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Cloud Computing [1, 3] represents a major paradigm shift in 
computing and information technology strategy.  The “Cloud” 
is a natural evolution of distributed computing and of 
widespread adoption of the virtualization technology and SOA.  
In Cloud Computing, IT-related capabilities and resources are 
provisioned as services, via the Internet and with the essential 
characteristics such as on-demand, elasticity, metered services, 
and rapid provision (without requiring possession of detailed 
knowledge of the underlying technology).  The International 
Journal of Computers and Their Applications (IJCA) has thus 
scheduled this special issue in response to the fast development 
and increased application of Cloud Computing.  This issue 
includes five selected articles on various topics of Cloud 
Computing: 

 
1. “Performance Evaluation of Distributed Storage Systems 

for Cloud Computing,” by S. Shirinbab et al. 
2. “Budget Constrained Dataflow Scheduling for Mini-

mized Completion Time on the Cloud,” by D. Ding et al. 
3. “A Cooperative Game Theory-based Approach for 

Energy-Aware Job Scheduling in Cloud,” by M. Khaleel 
et al. 

4. “Moving energy consumption control into the cloud by 
coordinating services,” by G. Vargas-Solar et al. 

5. “Data Warehouse Systems in the Cloud: Rise to the 
Benchmarking Challenge,” by R. Moussa et al. 

 
Load balancing (and load rebalancing) is a critical 

management task in Cloud Computing.  If properly done, it 
helps to achieve the promised QoS (in contrast to otherwise 
deteriorated performance especially on congested server 
machines) and avoiding quick wearing out of heavily used 
servers.  The task of load balancing relates to many other 
issues in Cloud Computing, for example, if properly done, it 
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†  Department of Computer Science, LIRIS UMR 5205.  Email: 
ghodous@liris.cnrs.fr. 
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may facilitate “green computing” – that is, when the task is 
carried out toward consolidating sparse computing jobs (which 
happens typically at non-peak times) onto fewer physical 
server machines, this will result in more idle servers that can 
be shut down in favor of reducing energy consumption.  Load 
balancing inevitably requires live migration of virtual servers, 
which in turn requires the provision of large shared storage 
systems accessible to all the physical servers involved in a 
cloud.  Distributed storage systems offer reliable and cost-
effective storage for large amounts of data and thus become a 
favored choice for supporting live migration of virtual servers 
in a Cloud.  In article 1 of this special issue, the authors 
evaluated four large distributed storage systems, and provided 
insight that are helpful for potential cloud providers in future 
consideration of a distributed storage systems for supporting 
live migration of virtual servers in their clouds.  The article 
concluded that in general the multicast approach outperforms 
another popular approach – Distributed Hash Table. 

Cloud Computing has emerged as a promising computing 
paradigm for large-scale data intensive applications and as an 
ideal platform to face the unprecedented challenges of Big 
Data and Big Data Analytics [2], which is currently an 
exhortation in the discipline of Commuter Science and the IT 
industry.  Many such data intensive applications are best 
modeled as complex Directed Acyclic Graphs (DAGs) [5], 
which in essence are structured processing data flows with 
arbitrary data operators being modeled as nodes and producer-
consumer interactions modeled as directed edges in the DAGs.  
The optimization problem of dataflow scheduling on clouds is 
a very challenging task.  The optimization must satisfy a 
variety of objectives and constraints, including fitting into the 
particular characteristics of an underlying cloud environment.  
Job completion time and user’s budget constraint (especially 
under the current global economic atmosphere) are the two 
most prominent parameters in the optimization of dataflow 
scheduling on clouds.  In article 2, the authors formulated 
dataflow scheduling problem in a cloud environment toward 
the objective of minimizing the job completion time under a 
certain budget constraint.  A heuristic scheduling algorithm, 
called LRA-B (Layer-oriented Resource Allocation within 
Budget constraint) was proposed and experimentally 
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evaluated. 
To a great extent, green computing means less power 

consumption and higher utilization of other resources [1, 4, 6].  
Article 3 addresses the problem of energy-aware job 
scheduling on underlying cloud nodes using a cooperative 
game theory.  This work inspects a bi-objective, maximization 
of resource utilization and minimization of power consumption 
under the constraint of not sacrificing a module’s latest 
completion time (Make span).  Cloud providers always have 
the keen interest in an efficient and cost-effective job 
scheduling strategy with low power consumption and high job 
throughput.  This article presents an energy-aware job 
scheduling algorithm given a bag of tasks based on the premise 
of Nash Bargaining Solution (NBS).  The article also 
demonstrates the effectiveness of the proposed algorithm via 
simulation-based evaluation and comparison with related 
work. 

Continuing on the same theme as article 3, i.e., energy-
efficiency, the authors of article 4 presented a cloud-based and 
service-oriented approach for collecting, integrating, storing, 
and analyzing energy consumption data.  In their work, energy 
sensors are utilized and modeled as cloud services that carries 
information regarding various aspects of energy consumption 
and can be composed into distinct (monitoring and controlling) 
scenarios at different granularity levels best suiting users’ 
particular needs and requirements, such as home-owners, 
energy providers, local and regional planning authorities, etc., 
which all concern about energy consumption.  

While Big Data and Big Data Analytics [2], though being 
the buzzwords for a couple of years, still remain at their 
fledging stage of research and development, migrating data 
warehouse systems into the clouds appears to be a practical 
and immediately deliverable approach.  Accordingly, there 
emerges the necessity for benchmarking data warehouse 
systems running in the clouds.  Although there are popular 
benchmarks for cloud computing such as Terasort and YCSB, 
and prominent benchmarks for decision support systems such 
as the Transaction Processing Council’s TPC-H and TPC-DS 
benchmarks, however, specialized benchmarks for cloud-
hosted data warehouse systems remain to be developed.  Such 
benchmarks must take into account the specific rationale of 
clouds (e.g., scalability, elasticity, pay-per-use, QoS, and fault-
tolerance) and that of data warehouse systems and related 
OLAP technologies.  The last article in this special issue, 
article 5, discusses the new requirements for implementing a 
benchmark for data warehouse systems in clouds and sets a 
preliminary foundation with the potential of facilitating fair 
comparisons of data warehouse systems hosted and running on 
different cloud providers’ platforms. 
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Abstract1 
 

The possibility to migrate a virtual server from one physical 
computer in a cloud to another physical computer in the same 
cloud is important in order to obtain a balanced load.  In order 
to facilitate live migration of virtual servers, one needs to 
provide large shared storage systems that are accessible for all 
the physical servers that are used in the cloud.  Distributed 
storage systems offer reliable and cost-effective storage of 
large amounts of data and such storage systems will be used in 
future Cloud Computing.  We have evaluated four large 
distributed storage systems.  Two of these use Distributed 
Hash Tables (DHTs) in order to keep track of how data is 
distributed, and two systems use multicasting to access the 
stored data.  We measure the read/write/delete performance, as 
well as the recovery time when a storage node goes down.  The 
evaluations are done on the same hardware, consisting of 24 
storage nodes and a total storage capacity of 768 TB of data.  
These evaluations show that the multicast approach 
outperforms the DHT approach. 

Key Words:  Cloud computing, compuverde, distributed 
storage system, file system, gluster, OpenStack (Swift).   
 

1 Introduction 
 
The possibility to migrate a virtual server from one physical 

computer in a cloud to another physical computer in the same 
cloud is important in order to obtain a balanced load.  In order 
to facilitate live migration of virtual servers, one needs to 
provide large shared storage systems that are accessible for all 
the physical servers that are used in the cloud.  This is an 
important reason why the demand for storage capacity has 
increased rapidly during the last years.  

One problem with traditional disk drives is that data losses 
are common due to hardware errors.  A solution to this is 
Redundant Array of Independent Disks (RAID) storage. RAID 
storage systems can automatically manage faulty disks without 
losing data, and scale by attaching new disk drives.  However, 
the scalability of RAID is too limited for large cloud systems; 
this limitation is the main reason for using distributed storage 
systems. 
                                                      
* Department of Computer Science, School of Computing.  E-mail: 
{Sogand.Shirinbab, Lars.Lundberg, David.Erman}@bth.se. 
 

Distributed storage systems should be capable of sustaining 
rapidly growing storage demands, avoid loss of data in case of 
hardware failure, and they should provide efficient distribution 
of the stored content [33].  Two examples of distributed 
storage systems are OpenStack’s Swift1 and Gluster2.  We have 
evaluated the performance of three distributed storage systems:  
Compuverde, OpenStack’s Swift, and Gluster. Openstack’s 
Swift and Gluster are both open-source distributed storage 
systems that are available for downloading and testing. 

Some distributed storage systems use Distributed Hash 
Tables (DHTs) for mapping data to physical servers.  In the 
DHT approach file names and addresses are run through a 
hashing function in order to indentify the nodes that have the 
requested data.  Two examples of systems that use DHTs are 
Gluster and OpenStack’s Swift [15].  An alternative approach 
to using DHTs is to use multicasting where data requests are 
sent to multiple storage nodes and the nodes that have the 
requested data answer.  Compuverde uses the multicast 
approach.  The architectural advantage of DHTs compared to 
multicasting is that we do not need to broadcast requests; the 
hash table gives us the address of the nodes that store the 
requested data and we avoid communication overhead.  
However, the obvious disadvantage with DHTs is that we need 
to run a hash function to obtain the address of the data, which 
introduces processing overhead.  This means that the 
architectural decision, whether to use DHTs or multicasting 
will introduce different kinds of overhead: processing 
overhead for DHTs and communication overhead for 
multicasting. Using DHTs or multicasting is a key architectural 
decision in distributed storage systems for Cloud Computing 
and this performance evaluation will give important insights 
regarding the performance implications of this decision. 

