Database Management Systems
CS 457

Lecture 9: Design Theory
Database Design Process

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city.

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies:
- **Redundancy** = repeat data
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone numbers?
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how ?)
- Easy to delete all Joe’s phone numbers (how ?)
Relational Schema Design (or Logical Design)

How do we do this systematically?

• Start with some relational schema

• Find out its functional dependencies (FDs)

• Use FDs to normalize the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

\(A_1 \ldots A_n \text{ determines } B_1 \ldots B_m \)
Functional Dependencies (FDs)

Definition \(A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \) holds in \(R \) if:

\[
\forall t, t' \in R, \\
(t.A_1 = t'.A_1 \land \ldots \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land \ldots \land t.B_n = t'.B_n)
\]

<table>
<thead>
<tr>
<th>R</th>
<th>A_1</th>
<th>...</th>
<th>A_m</th>
<th>B_1</th>
<th>...</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \(t, t' \) agree here then \(t, t' \) agree here
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID → Name, Phone, Position
Position → Phone
but not Phone → Position
Side Note

• Logical equivalence
 – (A -> B) v.s. (Not A or B)
 • Truth table (discrete math class?)
 – A, B, A->B, Not A or B
 – T, T, T, T
 – T, F, F, F
 – F, T, T, T
 – F, F, T, T
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position ➔ Phone
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Do all the FDs hold on this instance?

- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Black</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-supp.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
Terminology

- FD **holds** or **does not hold** on an instance

- If we can be sure that *every instance of R* will be one in which a given FD is true, then we say that **R satisfies the FD**

- If we say that R satisfies a FD F, we are **stating a constraint on R**
An Interesting Observation

If all these FDs are true:

- name → color
- category → department
- color, category → price

Then this FD also holds:

- name, category → price

If we find out from application domain that a relation satisfies some FDs, it doesn’t mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n.

The closure, $\{A_1, \ldots, A_n\}^+ = \{B \mid A_1, \ldots, A_n \rightarrow B\}$

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

$name^+ = \{\text{name, color}\}$

$\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$

$\text{color}^+ = \{\text{color}\}$
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn’t change do:
 if B₁, ..., Bₙ → C is a FD and
 B₁, ..., Bₙ are all in X
 then add C to X.

Example:

1. name → color
2. category → department
3. color, category → price

\{name, category\}⁺ =
{ name, category, color, department, price }

Hence: name, category → color, department, price
Example

In class:

\[R(\text{A, B, C, D, E, F}) \]

\[
\begin{align*}
\text{A, B} & \rightarrow \text{C} \\
\text{A, D} & \rightarrow \text{E} \\
\text{B} & \rightarrow \text{D} \\
\text{A, F} & \rightarrow \text{B}
\end{align*}
\]

Compute \(\{\text{A, B}\}^+ \) \(X = \{\text{A, B}, \text{C}\} \)

Compute \(\{\text{A, F}\}^+ \) \(X = \{\text{A, F}, \text{B}\} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, \} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, B, C, D, E\} \)
Example

In class:

\[R(\text{A,B,C,D,E,F}) \]

\[
\begin{align*}
\text{A, B} & \rightarrow \text{C} \\
\text{A, D} & \rightarrow \text{E} \\
\text{B} & \rightarrow \text{D} \\
\text{A, F} & \rightarrow \text{B}
\end{align*}
\]

Compute \(\{\text{A,B}\}^+ \quad X = \{\text{A, B, C, D, E}\} \)

Compute \(\{\text{A, F}\}^+ \quad X = \{\text{A, F, B, C, D, E}\} \)

What is the key of \(R \)?
Practice at Home

Find all FD’s implied by:

- A, B → C
- A, D → B
- B → D
Practice at Home

Find all FD’s implied by:

\[
\begin{aligned}
A, B &\rightarrow C \\
A, D &\rightarrow B \\
B &\rightarrow D
\end{aligned}
\]

Step 1: Compute X^+, for every X:

\[
\begin{aligned}
A^+ &= A, \\
B^+ &= BD, \\
C^+ &= C, \\
D^+ &= D \\
AB^+ &= ABCD, \\
AC^+ &= AC, \\
AD^+ &= ABCD, \\
BC^+ &= BCD, \\
BD^+ &= BD, \\
CD^+ &= CD \\
ABC^+ &= ABD^+ = ACD^+ = ABCD (\text{no need to compute– why ?})
\end{aligned}
\]

Step 2: Enumerate all FD’s $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

\[
\begin{aligned}
AB &\rightarrow CD, \\
AD &\rightarrow BC, \\
ABC &\rightarrow D, \\
ABD &\rightarrow C, \\
ACD &\rightarrow B
\end{aligned}
\]
Keys

- A **superkey** is a set of attributes A_1, \ldots, A_n s.t. for any other attribute B, we have $A_1, \ldots, A_n \rightarrow B$

- A **key** is a minimal superkey
 - A superkey and for which no subset is a superkey
Computing (Super)Keys

- For all sets X, compute X^+
 - “set”: a combination of elements from attributes
- If $X^+ = \{\text{all attributes}\}$, then X is a superkey
- Try only the minimal X’s to get the key
Example

Product(name, price, category, color)

name, category → price
category → color

What is the key?
Example

Product(name, price, category, color)

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys ?

