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Abstract

We use an interactive genetic algorithm to
divide and conquer large traveling salesper-
son problems. Current genetic algorithm ap-
proaches are computationally intensive and
may not produce acceptable tours within the
time available. Instead of applying a genetic
algorithm to the entire problem, we let the
user interactively decompose a problem into
subproblems, let the genetic algorithm sepa-
rately solve these subproblems and then in-
teractively connect subproblem solutions to
get a global tour for the original problem.
Our approach significantly reduces the com-
puting time to find high quality solutions for
large traveling salesperson problems. We be-
lieve that an interactive approach can be ex-
tended to other visually decomposable prob-
lems.

1 INTRODUCTION

The traveling salesperson problem (TSP) is a classi-
cal example of an NP-Hard combinatorial optimization
problem (Garey and Johnson, 1979). Given N cities
and distances among them, the aim is to find the short-
est tour that visits each city once and ends at the city
it started from. Researchers have tried various algo-
rithms to solve this problem with the aim usually being
just to find near optimal solutions. The algorithms
include simulated annealing (Learhoven and Aarts,
1987) (Kirkpatrick and Toulouse, 1985), discrete lin-
ear programming (Crowder and Padberg, 1980), neu-
ral networks (Aarts and Stehouwer, 1993), branch and
bound (Padberg and Rinaldi, 1987), 2-opt (Lin and
Kernighan, 1973), Markov chain (Martin et al., 1991)
and genetic algorithms.
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Genetic Algorithms (GAs), first developed by Holland
in the 1970s (Holland, 1975), are search algorithms
based on the mechanics of natural selection and nat-
ural genetics. They are used to search large, non-
linear search spaces where expert knowledge is lacking
or difficult to encode and where traditional optimiza-
tion techniques fall short (Goldberg and Lingle, 1985;
Davis, 1985; Louis, 1993). Since the 80’s, much work
has been done in applying genetic algorithms to the
TSP (Goldberg and Lingle, 1985; Grefenstette et al.,
1985; Oliver et al., 1987; Jog et al., 1989; Whitley
et al., 1989). This literature and more recent work has
resulted in a plethora of GA operators and techniques
for attacking large TSPs (Starkweather et al., 1991;
Whitley et al., 1991; Hamaifar et al., 1993; Schmitt
and Amini, 1998; Jog et al., 1991) and has produced
significant improvements in this area. GAs are suitable
for the problem because they quickly direct search to
promising areas of the search space, but, there is a
paucity of approaches capable of both high solution
quality and speed. If we use TSP problem size, selec-
tion scheme (generational or steady state), population
initialization, population size and crossover function as
experimental factors, none of these factors has signif-
icant impact on the CPU time when large TSPs were
solved (Schmitt and Amini, 1998). In addition, GAs
are quite slow when implemented on a sequential ma-
chine (Jog et al., 1991). Valenzuela used a new GA ap-
proach, evolutionary divide and conquer (EDAC), try-
ing to solve the scaling and the solution quality degra-
dation problems for large TSPs (Valenzuela, 1995).
EDAC produces good results on tour length, but the
running time is still quite long.

In this paper, we propose a new methodology, for ap-
plying genetic algorithms to solve large TSPs. The
Interactive Genetic Algorithm (IGA) asks the user to
divide the original large number of cities into smaller
clusters each of which contains fewer cities. A GA then
solves these smaller TSPs. After finding the optimal or



near-optimal solution for each cluster, the user helps
connect, pairs of clusters until a global tour emerges.
The visualization and interaction interface is written
in the Java language. We are interested in exploring
the use of interaction in genetic search and started
with TSPs because they are so easily visualizable.

Interactive evolution (IE) (Banzhaf, 1997) is another
evolutionary algorithm that needs human interaction.
In IE, the user selects one or more individual(s) which
survive(s) and reproduce(s) (with variation) to con-
stitute a new generation. Our IGA is very different
from IE in that the IGA uses interaction for problem
formulation or solution repair. In contrast, interac-
tive evolution uses user interaction to obtain fitness
information and the user assumes an active role in the
search process.