 
2 Background 

 
In distributed storage systems, the most common interfaces 

are Web Service APIs (Application Programming Interface) 
like Internet Small Computer System Interface (iSCSI) [38]; 
REpresentational State Transfer (REST)-based [19, 25] and 
Simple Object Access Protocol (SOAP)-based [14].  REST is a 
HTTP-based architectural style to build networked 
                                                      
1 http://openstack.org/. 
2 http://www.gluster.org/. 
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applications that allows access to stored objects by an Object 
Identifier (OID), i.e., no file or directory structures are 
supported [17].  We will refer to object-based storage systems 
as unstructured storage systems. 

There are other access methods like Network File System 
(NFS) and Common Internet File System (CIFS) which are 
used for accessing storage on a private network or LAN and 
Web-based Distributed Authoring and Versioning (WebDAV) 
which is based on HTTP.  These APIs are file-based (variable-
size) and use a path to identify the data; we denote these as 
structured storage systems.  The architecture of structured 
storage systems is similar to Network Attached Storage (NAS) 
which provide file system functionality, i.e., structured storage 
systems support variable file and directory structures [9, 22].  

The most well-known distributed storage systems are 
Amplistor [2, 13], Caringo’s CAStor [7-8], Ceph [6], 
Cleversafe3 , Compuverde4 , EMC Atmos [16], Gluster [23], 
Google File System [21], Hadoop [11, 27], Lustre [32], 
OpenStack’s Swift [29], Panasas [1], Scality5  and Sheepdog6. 
Some of the distributed file systems could be used by other 
applications, i.e., BigTable is a distributed storage for 
structured data and it uses GFS to store log and data files [10].   
 As shown in Table 1 AmpliStor, CAStor, Ceph, Cleversafe 
and Scality are unstructured distributed storage systems.  
Amplistor is designed to work with HTTP/REST.  Just as in 
Amplistor, CAStor’s Simple Content Storage Protocol (SCSP) 
is based on HTTP using a RESTful architecture [26].  Ceph 
provides an S3-compatible REST interface that allows applica-
tions to work with Amazon’s S3 service.  Cleversafe provides 
an iSCSI device interface, which enables users to transparently 
store and retrieve files as if they were using a local hard drive. 

EMC Atmos is a structured distributed storage system that 
provides CIFS and NFS interfaces, as well as web standard 
interfaces such as SOAP and REST.  Other distributed file 
systems such as Google File System, Hadoop Distributed File 
System (HDFS), Lustre and Panasas provide a standard POSIX 
API.  Sheepdog is the only distributed storage system which is  
based on Linux QEMU/KVM and is used for virtual machines. 
 Some of the distributed file systems are also used for 
computing purposes, e.g., the Hadoop Distributed File System 
(HDFS) which distributes storage and computation across 
many servers.  HDFS stores file system metadata and 
application data separately and users can reference files and 
directories by paths in the namespace (a HTTP browser can be 
used to browse the files of an HDFS instance) [18].  Lustre is 
an object-based file system used mainly for computing 
purposes.  The Lustre architecture is designed for HighPerfor-
mance Computing (HPC).  Panasas is also used for computing 
purposes and similar to Lustre, it is designed for HPC. 
 Scality uses a ring storage system which is based on a 
Distributed Hashing Mechanism with transactional support and 
failover capability for each storage node.  The Sheepdog 

                                                      
3 http://www.cleversafe.com/. 
4 http://compuverde.com/. 
5 http://www.scality.com/. 
6 http://www.osrg.net/sheepdog/. 

architecture is fully symmetric and there is no central node 
such as a meta-data server (Sheepdog uses the Corosync 
cluster engine [4] to avoid metadata servers).  Sheepdog 
provides an object (variable-sized) storage and assigned a 
global unique id to each object.  In Sheepdog’s object storage, 
target nodes calculated based on consistent hashing algorithm 
which is a schema that provides hash table functionality and 
each object is replicated to 3 nodes to avoid data loss [35]. 

The remaining distributed storage systems in Table 1 are 
Compuverde, Gluster and OpenStack’s Swift.  We have ported 
these three systems to the same hardware platform (see Section 
3), thus making it possible to compare their performance (see 
Sections 4 and 5).  In Subsections 2.1, 2.2, and 2.3, we discuss 
these three systems in detail. 

Distributed storage systems use either multicasting or Dis-
tributed Hash Tables (DHTs).  Data redundancy is obtained by 
either using multiple copies of the stored files or by so called 
striping using Reed-Solomon coding [20].  When using 
striping the files are split into stripes and a configurable 
number of extra stripes with redundancy information are 
generated.  The stripes (in case of Striping) and file copies (in 
case of Copying) are distributed to the storage nodes in the 
system. 

 
2.1 Compuverde 

 
Compuverde has no separate metadata.  The system uses its 

own proprietary caching mechanism (SSD Caching that 
employs Write-back policy) [5] in the storage nodes.  The 
solution uses multicasting, and supports geographical 
dispersion, heartbeat monitoring, versioning, self-healing and 
self-configuring.  Compuverde supports a flat 128 bit 
addresses space (for unstructured storage) and NFS/CIFS (for 
structured storage).  The system supports both Linux and 
Windows. Compuverde’s storage solution consists of two 
parts:  The first part is unstructured and it contains all storage 
nodes (clusters).  The other part is the structured part of the 
storage solution.  This part contains gateways (this corresponds 
to what OpenStack calls proxy servers) to communicate with 
storage nodes.  The communication is based on TCP unicast 
and UDP multicast messages. Structured data storage is 
achieved by storing information about the structure in 
envelopes.  An envelope is an unstructured file that is stored 
on the storage nodes and contains information about other 
envelopes and other files. 

The storage cluster provides mechanisms for maintaining 
scalability and availability of the structured data by replicating 
the envelopes a (configurable) number of times within the 
cluster as well as providing access to them by the use of IP-
multicast technology. 

The communication between the structured and the 
unstructured layers starts with an IP-multicast of a key from 
the gateway; this key identifies the requested envelope.  All 
nodes that have the requested envelope reply with information 
about the envelope and what other nodes contain the requested 
envelope, with the current execution load on the storage node.  
The gateway collects this information and waits until it has 
received answers from more than 50 percent of the listed  
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 Table 1:  Overview of different distributed storage systems 
INTERFACE SOLUTION REPLICATION METADATA 

Unstructured Structured 

 
Web Service 
APIs (REST, 

SOAP) 

Block-
based APIs 

(iSCSI) 

File-based 
APIs 

(CIFS, 
NFS) 

Other APIs 
(WebDAV, 

FTP, 
Proprietary 

API) 

D
H

T 

M
ulticast 

C
opy-ing 

Striping 

C
entralized 

D
istributed 

AmpliStor X - - - - - - X  X 
Caringo’s 
CAStor X - X - - X X - X - 

Ceph X - - - X - - X - X 
Cleversafe - X - - - - - X X - 

Compuverde X - X X - X X - - X 
EMC Atmos X - X - X - - X - X 

Gluster - - X X X - X - - - 
Google File 

System (GFS) X - X - - - - X X - 

Hadoop - - X - X - - X X - 
Lustre - - X - X - - X X - 

OpenStack’s 
Swift X - - - X - X - - X 

Panasas - - X - - - - X - X 
Scality X - - - X - X - - X 

SheepDog - X - - X - X - - X 
 

storage nodes that contains the identifier before it makes a 
decision on which one to select for retrieval of the file. 
 
2.2 Gluster 

 
Gluster is a structured distributed storage system.  Storage 

servers in Gluster support both NFS and CIFS.  Gluster does 
not provide a client side cache in the default configuration 
[34].  Gluster only provides redundancy at the server level, not 
at the individual disk level.  For data availability and integrity 
reasons Gluster recommends RAID 6 or RAID 5 for general 
use cases.  For high-performance computing applications, 
RAID 10 is recommended.  

Distribution over mirrors (RAID 10) is one common way to 
implement Gluster.  In this scenario, each storage server is 
replicated to another storage server using synchronous writes.  
In this strategy, failure of a single storage server is transparent, 
and read operations are spread across both members of the 
mirror. 

Gluster uses the Elastic Hash Algorithm (EHA). EHA 
determines where the data are stored and is a key to the ability 
to function without metadata.  A pathname/filename is run 
through the hashing algorithm.  After that, the file is placed on 
the selected storage.  When accessing the file, the Gluster file 
system uses load balancing to access replicated instances. 
Gluster offers automatic self-healing [23, 37]. 

 
 

2.3 OpenStack’s Swift 
 
OpenStack’s Swift is an unstructured distributed storage 

system.  A number of “zones” are organized in a logical ring 
which represents a mapping between the names of entities 
stored on disk and their physical location.  Swift is 
configurable in terms of how many copies (called “replicas”) 
are stored, as well as how many zones are used.  The system 
tries to balance the writing of objects to storage servers so that 
the write and read load is distributed.  

The mapping of objects to zones is done using a hash 
function.  Swift does not do any caching of actual object data 
but Swift-proxys can work with a cache (Memcached7) to 
reduce authentication, container, and account calls [30].  In 
Swift, there are separate rings for accounts, containers, and 
objects.  When other components need to perform any 
operation on an object, container, or account, they interact with 
the appropriate ring to determine its location in the cluster.  
OpenStack’s Swift’s rings are responsible for determining 
which devices to use in failure scenarios [3, 28-29, 31, 36].  