Can we have more than one key ?

Given $R(A,B,C)$ define FD’s s.t. there are two or more keys
Key or Keys?

Can we have more than one key?

Given $R(A,B,C)$ define FD’s s.t. there are two or more keys:

- $A \rightarrow B$
- $B \rightarrow C$
- $C \rightarrow A$

or

- $AB \rightarrow C$
- $BC \rightarrow A$

or

- $A \rightarrow BC$
- $B \rightarrow AC$

What are the keys here?
Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

• $X \rightarrow A$ is not OK otherwise
 – Need to decompose the table, but how?

Boyce-Codd Normal Form
Boyce-Codd Normal Form

Dr. Raymond F. Boyce
IBM Research, 1970’s
Edgar Frank “Ted” Codd

"A Relational Model of Data for Large Shared Data Banks"
Boyce-Codd Normal Form

There are no “bad” FDs:

Definition. A relation R is in BCNF if:
Whenever \(X \rightarrow B \) is a non-trivial dependency, then \(X \) is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:
\[\forall X, \text{ either } X^+ = X \text{ or } X^+ = [\text{all attributes}] \]
BCNF Decomposition Algorithm

Normalize(R)
 find X s.t.: X ≠ X^+ and X^+ ≠ [all attributes]
 if (not found) then “R is in BCNF”
 let Y = X^+ - X; Z = [all attributes] - X^+
 decompose R into R1(X ∪ Y) and R2(X ∪ Z)
 Normalize(R1); Normalize(R2);
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

The only key is: \{SSN, PhoneNumber\}

Hence \(SSN \rightarrow \text{Name, City}\) is a “bad” dependency.

In other words:
\[SSN^+ = \text{SSN, Name, City}\] and is neither \(SSN\) nor All Attributes.
Example BCNF Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Let’s check anomalies:
- Redundancy?
- Update?
- Delete?
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Find X s.t.: $X \neq X^+$ and $X^+ \neq$ [all attributes]
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into:
\[
\text{P}(\text{SSN, name, age, hairColor})
\]
\[
\text{Phone}(\text{SSN, phoneNumber})
\]

Iteration 2: P: age+ = age, hairColor
Decompose:
\[
\text{People}(\text{SSN, name, age})
\]
\[
\text{Hair}(\text{age, hairColor})
\]
\[
\text{Phone}(\text{SSN, phoneNumber})
\]
Example: BCNF

R(A,B,C,D)

R(A,B,C,D)

A -> B
B -> C
Example: BCNF

Recall: find X s.t. $X \not\subseteq X^+ \subseteq \text{[all-attrs]}$

$R(A, B, C, D)$

$A \rightarrow B$

$B \rightarrow C$
Example: BCNF

$R(A,B,C,D)$

$A^+ = ABC \neq ABCD$

$A \rightarrow B$

$B \rightarrow C$
Example: BCNF

R(A, B, C, D)

A → B
B → C

A+ = ABC ≠ ABCD

R(A, B, C, D)

R₁(A, B, C)

R₂(A, D)
Example: BCNF

R(A,B,C,D)

A^+ = ABC \neq ABCD

R_1(A,B,C)
B^+ = BC \neq ABC

R_2(A,D)

A \rightarrow B
B \rightarrow C
$R(A, B, C, D)$

Example: BCNF

$A \rightarrow B$

$B \rightarrow C$

$R(A, B, C, D)$

$A^+ = ABC \neq ABCD$

$R_1(A, B, C, D)$

$B^+ = BC \neq ABC$

$R_1(A, B, C)$

$R_1 (A, D)$

$R_{11}(B, C)$

$R_{12}(A, B)$

$R_{11}(B, C)$

$R_{12}(A, B)$

What happens if in R we first pick B^+? Or AB^+?
Decompositions in General

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

\[S_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \]

\[S_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \]

\[S_1 = \text{projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]

\[S_2 = \text{projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]
Lossless Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

- **Name**
- **Price**
- **Category**

- **Name**
- **Price**

- **Name**
- **Category**

Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

CS 457 - Spring 2018
Lossy Decomposition

What is lossy here?