We chose to use greedy crossover (Grefenstette et al.,
1985), CHC selection (Eshelman, 1991) and a new
greedy-swap mutation operator in our genetic algo-
rithm. Our results indicate that the interactive ge-
netic algorithm quickly provides quality results on
large TSPs. Specifically, the running time is much
smaller for the IGA compared with the running time
of a GA on the same problem. The choice of a par-
ticular genetic algorithm is of less significance for this
comparative result and you may substitute other evo-
lutionary computing algorithms. We believe that IGAs
will be especially useful on the many large TSPs with
structured, as opposed to randomized, distributions of
cities.

The next section describes our setup and methodology.
Section 3 provides some results and analysis. The last
section furnishes conclusions and directions for future
work.

2 METHODOLOGY

Using the IGA to attack TSPs follows four steps.

Step 1: Plot and display city locations on the inter-
face as shown in Figure 1 (a). This provides the user
with ability to identify and exploit any structure in
the distribution of cities. Although we could use one
of several clustering methods to decompose the prob-
lem, humans are very good at finding patterns in visual
data — we simply exploit this property.

Step 2: Separate the data into clusters Figure 1 (b).
The clusters are separated manually by choosing a
cluster id and then using the mouse to select groups
of points (cities) on the interface to belong to the cho-
sen cluster. The current version allows all cities inside
a mouse drawn rectangle to be assigned to a cluster.

(d) Connect sub-tours to get a global tour

Figure 1: IGA Procedure (http://gaslab.cs.unr.edu/)



Cities can also be added and deleted from clusters.

Step 3: Run the genetic algorithm on each cluster.
Note that this can be done in parallel with one GA
assigned to each cluster. We can run each GA on a
different machine or do further parallelization. Our
Java implementation creates a separate thread for each
cluster while the C implementation simply starts sep-
arate processes. At the end of this step we get tours
for each cluster of cities as shown in Figure 1 (c).

Step 4: Connect these sub-tours to get a complete
tour. We currently allow two ways of reconnecting
sub-tours.

1. Manual: The user can choose to delete and add
edges to open subtours and to combine adjacent
open subtours. The current sum of the lengths of
all edges (total tour length) is always displayed so
that the user can experiment with the subtours.
In this scheme, the whole process is based com-
pletely on the user’s visual judgment. That is, we
try to decrease the total tour length by replacing
long edges with short edges.

2. Semi-Automatic: The user draws a rectangle
that includes appropriate (in the user’s judg-
ment) cities in two adjacent clusters and the inter-
face does an exhaustive search among chosen city
edges to find edges to delete and add such that
the combined tour length is minimized. The total
tour length will also be updated. This scheme re-
lieves the user from the tedium of experimenting
with fine adjustments — you only need to specify
a promising area for reconnection.

2.1 Genetic Algorithm for TSP

Our encoding and operators for the genetic algorithm
itself are not particularly novel and we describe them
below. The objective function for the N cities two
dimensional Euclidean TSP is the sum of Euclidean
distances between every pair of cities in the tour. That
is:

N
Obj. function = Z \/(x, —xi—1)? 4+ (yi —yi—1)?
i=1

Where, x;, y; are the coordinates of city i and zn, yn
equals g, yo. We turn this minimization problem into
a maximization problem for the GA by subtracting the
objective function value from a large constant.

We use the usual path representation where the cities
are listed in the order in which they are visited.
Greedy crossover which was invented by Grefenstette
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A B
D
c E

A possible tour after greedy-swap (Tour2)

Figure 2: Tllustration of the Greedy-Swap Mutation

(Grefenstette et al., 1985) ensures that we always get
legal tours.

We use a new mutation operator, greedy—swap. The
basic idea of greedy—swap is to randomly select two
cities from one chromosome and swap them if the
new (swapped) tour length is shorter than the old
one. Only four edges are different between the two
tours. This is shown in Figure 2. Before mutation we
have Tourl = DA B CF ED, and city B and city
<~ U=~

E are randomly chosen from the tour as the swap

positions. After swapping B and FE, we get tour

Tour2 = DAE CF BD. Edges AB, BC, FE and
<<=~

ED in Tourl are replaced by edges AE, EC, FB and
BD in Tour2. We keep the new tour only when

|4B| + [ BC| +||FE] + || ED]|
> [|[4E| + | EC]| + [|FB| + || EB|

All the other edges are the same in Tourl and Tour2,
so the total tour length of Tour2 when the above con-
dition holds, is shorter.