OpenStack’s Swift divides the storage space into partitions. 
In our case, 18 bits of the GUID are used to decide on which 
partition a certain file should be stored, i.e., there are 218 = 262 
144 partitions.  These partitions are divided into 6 zones. Zone 
0 is mapped to storage nodes 0 to 3, zone 1 is mapped storage 
nodes 4 to 7, and zone 5 is mapped to storage nodes 20 to 23.  
Storage nodes 0 to 7 are handled by one switch, nodes 8 to 15 
by one switch and nodes 16 to 23 by one switch (see Figure 1).  
There are 24*16 = 384 disks in the system and the 262 144 
partitions are spread out with 682 or 683 partitions on each 

                                                      
7 Memcached is a distributed memory object caching system. 
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Figure 1:  The physical structure of the test configuration 
 

disk (262144/384 = 682.666…).  If a file is stored on partition 
X, the two extra copies of the file (there are three copies of 
each file) are stored on partitions (X + 87 381) mod 262 144, 
and (X + 2 * 87 381) mod 262 144 (262 144 / 3 = 
87 381.333…). 

 
3 Experimental Setup 

 
3.1 Test Configurations 

 
Four different storage system configurations have been 

evaluated: 
 
1. Compuverde Unstructured  
2. Compuverde Structured  
3. OpenStack’s Swift (an unstructured storage system)  
4. Gluster (a structured storage system)  
 
The measurements use two load generating clients (see 

Figure 1).  We use the same load for each configuration; the 
only part that has been changed is the interface.  The clients 
work synchronously and report the result to the master 
controlling the clients (see Figure 1), which is responsible for 
monitoring the throughput. 

In the configurations 1 and 2, Compuverde 0.9 has been 
installed on CentOS 6.2.  In the configuration 3, version 1.4.3 
of the OpenStack’s Swift (release name: Diablo) has been 
installed on Linux Ubuntu 10.04 and in the configuration 4, 
Gluster 3.2.5 has been installed on CentOS 6.2. 

The same hardware is used in each configuration.  The 
storage system consists of 24 storage nodes, each containing 
sixteen 2 TB disks, i.e., a total of 32 TB for each node and 768 
TB storage for all 24 nodes.  With the exception of 
configuration 1 (Compuverde Unstructured), all accesses to the 
storage system are routed through four proxy (gateway) 
servers.  In configuration 1 the clients communicate directly 
with the storage system.  

Each proxy server has an Intel Quad processor, 16 GB 
RAM, and two 10 Gbit network cards. Each storage node has 
an Intel Atom D525 processor, 4 GB RAM, and a 1 Gbit 
network card.  All storage nodes and proxy servers run the 
Linux operating system.  There are four switches that are used 
to transmit data from four proxy servers and two load 
generating clients to the 24 storage nodes.  The central switch 
is a Dell 8024F and the other three switches are Dell 7048Rs.  
Four proxy servers are connected to the central switch via four 
20 Gbit fibers.  Two load generating clients are connected to a 
central switch via two 10 Gbit fibers and the central switch is 
connected to the other three switches via three 40 Gbit fibers. 

The four test configurations will now be described. 
 
3.1.1 Compuverde Unstructured.  In this configuration 

three copies of each file are created.  The proxy servers are not 
used, and the load generating clients communicate directly 
 with the storage nodes. 
 

3.1.2 Compuverde Structured.  In this case two copies of 
each file are created.  The reason for this is that this case will 
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be compared with Gluster, and Gluster only supports two 
copies of each file.  The two load generating clients 
communicate with two proxy servers each.  The 
communication protocol between the load generating clients 
and the proxy servers is NFS/CIFS. 

 
3.1.3 OpenStack’s Swift.  OpenStack’s Swift has three 

copies of each file, and the two load generating clients 
communicate with two proxy servers each. 
 

3.1.4 Gluster.  Gluster dedicates a volume to the lock file. In 
Gluster the storage nodes are arranged in pairs to obtain fault 
tolerance.  This means that there are only two copies of each 
file.  The communication protocol between the load generating 
clients and the proxy servers is NFS/CIFS. 
 
3.2 Test Cases 

 
Two kinds of tests are considered in this study: performance 

tests and recovery tests. 
 
3.2.1 Performance Tests.  In these test cases the read, write 

and delete performance are measured: 
 
There are four test cases for each test configuration: 
 

1. We measure write performance.  In these tests, a number 
of clients (implemented as full speed threads, i.e., as 
threads that issue write requests in a tight loop without 
any delay and with only minimal processing done 
between each request) running on two servers (see Figure 
1) create files of size 0 KB, 10 KB, 100 KB, 1 MB and 
10 MB, respectively.  Writing 0 KB corresponds to 
creating a file and will be reported separately.  We vary 
the number of clients using the steps 2, 4, 8, 16, 32, 64, 
128, and 256 clients.  A write operation is a combination 
of Open, Write and Close.  We measure MB/s and 
operations/s. 

2. We measure read performance.  In these tests, a number 
of clients (implemented as full speed threads) running on 
two servers (see Figure 1) read files of size 0 KB, 10 KB, 
100 KB, 1 MB and 10 MB, respectively.  Reading 0 KB 
corresponds to opening a file and will be reported 
separately.  We vary the number of clients using the steps 
2, 4, 8, 16, 32, 64, 128, and 256 clients.  A read operation 
is a combination of Open, Read and Close.  We measure 
MB/s and operations/s. 

3. We measure delete performance.  In these tests, a number 
of clients (implemented as full speed threads) running on 
two servers (see Figure 1) delete files of size 10 KB, 100 
KB, 1 MB and 10 MB, respectively.  We vary the 
number of clients using the steps 2, 4, 8, 16, 32, 64, 128, 
and 256 clients. We measure operations/s. 

4. For the structured storage case, we use the SPECsfs2008 
performance evaluation tool8.  The tool can be 

                                                      
8 http://www.spec.org/sfs2008. 

configured to issue a number of I/O Operations per 
Second (IOPS), and it then measures the actual achieved 
throughput in terms of IOPS and the average response 
time. 

 
The performance tests for small file sizes (0 KB and 10 KB) 

have been done by writing/reading/deleting 1,000,000 files 
to/from the storage nodes, but for larger file sizes (100 KB, 1 
MB and 10 MB) the test has been continued by 
writing/reading/deleting files (between 50,000 and 100,000 
files) until the results become stable. 

Gluster and OpenStack’s Swift do not use caching. In order 
to get fair results, the test has been done for Compuverde for 
two cases: caching and No Caching (NC).  We limited the NC 
tests to 1 MB files 

 
3.2.2 Recovery Tests.  In these tests we measure how long it 

takes for the storage system to reconfigure itself after a node 
failure.  We measure recovery performance by reformatting 
one storage node.  When a storage node is reformatted the file 
copies stored on that node are lost.  We measure the time until 
the system has created new copies corresponding to the copies 
that were lost. 

 
4 Read and Write Performance 

 
In this section we look at the read and write performance of 

each of the four configurations.  In Section 5 we compare the 
different configurations.  

 
4.1 Compuverde Unstructured 

 
Figures 2a and 2b show that the throughput is low when the 

number of clients and the size of the files are small; the 
throughput increases when the number of clients and the size 
of the files increase.  It can also be noted that the performance 
in case of using cache in the storage nodes, e.g., 1 MB files, 
does not differ much compared to the case that using NC, i.e., 
1 MB (NC). 

 
4.2 Compuverde Structured 

 
Figures 3a and 3b show that the data transfer rate is low 

when the number of clients and the size of the files are small 
and it increases when the number of clients and size of files 
increase.  It can also be noted that the performance difference 
between using caching in the storage nodes, e.g., 1 MB files, 
and using NC, i.e., 1 MB (NC), is approximately a factor of 1.5 
when writing; there is no significant difference between 
caching and NC when reading.  

 
4.3 OpenStack’s Swift 

 
Figures 4a and 4b show that in cases of writing/reading 

the files of files of large size (10 MB), the data transfer rate 
increases rapidly when the number of the clients increases.  
While in case of writing files with size of 1 MB and less the 
curve is quite stable. 
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( a ) Write performance test results (compuverde unstructured)     

( b ) Read performance test results (compuverde unstructured)   

Figure 2: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that 
are writing/reading simultaneously 

 
(a) Write performance test results (compuverde structured)   

 
(b) Read performance test results (compuverde structured)   

Figure 3: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that 
are writing/reading simultaneously 

 
(a) Write performance test results (openstack)         

 
(b) Read performance test results (openstack)    

Figure 4: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that 
are writing/reading simultaneously 
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4.4 Gluster  
 

Figures 5a and 5b show that the data transfer rate for large 
files increases when the number of clients increases.  However, 
for smaller files the transfer rate does not increase so much 
when the number of clients increases. 

In fact, when the number of clients exceeds a certain value 
the transfer rate starts to decrease.  The reason for this is 
probably that Gluster contains contention bottlenecks 
internally.  According to the performance test results, the 
utilization for the storage nodes never exceeds 50 percent for 
Gluster.  For the other test configurations we get much higher 
utilization values.  This is an indication that there are internal 
performance bottlenecks in Gluster. 

 
5 Comparing the Distributed Storage Systems 

 
We have evaluated two unstructured storage systems 

(OpenStack’s Swift and Compuverde Unstructured) and two 
structured storage systems (Gluster and Compuverde 
Structured).  In Section 5.1 we compare the performance of the 
two unstructured systems and in Section 5.2 we compare the 
performance of the two structured systems.  In Section 5.3 we 
compare the time to recreate all the file copies in a storage 
system in case one of the storage nodes fails. 
 
