Database Management Systems
CS 457

Lecture 8: Design Theory
Logistics

• HW1
 • Progress?
 • Demo on 2/22
• Next lecture (2/22), Nevada Bound in Sacramento
 • TA
 • HW1 review
 • HW2 preview
 • Database architecture and storage
Database Design Process

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Physical storage details

Conceptual Schema

Physical Schema
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city.

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?
Relational Schema Design

Anomalies:
- **Redundancy** = repeat data
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone numbers?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how ?)
- Easy to delete all Joe’s phone numbers (how ?)
Relational Schema Design
(or Logical Design)

How do we do this systematically?

• Start with some relational schema

• Find out its *functional dependencies* (FDs)

• Use FDs to *normalize* the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

\[A_1\ldots A_n \text{ determines } B_1\ldots B_m \]
Functional Dependencies (FDs)

Definition \(A_1, ..., A_m \rightarrow B_1, ..., B_n \) holds in \(R \) if:

\[
\forall t, t' \in R, \\
(t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)
\]

<table>
<thead>
<tr>
<th>R</th>
<th>A_1</th>
<th>...</th>
<th>A_m</th>
<th>B_1</th>
<th>...</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- If \(t, t' \) agree here then \(t, t' \) agree here.
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID → Name, Phone, Position
Position → Phone
but not Phone → Position
Side Note

• Logical equivalence
 – \((A \rightarrow B)\) means \((\neg A \lor B)\)
 • Truth table
 • Discrete math class?
 – A, B, A->B, Not A or B
 – T, T, T, T
 – T, F, F, F
 – F, T, T, T
 – F, F, T, T
<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

\[\text{Position} \rightarrow \text{Phone} \]
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Do all the FDs hold on this instance?

name \rightarrow color
category \rightarrow department
color, category \rightarrow price
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Black</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-supp.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
Terminology

- FD **holds** or **does not hold** on an instance

- If we can be sure that *every instance of* \(R \) *will be one in which a given FD is true*, then we say that \(R \) **satisfies the FD**

- If we say that \(R \) satisfies an FD \(F \), we are **stating a constraint on** \(R \)
An Interesting Observation

If all these FDs are true:

- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

Then this FD also holds:

- name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn’t mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Closure of a set of Attributes

Given a set of attributes \(A_1, \ldots, A_n \)

The closure, \(\{A_1, \ldots, A_n\}^+ \) = the set of attributes B
s.t. \(A_1, \ldots, A_n \rightarrow B \)

Example:
1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

Closures:
\[
\begin{align*}
\text{name}^+ &= \{\text{name, color}\} \\
\{\text{name, category}\}^+ &= \{\text{name, category, color, department, price}\} \\
\text{color}^+ &= \{\text{color}\}
\end{align*}
\]
Closure Algorithm

\[X = \{A_1, \ldots, A_n\} \]

\textbf{Repeat until} \(X \) doesn’t change \textbf{do:}
\textbf{if} \(B_1, \ldots, B_n \rightarrow C \) \textbf{is a FD and} \(B_1, \ldots, B_n \) \textbf{are all in} \(X \)
\textbf{then} \(\text{add} \ C \text{ to} \ X \).

\textbf{Example:}

1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

\[\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\} \]

\textbf{Hence:} \hspace{1cm} \text{name, category} \rightarrow \text{color, department, price}
Example

In class:

\[R(A,B,C,D,E,F) \]

\[\text{Compute \{A,B\}+ X = \{A, B, } \]

\[\text{Compute \{A, F\}+ X = \{A, F, } \]

\[\text{A, B } \rightarrow \text{ C} \]
\[\text{A, D } \rightarrow \text{ E} \]
\[\text{B } \rightarrow \text{ D} \]
\[\text{A, F } \rightarrow \text{ B} \]
Example

In class:

\[R(A, B, C, D, E, F) \]

\[\{A, B\}^+ \] \[X = \{A, B, C, D, E\} \]

\[\{A, F\}^+ \] \[X = \{A, F, \} \]
Example

In class:

\[R(A,B,C,D,E,F) \]

Compute \{A,B\}^+ \quad X = \{A, B, C, D, E\}

Compute \{A, F\}^+ \quad X = \{A, F, B, C, D, E\}
Example

In class:

\[R(A,B,C,D,E,F) \]

Compute \(\{A,B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, B, C, D, E\} \)

What is the key of \(R \)?
Practice at Home

Find all FD’s implied by:

A, B → C
A, D → B
B → D
Practice at Home

Find all FD’s implied by:

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow B \\
B & \rightarrow D
\end{align*}
\]