We use CHC selection to guarantee that the best indi-
vidual will always survive in the next generation (Es-
helman, 1991). In CHC selection if the population
size is N, we generate N children by roulette wheel
selection, then combine the N parents with the N chil-
dren, sort these 2N individuals according to their fit-
ness value and choose the best N individuals to prop-
agate to the next generation.



2.2 Analysis

The compelling advantage of our approach follows
from the fact that the sum of factorials is much smaller
than the factorial of the sum. For a TSP with IV cities,
the search space is a function of N!. Thus the com-
puting time, which is proportional to the search space,
is also a function of N!. When N is a large number,
the computing time is extremely long.

When decomposing the problem, if IV cities are divided
into P clusters, the average number of cities in each
cluster in N/P. Therefore, the search space for each
cluster is a function of (IN/P)!. The total search space
for all clusters is: P(N/P)!. When N is large, our
approach will save several orders of magnitude worth

of time since
Px|—= ]!« N!
P

for large IV and P.

3 RESULTS AND ANALYSIS

We applied the IGA to eight (8) different TSPs (eil51,
€il76, ch150, bier127, a280, d657, 1in318, vym1084) from
the TSPLIB (Reinelt, 1996) that span a wide range of
sizes. These TSPs have been used by others and are
considered benchmarks with optimal or best known
tour lengths available. We follow the steps outlined
in section 2 for each problem and compare our results
with an identical GA running on the complete prob-
lem. For every problem, we ensure that both the IGA
and the GA complete the same number of evaluations.
For the IGA the number of evaluations is given by

evaluations = P x IGA, x IGA,

where P is the number of clusters, IG A, is the number
of generations run, and I/GA, is the populations size
(identical for each cluster). Since we tried to decom-
pose the problem into equal sized clusters, we used the
same population size across all clusters on a particular
TSP instance. The number of evaluations for the GA
on the complete TSP is GA, x GA, and

P x IGA, x IGA, = GA, x GA,

for all problems. We ran all problems on the same
unloaded ULTRA5 Sun workstations. The GA code
used by the IGA was the same as the code run on
complete problems.

Table 1 compares the performance of the IGA with
the GA. Column one shows the size of the problem,
the next three columns deal with the IGA and the last
two columns provide results from the GA. Column two

Table 1: Results from the IGA and the GA for different
size TSPS

IGA GA
No. of | No. of 1 run 10 runs

Cities Sets Time % Over | Time % over
(min) optimal | (min) optimal

51 2 0.25 0.7 0.96 7.0

76 2 0.60 5.9 2.95 13.0

127 2 2.70 11.7 16 13.1

150 5 2.70 9.1 26.4 13.1

280 7 6.16 12.2 145.9 22.0

318 7 5.45 14.2 181.6 33.9

657 12 11.55 32.2 296.2 44.0

1084 12 40.1 26.0 684.5 72.0

lists the number of clusters used. Since we found that
the GA is able to competently solve TSPs with less
than one hundred cities, we chose a number of clus-
ters that would result in subproblems with less than
one hundred cities. Column three shows the time in
minutes from the start of interaction until obtaining a
complete tour with the IGA. The difference in time is
more than clear at the wristwatch level of resolution.
Column four lists the quality of solution in percentage
over optimal. The last two columns provide time in

minutes and the quality of solution obtained by the
GA.

If N is the number of cities, we let small TSPs be
categorized as those with N < 100, medium TSPs are
those with (100 < N < 200) and large TSPs have
N > 200. From the table, we can see that the IGA
easily outperforms the GA on large problems.