5.1 Compuverde Unstructured vs. OpenStack’s Swift  

 
We talked to several cloud storage providers and it turned 

out that most of their users store small files with an average 
size of 1 MB.  Therefore, the performance tests are compared 
only for 1 MB.  Figure 6a shows that the write performance of  
 

Compuverde Unstructured for 256 clients (both when using 
caching and NC) was roughly 800 MB/s, while for 
OpenStack’s Swift it was around 200 MB/s.  Figure 6b shows 
that the read performance of Compuverde Unstructured for 256 
clients (both when using caching and NC) was 1600 MB/s to 
 

 1900 MB/s, while for OpenStack’s Swift it was around 600 
MB/s.  Figure 6c shows that the create files performance of 
Compuverde Unstructured for 256 clients was 10,118 
operations/s in case of caching and 6,500 operations/s in case 
of NC; for OpenStack’s Swift it was 600 operations/s.  Figure 
6d show that the open files performance of Compuverde 
Unstructured for 256 clients was 11,153 operations/s in case of 
caching and 12,826 operations/s in case of NC; for 
OpenStack’s Swift it was 4,500 operations/s.  The delete files 
performance test has been done by deleting files with a size of 
1 MB.  Figure 6e shows that the delete files performance of 
Compuverde Unstructured for 256 clients was 9956 
operations/s in case of caching and 8,145 operations/s in case 
of NC; for OpenStack’s Swift it was 498 operations/s. 

 
5.2 Compuverde Structured vs. Gluster 

 
The write/read/delete performance tests have been done for 1 
MB file size.  Figure 7a shows that the write performance of 
Compuverde Structured for 256 clients was 655 MB/s in case 
of caching and 450 MB/s in case of NC; for Gluster it was 164 
MB/s.  Figure 7b shows that the read performance of 
Compuverde Structured for 256 clients was 780 MB/s in case 
of caching and 821 MB/s in case of NC; for Gluster it was 270 
MB/s.  Figure 7c shows that the performance for Compuverde 
Structured for 256 clients was 7,370 operations/s in case of 
caching and 1,239 operations/s in case of NC; for Gluster it 
was 241 operations/s.  Figure 7d shows that the performance 
for Compuverde Structured for 256 clients was 11,116 
operations/s in case of caching and 12,458 operations/s in case 
of NC; for Gluster it was 1,029 operations/s.  The delete files 
performance test has been done by deleting files of 1 MB size.  
Figure 7e shows that the performance for Compuverde 
Structured for 256 clients was 3,548 operations/s in case of 
caching and 3,367 operations/s in case of NC; for Gluster it 
was 441 operations/s. The test results using the Spec2008sfs 
tool are shown in Figures 8a and 8b.  Figure 8a shows that 
 

 
(a) Write performance test results (gluster)    

 
(b) Write performance test results (gluster)        

 

Figure 5: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the number of clients that 
are writing/reading simultaneously 
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(a) Write performance compuverde unstructured vs. 

openstack’s swift                           

 
(b) Read performance compuverde unstructured vs. 

openstack’s swift    

                        

 
(c) Create files performance compuverde unstructured vs. 

openstack’s swift    

 
(d) Open files performance compuverde unstructured vs. 

openstack’s swift    

                        

 
(e) Delete files performance compuverde unstructured vs. openstack’s swift   

Figure 6:  Comparison between the performance of compuverde unstructured and openstack’s swift for files of 1 MB 
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(a) Write performance compuverde structured vs. gluster   

   

 

 
(b) Read performance compuverde structured vs. gluster   

 
 

 
(c) Create files performance compuverde structured vs. gluster

 
 

 
(d) Open files performance compuverde structured vs. gluster  

 
 

 
(e) Delete files performance compuverde structured vs. gluster   

Figure 7:  Comparison between the performance of compuverde structured and gluster for files of 1 MB 
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(a) Performance evaluation compuverde structured vs. gluster   

 
(b) Performance evaluation compuverde structured vs. gluster  

Figure 8:  Comparison between the performance of compuverde structured and gluster when using the spec2008sfs tools 
 

both Compuverde Structured and Gluster meet the number of 
requested IOPS for 3000 IOPS and 4000 IOPS.  However, 
when the requested numbers of IOPS increased to 5000 and 
above, Compuverde Structured delivered a number of IOPS 
relatively near to the requested one, while Gluster delivers a 
number of IOPS that is significantly lower than the requested 
number.  Figure 8b shows the result of response time test that 
has been obtained using the Spec2008sfs performance 
evaluation tool.  Compuverde’s response time is in the range of 
3.5 ms to 17 ms, while for Gluster the response time is 
between 10.1 ms and 33.3 ms. 
 
5.3 Recovery Test 

 
We did the recovery test for all four different configurations.  

The same recovery test has been run twice for each 
configuration.  

As shown in Table 2, the recovery time for Compuverde 
Unstructured was 18-19 minutes and the recovery time for 
OpenStack’s Swift was approximately 10 hours.  This means 
that the recovery time for Compuverde Unstructured is 
approximately 30 times faster than that of OpenStack’s Swift.  
One reason for this difference is that Compuverde uses 
multicasting whereas OpenStack’s Swift uses DHT.  Another 
reason could be that OpenStack uses the rsync9 command that 
is responsible for maintaining object replicas, consistency of 
objects and perform update operations.  It seems that using 
rsync command introduces a significant overhead which 
causes a performance decrease.  The situation is similar for 
Compuverde Structured with a recovery time of 22 minutes 
compared to Gluster with recovery time of approximately 18.5 
hours.  Compuverde Structured recovery time is thus 
approximately 50 times faster than Gluster recovery time.  As 
discussed before, Gluster uses DHTs instead of multicasting. 
Gluster also uses rsync for replication.  Another reason for the 
low performance of Gluster compared to Compuverde 

                                                      
9 rsync is a file transfer program for Unix-like systems.  

Structured is the architecture that is used by Gluster for repli-
cation.  In Gluster the proxy servers are doing the self-healing 
while in Compuverde Structured storage nodes are performing  
 
Table 2:  Recovery test results 

Compuverde 
Unstructured 19 minutes (1140 s) 18 minutes (1080 s) 

Compuverde 
Structured 22 minutes (1320 s) 22 minutes (1320 s) 

OpenStack 9 hours 27 minutes 
(34020 s) 

10 hours 16 minutes 
(36960 s) 

Gluster 18 hours 27 minutes 
(66420 s) 

18 hours 29 minutes 
(66540 s) 

 
the self-healing by themselves without involving any proxy 
servers which results in a many-to-many replication pattern.  

 
6 Discussion and Related Work 

 
Compared to conventional centralized storage systems, a 

distributed storage system allows for not only increased 
performance and redundancy, but also affords improved 
energy efficiency and lowering the carbon footprint of the 
system.  For instance, by removing the need for a central, high-
powered storage controller and replacing it with low wattage 
storage nodes, such as the ones used in the experiments 
presented in this paper.  Furthermore, a distributed storage 
systems built from standard hardware components also makes 
it possible to exchange the individual nodes with nodes with a 
lower carbon footprint as technology advances.  Reducing the 
carbon footprint and enabling green computing are two 
important aspects of Cloud Computing. 

In recent years, many research and development efforts have 
been done in cloud computing, specifically on distributed file 
systems.  In [24] the authors have done a performance compar-
ison between several distributed file systems such as Hadoop, 
MooseFS (MFS) and Lustre.  They have compared functional-
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ities as well as I/O performance of these three file systems. 
In [12] the authors have done a performance comparison 

between Google File System (GFS) and MFS in terms of 
reliability, file performance and scalability.  According to their 
comparison GFS and MFS are both reliable since resource files 
are backed up.  But they found a single point of failure in 
master on GFS while it does not exist on MFS.  In MFS there 
is a need for manual backup after a problem has occurred.  
Their comparison of the file performance indicates that GFS is 
used for large GB file size while MFS supports small files 
better.  

 
7 Conclusion 

 
We have compared two unstructured storage systems for 

Cloud Computing (Compuvede Unstructured and Openstack’s 
Swift) and two structured storage systems for Cloud 
Computing (Compuverde Structured and Gluster). 
Compuverde uses multicasting and Openstack’s Swift and 
Gluster use Distributed Hash Tables (DHTs).  The 
architectural advantage of DHTs compared to multicasting is 
that we do not need to broadcast requests; the hash table gives 
us the address of the nodes that store the requested data and we 
avoid communication overhead.  However, the obvious 
disadvantage with DHTs is that we need to run a hash function 
to obtain the address of the data, which introduces processing 
overhead.  This means that the architectural decision, whether 
to use DHTs or multicasting will introduce different kinds of 
overhead: processing overhead for DHTs and communication 
overhead for multicasting. 

We have compared the performance using a large storage 
system and realistic workloads, including the well-known 
Spec2008sfs test tool.  Our experiments show that 
Compuverde has higher performance than the two systems that 
use DHTs.  The performance advantage of Compuverde is 
particularly clear when the number of clients that issue 
simultaneous accesses to the system is high, which is typical in 
Cloud Computing.  The performance advantage of 
Compuverde is not a result of caching in the storage nodes, 
i.e., the performance of Compuverde using NC is still 
significantly higher than that of the other two systems.  We 
believe that the main reason for the higher performance is that 
Compuverde uses multicast instead of DHTs.  The 
communication overhead introduced by multicasting does 
obviously not affect the performance as negatively as the 
processing overhead introduced by DHTs.  

The recovery tests show that Compuverde recovers from a 
storage node failure much faster than OpenStack’s Swift and 
Gluster.  Again, we believe that the use of multicast instead of 
DHTs is the main reason.  However, this cannot be the only 
reason for the significant difference in recovery times.  One 
additional reason for Gluster to perform slower than 
Compuverde Structure could be that Gluster involves proxy 
servers in self-healing while Compuverde uses the many-to-
many replication pattern and only involves storage nodes in 
self-healing.  Another reason could be that Compuverde has 
built its own recovery protocol from scratch, whereas 

OpenStack’s Swift and Gluster base their protocols on existing 
applications (e.g., rsync).  Moreover, the processor utilization 
for Gluster never exceeds 50 percent, even for high loads.  
This indicates that there are internal performance bottlenecks 
in Gluster, which probably contributes to the relatively long 
time for self-healing. 

