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Abstract

We use an interactive genetic algorithm to
divide and conquer large traveling salesper�
son problems� Current genetic algorithm ap�
proaches are computationally intensive and
may not produce acceptable tours within the
time available� Instead of applying a genetic
algorithm to the entire problem� we let the
user interactively decompose a problem into
subproblems� let the genetic algorithm sepa�
rately solve these subproblems and then in�
teractively connect subproblem solutions to
get a global tour for the original problem�
Our approach signi�cantly reduces the com�
puting time to �nd high quality solutions for
large traveling salesperson problems� We be�
lieve that an interactive approach can be ex�
tended to other visually decomposable prob�
lems�

� INTRODUCTION

The traveling salesperson problem TSP� is a classi�
cal example of an NP�Hard combinatorial optimization
problem Garey and Johnson� ������ Given N cities
and distances among them� the aim is to �nd the short�
est tour that visits each city once and ends at the city
it started from� Researchers have tried various algo�
rithms to solve this problem with the aim usually being
just to �nd near optimal solutions� The algorithms
include simulated annealing Learhoven and Aarts�
����� Kirkpatrick and Toulouse� ���	�� discrete lin�
ear programming Crowder and Padberg� ������ neu�
ral networks Aarts and Stehouwer� ������ branch and
bound Padberg and Rinaldi� ������ ��opt Lin and
Kernighan� ������ Markov chain Martin et al�� �����
and genetic algorithms�

Genetic Algorithms GAs�� �rst developed by Holland
in the ����s Holland� ���	�� are search algorithms
based on the mechanics of natural selection and nat�
ural genetics� They are used to search large� non�
linear search spaces where expert knowledge is lacking
or di�cult to encode and where traditional optimiza�
tion techniques fall short Goldberg and Lingle� ���	�
Davis� ���	� Louis� ������ Since the ���s� much work
has been done in applying genetic algorithms to the
TSP Goldberg and Lingle� ���	� Grefenstette et al��
���	� Oliver et al�� ����� Jog et al�� ����� Whitley
et al�� ������ This literature and more recent work has
resulted in a plethora of GA operators and techniques
for attacking large TSPs Starkweather et al�� �����
Whitley et al�� ����� Hamaifar et al�� ����� Schmitt
and Amini� ����� Jog et al�� ����� and has produced
signi�cant improvements in this area� GAs are suitable
for the problem because they quickly direct search to
promising areas of the search space� but� there is a
paucity of approaches capable of both high solution
quality and speed� If we use TSP problem size� selec�
tion scheme generational or steady state�� population
initialization� population size and crossover function as
experimental factors� none of these factors has signif�
icant impact on the CPU time when large TSPs were
solved Schmitt and Amini� ������ In addition� GAs
are quite slow when implemented on a sequential ma�
chine Jog et al�� ������ Valenzuela used a new GA ap�
proach� evolutionary divide and conquer EDAC�� try�
ing to solve the scaling and the solution quality degra�
dation problems for large TSPs Valenzuela� ���	��
EDAC produces good results on tour length� but the
running time is still quite long�

In this paper� we propose a new methodology� for ap�
plying genetic algorithms to solve large TSPs� The
Interactive Genetic Algorithm IGA� asks the user to
divide the original large number of cities into smaller
clusters each of which contains fewer cities� A GA then
solves these smaller TSPs� After �nding the optimal or



near�optimal solution for each cluster� the user helps
connect pairs of clusters until a global tour emerges�
The visualization and interaction interface is written
in the Java language� We are interested in exploring
the use of interaction in genetic search and started
with TSPs because they are so easily visualizable�

Interactive evolution IE� Banzhaf� ����� is another
evolutionary algorithm that needs human interaction�
In IE� the user selects one or more individuals� which
survives� and reproduces� with variation� to con�
stitute a new generation� Our IGA is very di�erent
from IE in that the IGA uses interaction for problem
formulation or solution repair� In contrast� interac�
tive evolution uses user interaction to obtain �tness
information and the user assumes an active role in the
search process�

We chose to use greedy crossover Grefenstette et al��
���	�� CHC selection Eshelman� ����� and a new
greedy�swap mutation operator in our genetic algo�
rithm� Our results indicate that the interactive ge�
netic algorithm quickly provides quality results on
large TSPs� Speci�cally� the running time is much
smaller for the IGA compared with the running time
of a GA on the same problem� The choice of a par�
ticular genetic algorithm is of less signi�cance for this
comparative result and you may substitute other evo�
lutionary computing algorithms� We believe that IGAs
will be especially useful on the many large TSPs with
structured� as opposed to randomized� distributions of
cities�

The next section describes our setup and methodology�
Section � provides some results and analysis� The last
section furnishes conclusions and directions for future
work�

� METHODOLOGY

Using the IGA to attack TSPs follows four steps�

Step �� Plot and display city locations on the inter�
face as shown in Figure � a�� This provides the user
with ability to identify and exploit any structure in
the distribution of cities� Although we could use one
of several clustering methods to decompose the prob�
lem� humans are very good at �nding patterns in visual
data � we simply exploit this property�

Step �� Separate the data into clusters Figure � b��
The clusters are separated manually by choosing a
cluster id and then using the mouse to select groups
of points cities� on the interface to belong to the cho�
sen cluster� The current version allows all cities inside
a mouse drawn rectangle to be assigned to a cluster�

a� Display city coords

b� User decomposes the TSP

c� Run GA on each cluster to get sub�tours

d� Connect sub�tours to get a global tour

Figure �� IGA Procedure http���gaslab�cs�unr�edu��



Cities can also be added and deleted from clusters�

Step �� Run the genetic algorithm on each cluster�
Note that this can be done in parallel with one GA
assigned to each cluster� We can run each GA on a
di�erent machine or do further parallelization� Our
Java implementation creates a separate thread for each
cluster while the C implementation simply starts sep�
arate processes� At the end of this step we get tours
for each cluster of cities as shown in Figure � c��

Step �� Connect these sub�tours to get a complete
tour� We currently allow two ways of reconnecting
sub�tours�

�� Manual� The user can choose to delete and add
edges to open subtours and to combine adjacent
open subtours� The current sum of the lengths of
all edges total tour length� is always displayed so
that the user can experiment with the subtours�
In this scheme� the whole process is based com�
pletely on the user�s visual judgment� That is� we
try to decrease the total tour length by replacing
long edges with short edges�

�� Semi�Automatic� The user draws a rectangle
that includes appropriate in the user�s judg�
ment� cities in two adjacent clusters and the inter�
face does an exhaustive search among chosen city
edges to �nd edges to delete and add such that
the combined tour length is minimized� The total
tour length will also be updated� This scheme re�
lieves the user from the tedium of experimenting
with �ne adjustments � you only need to specify
a promising area for reconnection�

��� Genetic Algorithm for TSP

Our encoding and operators for the genetic algorithm
itself are not particularly novel and we describe them
below� The objective function for the N cities two
dimensional Euclidean TSP is the sum of Euclidean
distances between every pair of cities in the tour� That
is�

Obj� function �
NX
i��

p
xi � xi���� � yi � yi����

Where� xi� yi are the coordinates of city i and xN � yN
equals x�� y�� We turn this minimization problem into
a maximization problem for the GA by subtracting the
objective function value from a large constant�

We use the usual path representation where the cities
are listed in the order in which they are visited�
Greedy crossover which was invented by Grefenstette
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A tour before applying greedy�swap Tour��
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A possible tour after greedy�swap Tour��

Figure �� Illustration of the Greedy�Swap Mutation

Grefenstette et al�� ���	� ensures that we always get
legal tours�

We use a new mutation operator� greedy�swap� The
basic idea of greedy�swap is to randomly select two
cities from one chromosome and swap them if the
new swapped� tour length is shorter than the old
one� Only four edges are di�erent between the two
tours� This is shown in Figure �� Before mutation we
have Tour� � DA��z�B CF��z�ED� and city B and city