3.0.1 Small TSPs

For small TSPs (eil51, €il76), both methods produce
similar results. The IGA gets good results (within 10%
of the benchmarks) in less than one minute, so does
the GA. Here we only tried to separate each problem
into two sub-groups and the running time is the same
for both methods. Fig 3 show the best tours obtained
by both approaches on the 76 city problem. Note that
we got a tour without crossings with the IGA.
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Figure 3: 76 city problem

3.0.2 Medium TSPs

We tried two problems — the 127 city problem and
the 150 city problem. We can start seeing the differ-
ence in time and quality at this stage. The IGA does
better, both in running time and tour length.Fig 4
shows the best tours on the 150 city problem. There
is a marked increase in the number of crossings for the
tour produced by the GA when compared to the IGA
tour. Since the number of crossings correlates with
tour length the GA’s tour is longer than IGA’s tour.
Results from the 127 city problem are similar.

3.0.3 Large TSPs

Four problems can be classified as large TSPs — 280
city, 318 city, 657 city and 1084 city. The running time
with the IGA is now significantly reduced compared to
the GA with much better tours being produced.

We separated the 280 city and 318 city problems into
4-6 clusters for the IGA. The best tours for 280 city
problem are shown in Figure 5. Such large structured

(b) Best tour using the GA

Figure 4: 150 city problem

problems may be most suited to our approach. We can
get a good tour in minutes with the IGA (Figure 5 (a))
while even after two hours we can only get the tour
shown in Figure 5 (b) for the genetic algorithm. Note
also that we can visually repair complete tours pro-
duced by the GA or the IGA. For example, we could
remove the two crossings in Figure 5 (a) by deleting
and adding edges during post processing. There is, of
course, a limit to this kind of repair.

On really large problems, like the 657 city or the 1084
city problems, the GA needs to run for hours. After
separating these problems into about 12 clusters the
IGA gets good tours within an hour. Fig 6 (a) show
the best tour obtained by the IGA on the 1084 city
problem. Compare this tour with the messy tour pro-
duced by the GA on the same problem.
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3.1 Analysis

3.1.1 Number of clusters

For a given number of cities and approximately equal
clusters, the larger the number of clusters P, the faster
the IGA (Section 2.2). On the other hand, larger P
results in a more local view of optimization with a
large number of (potentially critical) tours not being
explored. From our experiments, genetic algorithms
do well on small TSPs with up to 100 cities. There-
fore, when decomposing, it is appropriate to keep each
cluster within 60 — 100 cities.

3.1.2 Clustering

Even when we run the IGA on the same TSP with the
same number of clusters, we can get different results
because we may not choose exactly the same set of
cities for each cluster. Currently, the user manually
decomposes the problem and uses the visualization
provided by the interface to aid this clustering pro-
cess. Not only are no two users exactly alike, the same
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Figure 6: 1084 city problem

user may not provide the same classification. With-
out completely getting rid of all interaction we plan to
use available clustering techniques to provide an initial
clustering that the user can then modify. The auto-
matic clustering will get the same clusters on the same
problem each time we run it, the user can then visually
adjust these clusters.

4 CONCLUSIONS

We presented a new interactive genetic algorithm to
solve the traveling salesperson problem. A user visu-
ally partitioned the TSP into sub-problems and the
GA solved each subproblem separately. The user then
visually recombined the sub-tours into a global tour.
We tested this methodology with a set of TSPs bench-
marks using a relatively untuned genetic algorithm
and compared the results with the same GA running
on the complete un-decomposed problem. The IGA
takes much less time to provide better quality results
for large problems. For TSPs with more than 200
cities, this methodology greatly reduced the running



time.

Although we can divide and conquer problems where
the cities are randomly distributed, non-random dis-
tributions amenable to clustering bring out the real
strength of our approach. Clusters can be easily picked
out and the interactive genetic algorithm can exploit
this structure to quickly solve the problem. We believe
that this method can be extended to other visualizable,
decomposable problems. A Java version of the IGA
can be found and used from http://gaslab.cs.unr.edu/.

We did not expend much effort in tuning our ge-
netic algorithm for the TSP. Using a well-tuned GA or
other search algorithm that quickly and near-optimally
solves small TSPs (from our decomposition) should
also result in better quality global tours (Jog et al.,
1989). We plan to investigate other interactive genetic
algorithm applications.
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