 
References 

 
[1] Zainul Abbasi, Garth Gibson, Brian Mueller, Jason 

Small, Marc Unangst, Brent Welch, Jim Zelenka, and 
Bin Zhou. “Scalable Performance of The Panasas Parallel 
File System,” FAST’08 Proceedings of the 6th USENIX 
Conference on File and Storage Technologies, USENIX 
Assosiation Berkeley, CA, USA, pp. 17-33, 2008.  

[2] Amplidata, “Amplistor:  Unbreakable Object Storage for 
Petabyte-Scale Unstructured Data,” White Paper, April 
2011. 

[3] Joe Arnold, Dr. Jaesuk Ahn, and Dr. Jinkyung Hwang, 
“Commercialization of OpenStack: Object Storage,” 
OpenStack Conference Commercialization of Object 
Storage, Korea, April 2010. 

[4] Andrew Beekhof, Christine Caulfield, and Steven C. 
Dake, “The Corosync Cluster Engine,” Proceedings of 
the Linux Symposium, Ottawa, Ontrio, Canada, July, pp. 
85-99, 2008.  

[5] Angelos Bilas, Michail D. Flouris, Yannis Klonatos, 
Thanos Makatos, and Manolis Marazkis, “Using 
Transparent Compression to Improve SSD-Based I/O 
Caches,” EuroSys’10 Proceedings of the 5th European 
Conference on Computer Systems, ACM NewYork, NY, 
USA, pp. 1-14, 2010. 

[6] Scott A. Brandt, Darrell D. E. Long, Carlos Maltzahn, 
Ethan L. Miller, and Sage A. Weil, “Ceph: A Scalable, 
High-Performance Distributed File System,” University 
of  California, Santa Cruz, Proceeding of  the 7th Con-
ference on Operating Systems Design and Implemen-
tation (OSDI’06), pp. 307-320, November 2006. 

[7] Caringo CAStor, “CAStor: The Market Leading Object 
Storage Engine,” Product Brief, September 2011. 

[8] Caringo CAStor, “Castor the Market Leading Object 
Storage Engine” [Online], Available: 
http://www.caringo.com/downloads/datasheets/Caringo-
CAStor-Object-Storage, pdf, September 15, 2011. 

[9] Lei Chai, Ranjit Noronha, Dhabaleswar K. Panda, and 
Thomas Talpey, Designing NFS with RDMA for Security, 
Performance and Scalability, Technical Report OSU-
CISRC-6/07-TR47, The Ohio State University, 2007. 

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. 
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. 
Gruber, “BigTable:  A Distributed Storage System for 
Structured Data.” Journal:  ACM Transactions on 
Computer Systems (TOCS), New York, USA, Volume 
26, Issue 2, Number 4, June 2008.  

[11] Robert Chansler, Hairong Kuang, Sanjay Radia, and 
Konstantin Shvachko, “The Hadoop Distributed File 
System ” Yahoo! Sunnyvale, California USA, 2010.  



 IJCA, Vol. 20, No. 4, Dec. 2013 206

[12] Ping Chen, Xuerong Gou, and Jianwei Li, “Research of 
Distributed File System Based on Massive Resource and 
Application in the Network Teaching System,” 
Proceedings of the International Conference on 
Advanced Intelligence and Awareness Internet, Beijing, 
China, pp. 154-158, 2011.  

[13] Santa Clara, “Amplidata Demonstrates Highly Scalable 
and Reliable Storage Solutions for Massive Cloud 
Deployments at Intel Development Forum,” Article at 
PRNewswire, Calif., September 2011. 

[14] F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, 
and S. Weerawarana, “Unraveling the Web Services web:  
An Introduction to SOAP, WSDL, and UDDI,”  
Proceedings of the IEEE Internet Computing, NY, USA, 
pp. 86-93, 2002. 

[15] Julian Dymcek, Survey of  Distributed Hash Tables, Lane 
Department of Computer Science and Electrical 
Engineering, West Virginia University, Morgantown, 
WV, 2011. 

[16] EMC Atmos, “EMC Atmos Cloud Optimize Storage for 
Web Services,” Whitepaper, April 2010. 

[17] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, 
and Julian Satran, “Object Storage: The Future Building 
Block for Storage Systems,” 2nd International IEEE 
Symposium on Mass Storage Systems and Technologies, 
Sardinia, 2005. 

[18] Bin Fan, Garth Gibson, Wittawat Tantisiriroj, and Lin 
Xiao, “DiskReduce:  Replication as a Prelude to Erasure 
Coding in Data-Intensive Scalable Computing,” Parallel 
Data Laboratory, Carnegie Mellon University, 
Pittsburgh, PA, 2011. 

[19] Roy T. Fielding and Richard N. Taylor, “Principles 
Design of the Modern Web Architecture,” ICSE’00 
Proceedings of the 22nd International Conference on 
Software Engineering, ACM New York, NY, USA,  pp. 
115-150, 2000. 

[20] William Geisel, “Tutorial on Reed-Solomon Error 
Correction Coding,” Technical Memorandum, NASA, 
TM-102162, August 1990. 

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak 
Leung. “The Google File System,” 19th ACM 
Symposium on Operating Systems Principles, Lake 
George, NY, October 2006. 

[22] Garth A. Gibson and Rodney Van Meter, “Network 
Attached Storage Architecture,” Magazine, Communica-
tions of the ACM, New York, November 2000. 

[23] Gluster Inc.  “An Introduction to Gluster Architecture” 
Whitepaper, 2011. 

[24] Wu Hao and Bai Songlin, “The Performance Study on 
Several Distributed File Systems,” Proceedings of the 
International Conference on Cyber-Enabled Distributed 
Computing and Knowledge Discovery, Beijing, China, 
pp. 226-229, 2011. 

[25] Michael Jakl, REST: Representational State Transfer, 
University of Technology Vienna, 2008. 

[26] Roberto Lucchi and Michel Millot, “Resource Oriented 
Architecture and REST,” JRC Scientific and Technical 

Reports, European Communities, Luxembourg, 2008. 
[27] Shunsuke Mikami, Kazuki Ohta, and Osamu Tatebe, 

“Using the Gfarm File System as a POSIX Compatible 
Storage Platform for Hadoop MapReduce Applications”, 
GRID’11 Proceedings of the 2011 IEEE/ACM 12th Inter-
national Conference on Grid Computing, IEEE 
Computer Society Washington, DC, USA, pp. 181-189, 
2011.  

[28] OpenStack, “OpenStack Object Storage: An Overview,” 
White paper, 2010. 

[29] OpenStack, LLC, “Welcome to Swift’s Documentation!” 
Swift v1.4.8-dev Documentation, 2011.  

[30] OpenStack Object Storage Admin Manual, OpenStack, 
“Consideration and Tunning,” 2011. 

[31] OpenStack, OpenStack Compute Admin Manual Manual, 
November 2011. 

[32] Sarp Oral, Galen Shipman, and Feiyi Wang, 
“Understanding Lustre FileSystem Internals,” Technical 
report, Oak Ridge National Laboratory (ORNL), Center 
of Computational Science, USA, 2009. 

[33] Liuis Pamies and I. Juarez, On the Design and Optimi-
zation of Heterogeneous Distributed Storage Systems, 
PHD Thesis, Department of Engineering Information in 
Mathematic, University Rovira in Virgili, July 2011.  

[34] Dhabaleswar K. Panda and Ranjit Noronha, IMCa:  High 
Performance Caching Front-end for GlusterFS on 
InfiniBand, Network-Based Computing Laboratory, 
Computer Science and Engineering, The Ohio State 
University, 2008. 

[35] George Parisis, “DHTbd:  A Reliable Block-Based 
Storage System for High Performance Clusters,” 
Proceedings of the IEEE/ACM CCGRID, UK, pp. 392-
401, 2011. 

[36] Ken Pepple, “Deploying OpenStack”, O’Reilly Media, 
ISBN 1449311059, August 2011. 

[37] Drew Robb, “Gluster Brings Open Source to 
Unstructured Data,” Storage Technology Features Article 
Published, August 2010. 

[38] P. Wang, “IP SAN- from iSCSI to IP-addressable 
Ethernet Disks,” Mass Storage Systems and 
Technologies, Proceedings, 20th IEEE/11th NASA 
Goddard Conference, pp. 189-193, 2003.  

 
 
 

Sogand Shirinbab (photo not available) is a Ph.D. student at 
the School of Computing at Blekinge Institute of Technology.  
She received her M.S. from Kristianstad University in 
Embedded Systems.  She is currently contributing in a project 
on virtualized and cloud-based test environments.  

 
 
 

Lars Lundberg (photo not available) has a Ph.D. in Computer 
Science from Lund University.  He has more than 14 years as 
full professor in Computer Systems Engineering and is 
currently the head of research at the School of Computing at 



IJCA, Vol. 20, No. 4, Dec. 2013 

 

207

Blekinge Institute of Technology.  He has worked with 
performance and capacity issues in a number of projects.  One 
of his main interest areas is efficient resource allocation, and 
he has developed a number of results in real-time scheduling 
for both single- and multi-processors.  Professor Lundberg is 
currently leading a project on virtualized and cloud-based test 
environments.  Dr. Lundberg has published more than 100 
articles in peer reviewed journals and conferences, and been 
the advisor for 11 Ph.D. students that have taken their doctoral 
degrees. 

 
 
 

David Erman (photo not available) received his Ph.D. degree 
in Telecommunication Systems at Blekinge Instititute of 
Technology in March 2008, where he is currently employed as 
a senior lecturer.  His academic background is in signal 
processing and computer science, before turning to computer 
networking, mainly focusing on P2P systems and overlay 
networks.  His research interests include distributed systems, 
large-scale media distribution and streaming, P2P 
communication, overlay networking, network coding, 
virtualization, cloud computing and cognitive networking.  
David has participated in several national and international 
research projects.  



