

Normalize(R)

 find X s.t.: X ≠ X⁺ and X⁺ ≠ [all attributes]

 if (not found) then “R is in BCNF”

 let Y = X⁺ - X; Z = [all attributes] - X⁺

 decompose R into R1(X ∪ Y) and R2(X ∪ Z)

 Normalize(R1); Normalize(R2);
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

The only key is: \{SSN, PhoneNumber\}
Hence \(SSN \rightarrow \text{Name, City}\) is a “bad” dependency

In other words:
\(SSN^{+} = \text{SSN, Name, City}\) and is neither SSN nor All Attributes
Example BCNF Decomposition

Let's check anomalies:
- Redundancy?
- Update?
- Delete?
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Find X s.t.: $X \neq X^+$ and $X^+ \neq \{\text{all attributes}\}$
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
 SSN → name, age
 age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
 Hair(age, hairColor)
 Phone(SSN, phoneNumber)

Find X s.t.: X ≠ X+ and X+ ≠ [all attributes]
Example: BCNF

\[
\begin{align*}
 A & \rightarrow B \\
 B & \rightarrow C \\
\end{align*}
\]
Example: BCNF

Recall: find X s.t.
$X \subsetneq X^+ \subsetneq \text{[all-attrs]}$

$R(A,B,C,D)$
Example: BCNF

$$R(A, B, C, D)$$

$$A^+ = ABC \neq ABCD$$
Example: BCNF

R(A, B, C, D)

A → B
B → C

A^+ = ABC ≠ ABCD

R(A, B, C, D)

R_1(A, B, C)

R_2(A, D)
Example: BCNF

R(A,B,C,D)

A → B
B → C

R(A,B,C,D)
A^+ = ABC ≠ ABCD

R_1(A,B,C)
B^+ = BC ≠ ABC

R_2(A,D)
Example: BCNF

\[R(A,B,C,D) \]
\[A^+ = ABC \neq ABCD \]

\[R_1(A,B,C) \]
\[B^+ = BC \neq ABC \]

\[R_{11}(B,C) \]
\[R_{12}(A,B) \]

\[R_2(A,D) \]

What are the keys?

What happens if in \(R \) we first pick \(B^+ \)? Or \(AB^+ \)?
Decompositions in General

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

\[S_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \]

\[S_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \]

\[S_1 = \text{projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]

\[S_2 = \text{projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]