CS 457: Database Management Systems

Lectures 27
Parallel DBMSs
Logistics

• Final exam preview
 – Thursday, 5/3

• On 5/8
 – No class
 – 4th homework due
 – Bonus project due

• Final exam
 – 5/10, 4:50pm – 6:50pm
What We Have Already Learned

• Overall architecture of a DBMS
• Internals of query execution:
 – Data storage and indexing
 – Buffer management
 – Query evaluation including operator algorithms
 – Query optimization
• Internals of transaction processing:
 – Concurrency control: pessimistic and optimistic
 – Transaction recovery: undo, redo, and undo/redo
Where We Are Headed Next

• Scaling the execution of a query
 – Parallel DBMS
 – MapReduce
 – Spark and Myria

• Scaling transactions
 – Distributed transactions
 – Replication

• Scaling with NoSQL and NewSQL
DBMS Deployment: Local

Great for one application (could be more) and one user.

Data files on disk

Desktop
DBMS Deployment: Client/Server

Great for many apps and many users

connection (ODBC, JDBC)

Data files

DB Server

Applications

CS 457 - Spring 2018
DBMS Deployment: 3 Tiers

- Data files
- DB Server
- Web Server & App Server
- Browser

Connection (e.g., JDBC)

Great for web-based applications

HTTP/SSL
DBMS Deployment: Cloud

Great for web-based applications

Data files
DB Server
Web Server & App Server

Connection (e.g., JDBC)

HTTP/SSL

Browser
How to Scale?

Use many Web servers: Easy!

- Browser
- HTTP/SSL
- DB Server
 - Connection (e.g., JDBC)
How to Scale?

Many DBMS instances: HARD

Connection (e.g., JDBC)

http multiplex

HTTP/SSL

Web Server Farm

Browser

CS 457 - Spring 2018
How to Scale?

- We can easily replicate the web servers and the application servers.

- We cannot so easily replicate the database servers, because the database is unique.

- We need to design ways to scale up the DBMS.
How to Scale a DBMS?

Scale up

A more powerful server

Scale out

More servers, one database
What to scale?

• OLTP: Transactions per second
 – OLTP = Online Transaction Processing

• OLAP: Query response time
 – OLAP = Online Analytical Processing
Scaling Transactions Per Second

- Amazon
- Facebook
- Twitter
- … your favorite Internet application…
- Goal is to scale OLTP workloads
Scaling Single Query Response Time

• Goal is to scale OLAP workloads

• That means the analysis of massive datasets
Big Data

• Buzzword?

• Definition from industry:
 – High Volume
 – High Variety
 – High Velocity
 http://www.gartner.com/newsroom/id/1731916
Big Data

Volume is not an issue

- Databases *do* parallelize easily; techniques available from the 80’s
 - Data partitioning
 - Parallel query processing
- SQL is *embarrassingly parallel*

- We will learn how to do this
Big Data

New workloads are an issue

- Big volumes, small analytics
 - OLAP queries: join + group-by + aggregate
 - Can be handled by today’s RDBMSs (e.g., Teradata)

- Big volumes, big analytics
 - More complex Machine Learning, e.g. click prediction, topic modeling, SVM, k-means
 - Requires innovation – Active research area
Data Analytics Companies

Ten years ago, explosion of db analytics companies

- **Greenplum** founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS (this lecture)
- **Vertica** founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS
- **DATAllegro** founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- **Aster Data Systems** founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system (in two lectures). SQL on top of MapReduce
- **Netezza** founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

Great time to be in data management, data mining/statistics, or machine learning!
Big Data Landscape 2016 (Version 3.0)

Infrastructure:
- Hadoop
- Spark
- Cluster Services
- NoSQL Databases
- NewSQL Databases
- Cloud EDW
- Data Transformation
- Data Integration
- Graph Databases
- MPP Databases
- MPP Databases

Analytics:
- Analyst Platforms
- BI Platforms
- Statistical Computing
- Log Analytics
- Machine Learning
- Speech & NLP
- Real-Time