208 IJCA, Vol. 20, No. 4, Dec. 2013

Budget Constrained Dataflow Scheduling for
Minimized Completion Time on the Cloud

Dabin Ding∗, Fei Cao∗, Dunren Che∗, Michelle M. Zhu∗, and Wen-Chi Hou∗

Southern Illinois University, Carbondale, Illinois 62901, USA

Abstract

Cloud computing provides high-end computing capabilities
so that users can access data and applications anywhere in the
world on demand and pay for what they use. It is emerging
as a promising computing paradigm for large-scale data inten-
sive queries, which are usually modeled as complex Directed
Acyclic Graph (DAG)-structured data processing dataflows
with arbitrary data operators as nodes and producer-consumer
interactions as directed edges. The optimization problem of
scheduling dataflows on the Cloud is a very complex and
challenging task which is similar to query optimization. Op-
timization must satisfy a variety of objectives and constraints,
while taking into account the particular characteristics of the
underlying Cloud environment. In addition to achieving mini-
mum query completion time, the commercialization of Clouds
requires policies to take users’ economic concerns as well.
In this paper, we formulate scheduling of dataflows onto
Cloud resources toward the objective of minimizing the query
completion time under certain budget constraint. A heuris-
tic scheduling algorithm, Layer-oriented Resource Allocation
within Budget constraint (LRA-B) is proposed and evaluated.
Experiments are conducted on numerous dataflows and Cloud
environment configurations, and the overall results are quite
promising and indicate the effectiveness of our algorithm.

Key Words: Cloud computing, dataflows, scheduling, query
completion time, budget constraint.

1 Introduction

Complex on-demand data retrieval and processing combining
the notions of query & search, information filtering & retrieval,
data transformation & analysis, and other data manipulations
[14] are typically represented by DAG-structured data
processing graphs (i.e., dataflows) whose nodes are arbitrary
data operators and directed edges are producer-consumer
interactions. Assume that terabytes of aerial imagery have
been collected for intelligence purposes and algorithms to
detect tanks, planes, or missile silos are available, it is a

∗Department of Computer Science, Email: {dabin, vicky}@siu.edu and
{dche, mzhu, hou}@cs.siu.edu

complex and time-consuming task to find these weapons if run
in a conventional manner. This query could be expressed in
SQL as follows:

SELECT count(Tanks), count(Planes), count(Missiles)
FROM Raw Aerial Imagery AND GPS Signal AND

WorldMap
WHERE [Analytical Requirements]
GROUP BY Location

The SQL query is optimized [15] and transformed into
an execution plan represented as a DAG-structured dataflow.
Scheduling the dataflow graph onto the resources of the un-
derlying distributed environment (i.e., Grid, Cloud, etc.) is
a well-known NP-complete problem [12]. Moreover, the
heterogeneity and dynamic status of distributed environments
complicate the scheduling optimization problem in order to
achieve objectives such as the completion time and monetary
cost.

Cloud computing has attracted much attention from the
research community [1] that evolved from a paradigm of
basic IT infrastructures to Grid computing, and to resource
provisioning services: infrastructures (IaaS), platforms (PaaS),
and software (SaaS) [11]. Meanwhile, Cloud computing
data centers are becoming increasingly popular for providing
high-end computing capabilities to end users as pay-as-you-go
services. Clouds offer their users the ability to lease resources
as long as needed, and charge based on a per time quantum
pricing policy. Moreover, data centers are making heavy use
of virtualization which allows a single server to run multiple
operating instances simultaneously [28] to achieve efficient
computing resource usage. A Virtual Machine (VM) is a
software based machine emulation technique that executes
other software in the same manner as the physical machine
for which the software is developed and executed [23].
The normal process of a data center operating with the use
of VMs for executing jobs (e.g., dataflows) is shown as follows:

(1) A data center provides various VM templates.
(2) When a job arrives at the data center, the scheduler

allocates the job with pre-configured VMs then starts it on

ISCA Copyright c© 2013
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proper servers.
(3) The job is executed in the VMs.
(4) After the job finishes execution, the VMs are shutdown.

To run dataflows on Clouds, dataflow characteristics (e.g.,
execution time of operators, amount of data generated, etc.),
Cloud network characteristics (e.g., bandwidth, etc.), Cloud
pricing policies, and more need to be considered. The optimal
trade-off between Quality of Service (QoS) and money spent
depends on the needs of the particular user concerned. Scien-
tific dataflow applications usually have the primary objective
of optimizing the completion time which depends on both the
data transfer time involved in staging the input and output data
and the computation time to execute them. However, users with
budget or quota constraints may not always desire the highest
possible level of QoS such as completion time.

Motivated by the above practices and concerns, we focus on
developing a dataflow scheduling algorithm on the Cloud based
on both time and money, namely, how to minimize completion
time under a budget constraint.

The key contributions of this paper are:

(1) Complex DAG-structured dataflow model intermixed
with different operator types.

(2) Novel time modeling with different operator types and
dynamic Cloud resource consideration.

(3) Novel monetary cost modeling considering both execu-
tion cost and data transfer cost.

(4) Time-dependent virtual machine allocation policy.
(5) Comprehensive comparison using various experimental

setups to show the effectiveness of our algorithm.

The paper is organized as follows. Section 2 gives an
overview of related works. Section 3 conducts analytical
models and Section 4 formulates the scheduling problem.
In Section 5, our scheduling algorithm design is described
in details. Section 6 explains the evaluation methodology,
simulation setup and the analysis of results. Section 7 presents
the conclusion and future work.

2 Related Works

Typically, some middleware are used to execute user-
defined code in distributed environments [27]. The
Condor/DAGMan/Stock set [17] is a representative technology
of High Performance Computing. It is a robust and easily
scalable mechanism for exploiting extensive scientific
infrastructures of mostly computational resources due to its
scheduling, monitoring and failure resilience capabilities.
Condor [24, 4, 5] is a specialized workload management
system for compute-intensive jobs and is designed to harvest
CPU cycles on idle machines. Directed Acyclic Graph
Manager (DAGMan) [5] is a meta-scheduler for Condor jobs
which manages dependencies between jobs at a higher level
than the Condor Scheduler. Running data-intensive workflows

with DAGMan is very inefficient [27, 21]. Many systems such
as Pegasus [8] and GridDB [18] use DAGMan as middleware.
Extensions of Condor to deal with data-intensive workflows
have been proposed [21], but they have not been materialized
yet to the best of our knowledge.

Middleware technologies such as Pegasus Workflow Manage
System [8], Gridbus Workflow Management System [29] and
so forth, are used to schedule the DAG-structured workflows
onto the distributed environments. Pagasus supports a higher
level of abstraction for both data and operations, and maps
workflows onto the Cloud to generate executable workflows
using a clustering approach to group short duration tasks as a
single task in order to reduce data transfer overhead and number
of VMs created. Therefore, it offers true optimization features,
as opposed to simple matching of operators to a fixed set of
resources. Nefeli [26] is a Cloud gateway that uses deployment
hints for efficient execution of workloads, being aware of
the resources and the actual locations of VMs. However,
this information may not be generally available especially in
commercial Clouds. Hadoop is a popular platform that follows
the Map-Reduce [6] paradigm to achieve fault-tolerance and
massive parallelism [27]. It is being used in companies like
Yahoo, Facebook, etc. to store and process extremely large
data sets on commodity hardware [25]. However, the Map-
Reduce programming model is very low level that requires
developers to write custom programs. Therefore, several high
level query languages have been developed on top of Hadoop,
such as Hive [25] and PigLatin [19]. Hive supports queries
expressed in a SQL-like declarative language (i.e., HiveQL),
which are compiled into Map-Reduce jobs that are executed
using Hadoop. In addition, HiveQL enables users to plug in
custom Map-Reduce scripts into queries [25].

Cloud computing environments facilitate applications by
providing virtualized resources that can be dynamically pro-
visioned [20]. Clouds are primarily driven by economics, the
pay-per-use pricing model is very appealing for both Cloud
providers and users [16]. However, dataflow applications
may incur large data retrieval and monetary cost when they
are scheduled taking into account only the completion time.
Therefore, in addition to optimizing completion time, data
transfer costs between resources as well as execution costs must
also be taken into account. There are several efforts that move
in the same direction as our work but solve a simpler version of
the problem. Kllapi et al [14] studied the space of alternative
schedules that arose from the optimization problem between
completion time and monetary cost, and investigated the time-
money trade-off for different types of dataflows and Cloud en-
vironments based on greedy and exhaustive algorithms. In [20],
Pandey et al. presented a particle swarm optimization based
heuristic to schedule general dataflows with one-dimensional
weighted average parameter of several metrics as the optimiza-
tion criterion. Silva et al. proposed a heuristic optimization of
independent tasks (no communication between tasks) having
the number of resources that should be allocated to maximize
speedup as the optimization criterion with a given predefined
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budget [22]. Moreover, parallelism and resource sharing
models for optimal scheduling of relational operators of query
execution plans with time-shared (e.g., CPUs, disks, etc.) and
space-shared (e.g., memories) resources and communications
are generalized to arbitrary operators [27, 10]. Our difference
with the aforementioned efforts falls on the following aspects:
(i) A new methodology, layer-oriented resource allocation
algorithm, is adopted to solve the scheduling problem. (ii)
A new time modeling in accordance with dynamic virtual
machine allocation policy in Cloud infrastructure is considered.
(iii) a more thorough experiment is conducted to study the
impact of different factors on our scheduling algorithm. Those
factors include data center and dataflow size, operator types,
data transfer sizes and computing and link unit cost.

3 Analytical Models

We construct the dataflow scheduling model as the dataflow
operator graph and the underlying Cloud environment (i.e.,
data center) to facilitate the mathematical formulation of the
scheduling problem.