E are randomly chosen from the tour as the swap
positions� After swapping B and E� we get tour
Tour� � DA��z�E CF��z�BD� Edges AB� BC� FE and

ED in Tour� are replaced by edges AE� EC� FB and
BD in Tour�� We keep the new tour only when��AB��� ��BC��� ��FE��� ��ED��

�
��AE��� ��EC��� ��FB��� ��EB��

All the other edges are the same in Tour� and Tour��
so the total tour length of Tour� when the above con�
dition holds� is shorter�

We use CHC selection to guarantee that the best indi�
vidual will always survive in the next generation Es�
helman� ������ In CHC selection if the population
size is N� we generate N children by roulette wheel
selection� then combine the N parents with the N chil�
dren� sort these �N individuals according to their �t�
ness value and choose the best N individuals to prop�
agate to the next generation�



��� Analysis

The compelling advantage of our approach follows
from the fact that the sum of factorials is much smaller
than the factorial of the sum� For a TSP with N cities�
the search space is a function of N �� Thus the com�
puting time� which is proportional to the search space�
is also a function of N �� When N is a large number�
the computing time is extremely long�

When decomposing the problem� ifN cities are divided
into P clusters� the average number of cities in each
cluster in N�P � Therefore� the search space for each
cluster is a function of N�P ��� The total search space
for all clusters is� P N�P ��� When N is large� our
approach will save several orders of magnitude worth
of time since

P �

�
N

P

�
�� N �

for large N and P �

� RESULTS AND ANALYSIS

We applied the IGA to eight �� di�erent TSPs eil	��
eil��� ch�	�� bier���� a���� d�	�� lin���� vm����� from
the TSPLIB Reinelt� ����� that span a wide range of
sizes� These TSPs have been used by others and are
considered benchmarks with optimal or best known
tour lengths available� We follow the steps outlined
in section � for each problem and compare our results
with an identical GA running on the complete prob�
lem� For every problem� we ensure that both the IGA
and the GA complete the same number of evaluations�
For the IGA the number of evaluations is given by

evaluations � P � IGAg � IGAp

where P is the number of clusters� IGAg is the number
of generations run� and IGAp is the populations size
identical for each cluster�� Since we tried to decom�
pose the problem into equal sized clusters� we used the
same population size across all clusters on a particular
TSP instance� The number of evaluations for the GA
on the complete TSP is GAg �GAp and

P � IGAg � IGAp � GAg �GAp

for all problems� We ran all problems on the same
unloaded ULTRA	 Sun workstations� The GA code
used by the IGA was the same as the code run on
complete problems�

Table � compares the performance of the IGA with
the GA� Column one shows the size of the problem�
the next three columns deal with the IGA and the last
two columns provide results from the GA� Column two

Table �� Results from the IGA and the GA for di�erent
size TSPs

IGA GA
No� of No� of � run �� runs
Cities Sets Time � Over Time � over

�min� optimal �min� optimal

�� 	 ��	� ��
 ���� 
��


� 	 ���� ��� 	��� ���

�	
 	 	�
� ���
 �� ���

��� � 	�
� ��� 	��� ���

	�� 
 ���� �	�	 ����� 		��

�� 
 ���� ���	 ����� ��

��
 �	 ����� 	�	 	���	 ����

���� �	 ���� 	��� ����� 
	��

lists the number of clusters used� Since we found that
the GA is able to competently solve TSPs with less
than one hundred cities� we chose a number of clus�
ters that would result in subproblems with less than
one hundred cities� Column three shows the time in
minutes from the start of interaction until obtaining a
complete tour with the IGA� The di�erence in time is
more than clear at the wristwatch level of resolution�
Column four lists the quality of solution in percentage
over optimal� The last two columns provide time in
minutes and the quality of solution obtained by the
GA�

If N is the number of cities� we let small TSPs be
categorized as those with N � ���� medium TSPs are
those with ��� � N � ���� and large TSPs have
N � ���� From the table� we can see that the IGA
easily outperforms the GA on large problems�

����� Small TSPs

For small TSPs eil	�� eil���� both methods produce
similar results� The IGA gets good results within ���
of the benchmarks� in less than one minute� so does
the GA� Here we only tried to separate each problem
into two sub�groups and the running time is the same
for both methods� Fig � show the best tours obtained
by both approaches on the �� city problem� Note that
we got a tour without crossings with the IGA�
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Figure �� �� city problem

����� Medium TSPs

We tried two problems � the ��� city problem and
the �	� city problem� We can start seeing the di�er�
ence in time and quality at this stage� The IGA does
better� both in running time and tour length�Fig �
shows the best tours on the �	� city problem� There
is a marked increase in the number of crossings for the
tour produced by the GA when compared to the IGA
tour� Since the number of crossings correlates with
tour length the GA�s tour is longer than IGA�s tour�
Results from the ��� city problem are similar�

����� Large TSPs

Four problems can be classi�ed as large TSPs � ���
city� ��� city� �	� city and ���� city� The running time
with the IGA is now signi�cantly reduced compared to
the GA with much better tours being produced�

We separated the ��� city and ��� city problems into
��� clusters for the IGA� The best tours for ��� city
problem are shown in Figure 	� Such large structured
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Figure �� �	� city problem

problems may be most suited to our approach� We can
get a good tour in minutes with the IGA Figure 	 a��
while even after two hours we can only get the tour
shown in Figure 	 b� for the genetic algorithm� Note
also that we can visually repair complete tours pro�
duced by the GA or the IGA� For example� we could
remove the two crossings in Figure 	 a� by deleting
and adding edges during post processing� There is� of
course� a limit to this kind of repair�

On really large problems� like the �	� city or the ����
city problems� the GA needs to run for hours� After
separating these problems into about �� clusters the
IGA gets good tours within an hour� Fig � a� show
the best tour obtained by the IGA on the ���� city
problem� Compare this tour with the messy tour pro�
duced by the GA on the same problem�
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��� Analysis

����� Number of clusters

For a given number of cities and approximately equal
clusters� the larger the number of clusters P � the faster
the IGA Section ����� On the other hand� larger P
results in a more local view of optimization with a
large number of potentially critical� tours not being
explored� From our experiments� genetic algorithms
do well on small TSPs with up to ��� cities� There�
fore� when decomposing� it is appropriate to keep each
cluster within �� � ��� cities�

����� Clustering

Even when we run the IGA on the same TSP with the
same number of clusters� we can get di�erent results
because we may not choose exactly the same set of
cities for each cluster� Currently� the user manually
decomposes the problem and uses the visualization
provided by the interface to aid this clustering pro�
cess� Not only are no two users exactly alike� the same
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user may not provide the same classi�cation� With�
out completely getting rid of all interaction we plan to
use available clustering techniques to provide an initial
clustering that the user can then modify� The auto�
matic clustering will get the same clusters on the same
problem each time we run it� the user can then visually
adjust these clusters�

� CONCLUSIONS

We presented a new interactive genetic algorithm to
solve the traveling salesperson problem� A user visu�
ally partitioned the TSP into sub�problems and the
GA solved each subproblem separately� The user then
visually recombined the sub�tours into a global tour�
We tested this methodology with a set of TSPs bench�
marks using a relatively untuned genetic algorithm
and compared the results with the same GA running
on the complete un�decomposed problem� The IGA
takes much less time to provide better quality results
for large problems� For TSPs with more than ���
cities� this methodology greatly reduced the running



time�

Although we can divide and conquer problems where
the cities are randomly distributed� non�random dis�
tributions amenable to clustering bring out the real
strength of our approach� Clusters can be easily picked
out and the interactive genetic algorithm can exploit
this structure to quickly solve the problem� We believe
that this method can be extended to other visualizable�
decomposable problems� A Java version of the IGA
can be found and used from http���gaslab�cs�unr�edu��

We did not expend much e�ort in tuning our ge�
netic algorithm for the TSP� Using a well�tuned GA or
other search algorithm that quickly and near�optimally
solves small TSPs from our decomposition� should
also result in better quality global tours Jog et al��
������ We plan to investigate other interactive genetic
algorithm applications�
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