Applications:
- Sales & Marketing
- Security
- Government & Regulation
- Finance
- Education & Learning
- Life Sciences
- Industries
- Search

Cross-Infrastructure/Analytics:
- Amazon
- Google
- IBM
- Microsoft

Open Source:
- Apache
- MySQL
- MongoDB
- Cassandra
- Hadoop

Data Sources & APIs:
- Apple
- ARM
- Bloomberg
- Financial & Economic Data

Framework:
- Hadoop
- Spark
- Cluster Services

Query/Data Flow:
- Data Access
- Data Integration
- Querying

Coordination:
- Coordination
- Data Access
- Data Integration

Real-Time:
- Real-Time
- Machine Learning
- Speech & NLP

Incubators & Schools:
- DataCamp
- DataViz

Last Updated 3/23/2016

© Matt Turck (@mattturck), Jim Hao (@jimhao), & FirstMark Capital (@firstmarkcap)
Two Fundamental Approaches to Parallel Data Processing

• **Parallel databases**, developed starting with the 80s (this lecture)
 – For both **OLTP** (transaction processing)
 – And for **OLAP** (decision support queries)

• **MapReduce**, first developed by Google, published in 2004 (in two lectures)
 – Only for decision support queries

Today we see convergence of the two approaches
Architectures for Parallel DMBSs

Figure 1 - Types of database architecture

San = “Storage Area Network”

From: Greenplum Database Whitepaper

CS 457 - Spring 2018
Our Focus: Shared-Nothing DBMS
Parallel Query Evaluation

• Multiple DBMS instances (= processes) also called “nodes” execute on machines in a cluster
 – One instance plays role of the coordinator
 – Other instances play role of workers

• Applications interact with coordinator

• Workers execute queries
 – Typically all workers execute the same plan
 • Intra-operator parallelism & intra-query parallelism
 – Some operations may execute at subsets of workers
 – Workers can execute multiple queries at the same time
 • Inter-query parallelism
Parallel Query Evaluation

New operator: **Shuffle**
- **Origin:** Exchange operator from Volcano system
- **Serves to re-shuffle data between processes**
 - Handles data routing, buffering, and flow control
- **Two parts:** **ShuffleProducer** and **ShuffleConsumer**
- **Producer:**
 - Pulls data from child operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- **Consumer:**
 - Buffers input data from n producers and makes it available to operator through getNext() interface
Parallel DBMSs

• **Performance metrics**
 – **Speedup**: More nodes, same data -> higher speed
 • Strong scaling
 – **Scaleup**: More nodes, more data -> same speed
 • Weak scaling
 – Speed = query execution time

• **Key challenges**
 – Start-up costs
 – Interference
 – Skew
Parallel Query Processing

How do we compute these operations on a shared-nothing parallel db?

- **Selection:** $\sigma_{A=123}(R)$
- **Group-by:** $\gamma_{A,\text{sum}(B)}(R)$
- **Join:** $R \bowtie S$

Before we answer that: how do we store R (and S) on a shared-nothing parallel db?
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Servers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Servers:

1

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Servers:

1.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

... P

Which tuples go to what server?
Horizontal Data Partitioning

- Relation R split into P chunks R_0, ..., R_{P-1}, stored at the P nodes

- **Block partitioned**
 - Each group of k tuples goes to a different node

- **Hash based partitioning on attribute A:**
 - Tuple t to chunk $h(t.A) \mod P$

- **Range based partitioning on attribute A:**
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

- For hash and range partitioning: Beware of skew
Horizontal Data Partitioning

All three choices are just special cases:

• For each tuple, compute \(bin = f(t) \)

• Different properties of the function \(f \) determine hash vs. range vs. round robin vs. anything
Example: Teradata – Loading

AMP = “Access Module Processor” = unit of parallelism
Parallel Selection

Compute \(\sigma_{A=v}(R) \), or \(\sigma_{v_1<A<v_2}(R) \)

- On a conventional database: cost = \(B(R) \)

- Q: What is the cost on a parallel database with \(P \) processors?
 - Block partitioned
 - Hash partitioned
 - Range partitioned
Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v_1<A<v_2}(R)$

• On a conventional database: cost = $B(R)$

• Q: What is the cost on a parallel database with P processors?