A dataflow is constructed as a Directed Acyclic Graph
(DAG) G(ops, flows). Vertices represent arbitrary concrete
operators (ops) and edges represent data transferred between
two operators (flows). An operator in ops receives a data
input from each of its preceding operators, and is modeled
as op(exec, tran, Z, type), where exec is the execution time
of an operator, tran is the data transfer time between two
connected operators, Z denotes the aggregated and complexity
normalized input data size, and type is a flag either equal
to pipeline (PL) or store-and-forward (S&F ). PL type
(e.g., from databases, select operator) means execution can
start as soon as some data inputs from its preceding opera-
tors (producer) is available, whereas S&F type (e.g., from
databases, sort operator) means execution cannot start until
all data inputs from its preceding operators (producer) arrive.
A flow between two operators, producer and consumer [14],
is modeled as flow(producer, consumer, data), where data
is the size of data transferred. To generalize our model, if a
dataflow has multiple starting or ending operators, a virtual
starting or ending operator of complexity zero can be created
and connected to all starting or ending operators without any
data transfer along the edges. The parameters of a dataflow are
given in Table 1.

The Cloud environment (i.e., a data center) is where the VMs
will be reserved, deployed and run on physical servers. We
consider a general Cloud environment where both prior VM
reservation and on-demand requests are supported. Thus, our
resource allocation status for a data center is time-dependent,
which means that the available resources of each server and
bandwidth of each network link are changing from time to time
due to the in-advance reservation requests. The parameters of a
Cloud network are given in Table 2.

For general purposes, we construct a data center as a com-
plete network graph G(servers, links) consists of a set of

Table 1: Parameter of a dataflow model

Parameters Definitions
G(ops, flows) dataflow
ops set of arbitrary concrete operators
flows data transferred between two operators
op(exec, tran, operator
Z, type)
exec execution time of an operator
tran data transfer time between two connected

operators
type operator type
Z aggregated and complexity normalized

input data size
flow(producer, a flow between two operators
consumer, data) (producer & consumer)
data size of data transferred between two

connected operators (producer &
consumer)

Table 2: Parameter of a Cloud network model

Parameters Definitions
G(servers, links) the Cloud environment
servers set of servers in a data center
links network links in a data center
server(cpu, vm) a server in a data center
cpu computing power of a server
vms set of VMs allocated on a server
vm(p, tstart, tshut, size) a VM allocated on a server
p computing power of a VM
tstart the start time of a VM
tend the end time of a VM
size size of a VM
link(bw, delay) network link between two servers
bw network bandwidth
delay minimum link delay
ξM unit executing price of a VM

M ($/hour)
λXY unit executing price of network

link from server X to server Y
($/hour)

servers and network links. A server in servers is modeled as
server(cpu, vms), where cpu is its computing power and vms
is the set of VMs allocated on the server. A VM is modeled
as vm(p, tstart, tshut, size), where p is its computing power,
tstart and tend are its start time and shut down time, respective-
ly, and size is the size of the VM. We assume 5 different sizes
of VMs: small, small-medium, medium, medium-large, and
large which consume 20%, 40%, 60%, 80%, and 100% of their
allocated server’s capacity, respectively. The unit execution
price of a VM depends on its size, the larger the size, the
higher the charge. A link between two servers is modeled as
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link(bw, delay) where bw is the network bandwidth between
them, and delay is the minimum link delay.

A schedule SG of a dataflow G is an assignment of its
operators onto VMs on servers in a data center (Figure 1). An
assignment is modeled as assign(op, server). Time T (SG)
and cost C(SG) denote the completion time and the monetary
cost of a schedule SG of a dataflow G. The parameters of a
schedule are given in Table 3.

Cloud Concrete Operator

Flows

Assignment

Figure 1: Dataflow scheduling with assignment of operators to
virtual machines on cloud servers

Table 3: Parameter of a schedule

Parameters Definitions
assign(op, server) assignment of op to server
T (SG) completion time of a schedule SG

C(SG) monetary cost of a schedule SG

3.1 Time Modeling

As usable Cloud resources are dynamic, the allocable com-
puting power of server X at time t is represented as cpuX,t.
Whenever the allocable capacity of a particular server changes,
a new time t′ will be used. In other words, the computing
power during time slot [t, t′] is constant. For example, during
time interval [t1, tn], the allocable computing power can be
set is CPUX,t1,tn = (cpuX,t1,t2 , cpuX,t2,t3 , ..., cpuX,tn−1,tn).
The maximum computing power we can reserve during time
interval [t1, tn] will be the minimum value of all time slots:
cpuX,t1,tn = min(CPUX,t1,tn). As in the Cloud environ-
ment, the provider always has some types of pre-configured
VMs, so the largest VM we can allocate on a server should
be the largest one which is smaller than cpuX,t1,tn , defined as
pX,t1,tn = max(pX,t1,tn < cpuX,t1,tn).

Figure 2 shows an example of three VMs scheduled on one
server during different time slots. For example, VM1 reserves
60% of the server’s general capacity from t0 to t2; VM2
reserves 20% from t1 to t4; VM3 reserves 40% from t3 to t4.

The available computing power of this server from t0 to t4 will
be sets of PX,t0,t4 = (40%, 20%, 80%, 40%), thus the maxi-
mum allocable computing power from t0 to t4 would be 20%.
Similarly, the available bandwidth of a network link is defined
in the same way: the maximum link bandwidth bwXY,t1,tn

during time interval t1 and tn will bemin(BWXY,t1,tn) where
BWXY,t1,tn = (bwXY,t1,t2 , bwXY,t2,t3 , ..., bwXY,tn−1,tn).

20%

40%

60%

80%

Timet0 t1 t2 t3 t4t0 t1 t2 t3 t4

VM1

(60%)

VM2 (20%)

VM3

(40%)

Server

Capacity

Time

Server

Capacity

100%

Figure 2: Cloud server allocated capability during the time
interval [0, t4]

The network communications which perform data
transfers are injected between the operators of a
flow(producer, consumer, data) if producer and consumer
are assigned to different servers. According to [14], always
two data transfers are injected, one attached after producer,
and another attached before consumer. To calculate the
completion time of a dataflow, two types of operators, namely
PL and S&F must be addressed separately as discussed in the
following paragraphs.

Pipeline: Let A and B be two connected PL operators
with flow(A,B,DA→B) (where B’s preceding operators
are all PL operators). We assume that the execution time of
both operators are fully overlapped. Let the assignments of
A and B be assign(A,X) and assign(B, Y ), respectively,
with X 6= Y . Let ZA denote the aggregated and complexity
normalized input data size on A,

(1) the execution time of A during time interval [t1, tn] is
computed as:

execA,X,t1,tn = ZA

pX,t1,tn (1)

(2) the data transfer time, which is injected into the execution
ofA at various time slots [tp, tq] during time interval [t1, tn] as
shown in Figure 3 is computed as:

tranAB,XY,t1,tn =
∑

∀[tp,tq ]∈[t1,tn]
( DA→B

bwXY,tp,tq
+ delayXY )

(2)
(3) the running time of A is:

tA,t1,tn = max(A.exec+ tran,B.exec+ tran) (3)
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Time
t1 t2 t3 t4 t5 t6 ...…                     tn-2 tn-1 tn

Server 

Capacity 

100%

Operator A 

Execution Time

Data Transfer

Time

Figure 3: PL operator A intermixed with data transfer time
during the time interval [t1, tn]

Store-and-Forward: Let A be a S&F operator with
assign(A,X). For every operator B (either PL operator or
S&F operator) with flow(A,B,DA→B) and assign(B, Y )
with X 6= Y ,

(1) the execution time of A during time interval [t1, tn] is
computed as:

execA,X,t1,tn = ZA

pX,t1,tn (4)

(2) the data transfer time, which is attached after the execu-
tion of A as shown in Figure 4, is computed as:

tranAB,XY,t1,tn = DA→B

bwXY,t1,tn
+ delayXY (5)

Time

Server 

Capacity 

100%

Operator A

Time
t1 t2 t3 t4 t5 t6 ...…                     tn-2 tn-1 tnt1 t2 t3 t4 t5 t6 ...…                     tn-2 tn-1 tn

Execution Time

Data Transfer

Time

Figure 4: S&F operator A with data transfer time attached
during the time interval [t1, tn]

(3) the running time of A is:

tA,t1,tn = A.exec+ tran (6)

3.2 Cost Modeling

Cloud providers lease resources that are typically charged
based on a per time quantum pricing policy which is typically
one hour [14], and Cloud resources are charged for exactly the
time being used. We define the total monetary cost C(SG) of a

schedule SG as the sum of costs of executing each operator and
the sum of costs of all the data transfers:

(1) Cost of executing operator A on VM M :

Cexec(A) = ξM × exec(A) (7)

Note that VMs with different sizes have different unit execu-
tion prices.

(2) Cost of data transfer of flow(A,B,DA→B) from VM
M located on server X to VM N located on server Y :

Ctran(DA→B) = λXY × tran(AB)
(8)

(3) Total monetary cost C(SG) of a schedule SG:

C(SG) =
∑

∀A∈ops
Cexec(A) +

∑
∀DA→B∈flows

Ctran(DA→B)

(9)

4 Problem Formulation

4.1 Query Language Abstractions

Generally, user requests take the form of queries in some
high-level declarative or visual language such as SQL, Hive
[25], etc. The optimization process examines all execution
plans that could answer the original query(s) and choose
the one that is optimal and satisfies user’s quality of service
requirements. As introduced in [27], our optimization process
has the following three different layers of abstractions:

Operator Graphs: These are the query(s) decomposed into
data operators as nodes, and operator interactions in the form of
producing and consuming flows as directed edges. Operators
encapsulate data processing algorithms and could be custom-
made by end users. These processing algorithms include
compositions, aggregations and partitions, and be more specific
like filtering, ranking, sorting and so on.