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossy Decomposition

Table 1: Product Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Table 2: Product Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Table 3: Product Prices

<table>
<thead>
<tr>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Decomposition in General

Let:

- $S_1 = \text{projection of } R \text{ on } A_1, ..., A_n, B_1, ..., B_m$
- $S_2 = \text{projection of } R \text{ on } A_1, ..., A_n, C_1, ..., C_p$

The decomposition is called \textit{lossless} if $R = S_1 \bowtie S_2$

Fact: If $A_1, ..., A_n \rightarrow B_1, ..., B_m$ then the decomposition is lossless

It follows that every BCNF decomposition is lossless
Schema Refinements
= Normal Forms

• 1st Normal Form = all tables are flat
 – No nested attributes…
• 2nd Normal Form = obsolete
• Boyce Codd Normal Form = no bad FDs
• 3rd Normal Form = see book
 – BCNF is lossless but can cause loss of ability to check some FDs
 – 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies
How to split relations in SQL?
Views

• A view in SQL =
 – A table computed from other tables, s.t., whenever
 the base tables are updated, the view is updated too

• More generally:
 – A view is derived data that keeps track of changes
 in the original data

• Compare:
 – A function computes a value from other values, but
 does not keep track of changes to the inputs
A Simple View

Create a view that returns for each store the prices of products purchased at that store

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

This is like a new table StorePrice(store, price)
We Use a View Like Any Table

- A "high end" store is a store that sell some products over 1000.
- For each customer, return all the high end stores that they visit.

```
SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
AND v.price > 1000
```
Types of Views

• **Virtual views**
 – Computed only on-demand – slow at runtime
 – Always up to date

• **Materialized views**
 – Pre-computed offline – fast at runtime
 – May have stale data (must recompute or update)
 – Indexes are materialized views

• A key component of physical tuning of databases is the selection of materialized views and indexes
Vertical Partitioning

Resumes Table

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Resume</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Huston</td>
<td>Clob1…</td>
<td>Blob1…</td>
</tr>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
<td>Clob2…</td>
<td>Blob2…</td>
</tr>
<tr>
<td>345343</td>
<td>Joan</td>
<td>Seattle</td>
<td>Clob3…</td>
<td>Blob3…</td>
</tr>
<tr>
<td>432432</td>
<td>Ann</td>
<td>Portland</td>
<td>Clob4…</td>
<td>Blob4…</td>
</tr>
</tbody>
</table>

T1 Table

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Huston</td>
</tr>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T2 Table

<table>
<thead>
<tr>
<th>SSN</th>
<th>Resume</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Clob1…</td>
</tr>
<tr>
<td>345345</td>
<td>Clob2…</td>
</tr>
</tbody>
</table>

T3 Table

<table>
<thead>
<tr>
<th>SSN</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Blob1…</td>
</tr>
<tr>
<td>345345</td>
<td>Blob2…</td>
</tr>
</tbody>
</table>

T2. SSN is a key and a foreign key to **T1**. SSN. Same for **T3**. SSN
Vertical Partitioning

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1, T2, T3
 WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn
Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture
FROM T1, T2, T3
WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn

SELECT address
FROM Resumes
WHERE name = 'Sue'
Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address, T2.resume, T3.picture
FROM T1, T2, T3
WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn

SELECT address
FROM Resumes
WHERE name = 'Sue'

Original query:

SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = 'Sue'
AND T1.SSN = T2.SSN
AND T1.SSN = T3.SSN
Vertical Partitioning

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1, T2, T3
 WHERE T1.ssn = T2.ssn AND T1.ssn = T3.ssn

SELECT address
FROM Resumes
WHERE name = 'Sue'

Modified query:

SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = 'Sue'
 AND T1.SSN = T2.SSN
 AND T1.SSN = T3.SSN

Final query:

SELECT T1.address
FROM T1
WHERE T1.name = 'Sue'
Vertical Partitioning Applications

1. Advantages
 - Speeds up queries that touch only a small fraction of columns
 - Single column can be compressed effectively, reducing disk I/O

1. Disadvantages
 - Updates are expensive!
 - Need many joins to access many columns
 - Repeated key columns add overhead
Horizontal Partitioning

Customers

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Houston</td>
</tr>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
</tr>
<tr>
<td>345343</td>
<td>Joan</td>
<td>Seattle</td>
</tr>
<tr>
<td>234234</td>
<td>Ann</td>
<td>Portland</td>
</tr>
<tr>
<td>--</td>
<td>Frank</td>
<td>Calgary</td>
</tr>
<tr>
<td>--</td>
<td>Jean</td>
<td>Montreal</td>
</tr>
</tbody>
</table>

CustomersInHouston

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>234234</td>
<td>Mary</td>
<td>Houston</td>
</tr>
</tbody>
</table>

CustomersInSeattle

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>345345</td>
<td>Sue</td>
<td>Seattle</td>
</tr>
<tr>
<td>345343</td>
<td>Joan</td>
<td>Seattle</td>
</tr>
</tbody>
</table>

...
Horizontal Partitioning

CREATE VIEW Customers AS
 CustomersInHouston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

CustomersInHouston(ssn, name, city)
CustomersInSeattle(ssn, name, city)
Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = 'Seattle'

Which tables are inspected by the system?
-- All
Horizontal Partitioning Applications

- Performance optimization
 - Especially for data warehousing
 - E.g. one partition per month

- Distributed and parallel databases

- Data integration