Step 1: Compute \(X^+\), for every \(X\):

\[
\begin{align*}
A^+ &= A, \quad B^+ = BD, \quad C^+ = C, \quad D^+ = D \\
AB^+ &= ABCD, \quad AC^+ = AC, \quad AD^+ = ABCD, \\
&\quad \quad \quad \quad \quad \quad \quad BC^+ = BCD, \quad BD^+ = BD, \quad CD^+ = CD \\
ABC^+ &= ABD^+ = ACD^+ = ABCD \text{ (no need to compute– why ?)} \\
BCD^+ &= BCD, \quad ABCD^+ = ABCD
\end{align*}
\]

Step 2: Enumerate all FD’s \(X \rightarrow Y\), s.t. \(Y \subseteq X^+\) and \(X \cap Y = \emptyset\):

\[
\begin{align*}
AB & \rightarrow CD, \quad AD \rightarrow BC, \quad ABC \rightarrow D, \quad ABD \rightarrow C, \quad ACD \rightarrow B
\end{align*}
\]
Keys

• A **superkey** is a set of attributes A_1, \ldots, A_n s.t. for any other attribute B, we have $A_1, \ldots, A_n \rightarrow B$

• A **key** is a minimal superkey
 – A superkey and for which no subset is a superkey
Computing (Super)Keys

- For all sets X, compute X^+
- If $X^+ = \{\text{all attributes}\}$, then X is a superkey
- Try only the minimal X’s to get the key
Example

Product(name, price, category, color)

name, category \rightarrow price
category \rightarrow color

What is the key?
Example

Product(name, price, category, color)

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys?

Can we have more than one key?

Given $R(A,B,C)$ define FD’s s.t. there are two or more keys.
Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD’s s.t. there are two or more keys

A → B
B → C
C → A

or

AB → C
BC → A

or

A → BC
B → AC

what are the keys here?
Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise
 - Need to decompose the table, but how?

Boyce-Codd Normal Form
Boyce-Codd Normal Form

Dr. Raymond F. Boyce
Edgar Frank “Ted” Codd

"A Relational Model of Data for Large Shared Data Banks"
Boyce-Codd Normal Form

There are no “bad” FDs:

Definition. A relation R is in BCNF if:
Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:
$\forall X$, either $X^+ = X$ or $X^+ = [\text{all attributes}]$
BCNF Decomposition Algorithm

Normalize(R)

find X s.t.: X ≠ X⁺ and X⁺ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X⁺ - X; Z = [all attributes] - X⁺

decompose R into R1(X ∪ Y) and R2(X ∪ Z)

Normalize(R1); Normalize(R2);
The only key is: \{SSN, PhoneNumber\}
Hence \textbf{SSN} \rightarrow \textbf{Name, City} is a “bad” dependency
In other words: \textbf{SSN}^+ = \textbf{SSN, Name, City} and is neither \textbf{SSN} nor \textbf{All Attributes}
Example BCNF Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Let's check anomalies:
- Redundancy ?
- Update ?
- Delete ?

CS 457 - Spring 2018
Find X s.t.: $X \neq X^+$ and $X^+ \neq [\text{all attributes}]$

Example BCNF Decomposition

$\text{Person}(\text{name}, \text{SSN}, \text{age}, \text{hairColor}, \text{phoneNumber})$

- $\text{SSN} \rightarrow \text{name}, \text{age}$
- $\text{age} \rightarrow \text{hairColor}$
Example BCNF Decomposition

FSN \to \text{name, age}

age \to \text{hairColor}

Iteration 1: Person: \(SSN^+ = SSN, \text{name, age, hairColor} \)

Decompose into: \(P(\text{SSN, name, age, hairColor}) \)

\(\text{Phone(SSN, phoneNumber)} \)
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into:
P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]
Example: BCNF

R(A,B,C,D)

A → B
B → C

R(A,B,C,D)
Example: BCNF

Recall: find X s.t.
$X \not\subseteq X^+ \not\subseteq [\text{all-attrs}]$
R(A,B,C,D)

Example: BCNF

R(A,B,C,D)

A⁺ = ABC ≠ ABCD
Example: BCNF

R(A,B,C,D)

A \rightarrow B
B \rightarrow C

A^+ = ABC \neq ABCD

R(A,B,C,D)

R_1(A,B,C)

R_2(A,D)
Example: BCNF

\[R(A,B,C,D) \]

\[A \rightarrow B \]
\[B \rightarrow C \]

\[R(A,B,C,D) \]
\[A^+ = ABC \neq ABCD \]

\[R_1(A,B,C) \]
\[B^+ = BC \neq ABC \]

\[R_2(A,D) \]

CS 457 - Spring 2018
Example: BCNF

R(A,B,C,D)

A \rightarrow B
B \rightarrow C

R(A,B,C,D)
A^+ = ABC \neq ABCD

R_1(A,B,C)
B^+ = BC \neq ABC

R_11(B,C)
R_12(A,B)

R_2(A,D)

What are the keys?

What happens if in R we first pick B^+? Or AB^+?
Decompositions in General

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

\[S_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \quad \text{and} \quad S_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \]

\[S_1 = \text{projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]

\[S_2 = \text{projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]