 A: $B(R) / P$, but

 – Block partitioned -- all servers do the work
 – Hash partitioned -- some servers do the work
 – Range partitioned -- some servers do the work
Basic Parallel GroupBy

Data: \(R(K,A,B,C) \) -- hash-partitioned on \(K \)

Query: \(\gamma_{A,\text{sum}(B)}(R) \)

Reshuffle \(R \) on attribute \(A \)
Basic Parallel GroupBy

- Step 1: each server i partitions its chunk R_i using a hash function $h(t.A) \mod P$: $R_{i,0}$, $R_{i,1}$, ..., $R_{i,P-1}$
- (after reshuffling)
- Step 2: server j computes $\gamma_A, \text{sum}(B)$ on $R_{0,j}$, $R_{1,j}$, ..., $R_{P-1,j}$
Speedup and Scaleup

• Consider:
 – Query: $\gamma_{A,\text{sum}(C)}(R)$
 – Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the new running time?

• If we double both P and the size of R, what is the new running time?
Speedup and Scaleup

• Consider:
 – Query: \(y_{A,\text{sum}(C)}(R) \)
 – Runtime: dominated by reading chunks from disk

• If we double the number of nodes \(P \), what is the new running time?
 – Half (each server holds \(\frac{1}{2} \) as many chunks)

• If we double both \(P \) and the size of \(R \), what is the new running time?
 – Same (each server holds the same # of chunks)
Basic Parallel GroupBy

Can we do better?
• Sum?
• Count?
• Avg?
• Max?
• Median?
Basic Parallel GroupBy

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Min?

YES

- Compute partial aggregates before shuffling
Parallel Join: $R \bowtie_{A=B} S$

- **Data:** $R(K_1, A, C), S(K_2, B, D)$
- **Query:** $R(K_1, A, C) \bowtie S(K_2, B, D)$
Parallel Join: \(R \bowtie_{A=B} S \)

- **Data**: \(R(K_1, A, C), S(K_2, B, D) \)
- **Query**: \(R(K_1, A, C) \bowtie S(K_2, B, D) \)

Initially, both \(R \) and \(S \) are horizontally partitioned on \(K_1 \) and \(K_2 \)

Each server computes the join locally

Reshuffle \(R \) on \(R.A \) and \(S \) on \(S.B \)
Parallel Join: $R \bowtie_{A=B} S$

• Step 1
 – Every server holding any chunk of R partitions its chunk using a hash function $h(t.A) \mod P$
 – Every server holding any chunk of S partitions its chunk using a hash function $h(t.B) \mod P$

• Step 2:
 – Each server computes the join of its local fragment of R with its local fragment of S
Optimization for Small Relations

When joining R and S

• If $|R| >> |S|$
 – Leave R where it is
 – Replicate entire S relation across nodes

• Also called a small join or a broadcast join
Other Interesting Parallel Join Implementation

Skew:

• Some partitions get more input tuples than others
 – Possible reasons:
 • Range-partition instead of hash
 • Some values are very popular:
 – Heavy hitters values; e.g. ‘Justin Bieber’

• Some partitions generate more output tuples than others
Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: \{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2] and [3,6]
- Eq-depth v.s. eq-width histograms
Some Skew Handling Techniques

Create more partitions than nodes

- And be smart about scheduling the partitions

- Note: MapReduce uses this technique
Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)

• Given $R \bowtie_{A=B} S$

• Given a heavy hitter value $R.A = 'v'$
 (i.e. ‘v’ occurs very many times in R)

• Partition R tuples with value ‘v’ across all nodes
 e.g. block-partition, or hash on other attributes

• Replicate S tuples with value ‘v’ to all nodes

• R = the build relation

• S = the probe relation