Concrete Operator Graphs: Similar to operator graphs
except that their nodes are concrete operators, i.e., software
components that implement operators in a particular way and
carry all necessary details for their execution. For this layer,
the critical step is to determine an operator’s implementation.
In general, there might be multiple alternative implementation
for an operator, e.g., a fast but limited by memory version and a
slow but only limited by disk size one. A more specific example
is the JOIN operator, which has multiple implementations:
hash join has short execution time but limited by memory;
nested − loops join has little memory consumption but long
execution time.

Execution Plans: Similar to concrete operator graphs except
that their nodes are concrete operators that have been allocated
resources for execution and have their initialization parameters
set. The modeling and methodology presented in this paper
belong to this stage of optimization. The main focus is to
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allocate the resource needed for execution of operators and
flows.

4.2 The Scheduling Problem

We define the scheduling problem as follows:

Definition 1. Cloud users can submit dataflow applications G
(e.g., queries) from anywhere around the world. Our objective
is to find the scheduling such that the completion time of the
dataflow T (SG) is minimized within a pre-specified financial
budget constraint (Figure 5).

min
all possible schedules

T (SG), such that C(SG) ≤ budget
(10)

Time

Monetary 

Cost

Time

Budget Constraint

Schedule

Figure 5: The optimization problem (the chosen schedule is
shown with an arrow)

5 Algorithm Design

We develop a Layer-oriented Resource Allocation within
Budget constraint (LRA-B) for budget constrained users. The
general steps of our algorithm are as follows:

Step 1. Create Virtual Execution Plan (VEPlan).
Step 2. Adjust VEPlan to satisfy the budget constraint if

necessary.
Step 3. Map the VEPlan to the Cloud, and generate VM

allocations.
The pseudocode of LRA-B is provided in Algorithm 1 and

the details of the algorithm will be discussed in the following
sections.

5.1 Virtual Execution Plan

A VEPlan is a virtual schedule for the execution of the
given dataflow based on the basic configuration of the Cloud
environment, such as the node power, link bandwidth, etc.
It is called virtual because it does not consider the mapping
to VMs and creating of VM allocations. For example, after
acquiring the VM power, we can calculate the time required
to compute each operator, and by acquiring the link bandwidth

Algorithm 1 LRA-B
Input:
G(ops, flows): The dataflow graph
G(servers, links): The Cloud environment
budget: The budget constraint

Output:
SG: The schedule that minimizes the T (SG) under budget

constraint

1: C(SG) = createMinV EPlan();
2: if C(SG) > budget then
3: return NO POSSIBLE SCHEDULE;
4: end if
5: C(SG) = createMaxV EPlan();
6: if C(SG) > budget then
7: adjustV Eplan();
8: end if
9: mapV EPlan();

and link delay, we can calculate the data transfer time of each
link. With this information, an execution plan is constructed
and query completion time and cost can be estimated. As the
Cloud environment usually provides different VM templates,
the VEPlan can be constructed with different VM templates,
which leaves the space for adjusting VEPlan to satisfy the
budget constraint. A Max-VEPlan is a virtual execution created
with the maximum processing power, i.e., 100% of server
capacities. On the contrary, a Min-VEPlan is created with the
minimum processing power, i.e., 20% of server capacities. A
Min-VEPlan gives out the longest query completion time and
usually requires least cost for estimation purpose. When the
VEPlan is mapped onto the actual servers in the Cloud, the
final query completion time and cost might vary a lot from
the estimation got from this step: firstly, operators may share
servers which save the data transfer cost; secondly, when an
operator is scheduled to be executed in a certain time slot,
the query completion time might be prolonged due to time
slot unavailability. The technique we adopted to make precise
estimation of the cost of the VEPlan will be discussed in the
following section.

5.2 Cost Estimation

A Min-VEPlan is used to estimate the minimum cost required
to execute the dataflow. If the budget is lower than the
minimum cost, then there is no possible schedule within this
budget (Line 1-4 in Algorithm 1). The ideal case is that the
estimated cost of the VEPlan is the same as the actual execution
cost. However, it is impossible since the scheduling problem is
NP-Hard.

Proposition 1. To achieve better query completion time, an
operator with indegree > 1 can share the server with at least
one of its preceding operators to save the data transfer time.
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By taking the savings on the data transfer time into consider-
ation, to make the estimation more precise, the cost of at least
one of data transfer cost for each operator with indegree > 1
can be deducted from the estimated cost of the VEPlan.

5.3 Adjust Virtual Execution Plan

As shown in Algorithm 1, a Max-VEPlan will be created
at the beginning. If the estimated cost is greater than budget,
then a swapping procedure is invoked to adjust the VEPlan and
lower the cost, as shown in Algorithm 2. The objective of this
procedure is to reassign those operators on non-critical paths
to result in the minimum increase in T (SG) for the largest cost
savings under the budget limit. The operators on the critical
path will not be reassigned. In each iteration, an operator is
selected and the VM template is swapped to a lower one if
available. The iteration ends up with a reduced total cost with
similar T (SG). To determine the swapping strategy, Increase
for operator A as the iteration increase between the current and
new configurations are computed in (11):

Algorithm 2 adjustVEPlan
Input:
G(ops, flows): The dataflow graph
G(servers, links): The Cloud environment
V EP (ops, flows): The VEPlan
Budget: The budget constraint

Output:
V EP ′(ops, flows): The new VEPlan that satisfies the

budget constraint
1: V EP ′ = V EP ;
2: Calculate C(SG)Cur;
3: while C(SG)Cur > Budget do
4: findCriticalPath(V EP ′);
5: for all operator A ∈ G do
6: if A ∈ CriticalPath then
7: Continue;
8: end if
9: Calculate IncreaseA by assigning A to smaller VM;

10: end for
11: A = min{Increase};
12: V EP ′ = updateVEP(V EP ′, A.smallerVM());
13: Calculate C(SG)Cur;
14: end while
15: return V EP ′;

IncreaseA = T (SG)New−T (SG)Cur

C(SG)Cur−C(SG)New (11)

where T (SG)Cur and C(SG)Cur are the query completion
time and cost of current schedule, respectively; T (SG)New

and C(SG)New are the query completion time and cost of
A reassigned with a smaller VM size, respectively. The

algorithm keeps reassigning by considering the smallest values
of Increase. Our selection criteria of having large cost saving
and small query completion time increase will result in small
value of Increase.

5.4 Mapping Virtual Execution Plan to the Cloud

This procedure is to find the available resources on Cloud
servers to assign dataflow operators. The goal is to achieve
the minimum query completion while mapping the VEPlan
generated in the previous step to the Cloud environment. It
starts with a layer-oriented sorting and then schedules the
operators layer-by-layer that optimizes the query completion
time T (SG).

5.4.1 Layer-oriented Sorting. A layer-oriented sorting of
a DAG is a linear ordering of its vertices constrained by the
edge dependencies [3]. By applying layer-oriented sorting to
the DAG-structured dataflow, we can separate operators into
different layers starting from layer 1 based on happen-before
dependencies and operator types. Operators in the same layer
can be executed simultaneously. To decide which layer should
an operator A belong to, as there are two types of operators:

Case 1: if A is a PL operator and all its preceding operators
pre(A) are PL operators, then A will be assigned to the same
layer as its preceding operators, e.g., operator 3 in Figure 6;

Case 2: ifA is a PL operator but at least one of its preceding
operators pre(A) is a S&F operator, then A will be assigned
to the next layer, e.g., operator 9 in Figure 6;

Case 3: if A is a S&F operator then A will be assigned to
the next layer, e.g., operator 7 in Figure 6;
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Figure 6: Layer-oriented sorting of DAG-structured dataflow

Such layer-based sorting can be done in linear time. Each
operator will be given a priority value depending on their
computing and communication loads. Operators on the CP
(shown in dark shade in Figure 6) will be given the highest
priority value compared with other operators from the same
layer. If there are more than one CP operators in one layer,
the higher priority gives to producer. An example is shown in
Figure 6 (both operator 2 and 3 are CP operators, but higher
priority will be given to operator 2).
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5.4.2 The Resource Allocation Procedure. The resource
allocation procedure seeks to assign operators to servers with
the goal of minimizing query completion time. Operators
starting from layer 1 will be scheduled on the appropriate
VMs allocated on different servers with the lowest partial
earliest completion time from the starting operator. If there
are multiple starting/ending operators, a virtual starting/ending
operator with zero complexity is inserted and connected to all
starting/ending operators. The shaded operators in Figure 6
compose the CP. The order to schedule these operators is
indicated by the numbers. Whenever we start to schedule
operators from a new layer, operators with higher priorities
will be scheduled first to have a better chance to utilize good
resources.

Algorithm 3 mapVEPlan
Input:
G(ops, flows): The dataflow graph
G(servers, links): The Cloud environment
V EP (ops, flows): The VEPlan
Budget: The budget constraint

Output:
SG: The schedule that minimizes the T (SG) under budget

constraint
1: Apply layer-oriented sorting to G(ops, flows);
2: for i = layer 1 to MaxLayer do
3: Sort operators in current with descending order of

priority.
4: for all operator A ∈ current layer do
5: for all server Sk ∈ available servers do
6: Calculate partial query completion time pT (SG)k

and partial cost pC(SG)k if A is assigned to Sk;
7: end for
8: Select the schedule(s) with minimum pT (SG), if there

are several schedules with the same pT (SG), choose
the one with minimum partial cost;

9: end for
10: end for
11: Calculate T (SG) and C(SG) ;
12: return T (SG), C(SG);

In Algorithm 3, line 1 applies layer-oriented sorting to all
operators. Lines 2-10 aim to schedule operators layer-by-layer.
Line 3 sorts the operators in the current layer according to
their priorities. For all the operators in the current layer, lines
5-7 seek to find the allocation that will give the best partial
query completion time as well as minimum partial cost. For
example, for operator A, the computing power requirement
and time span needed can be obtained from the VEPlan and
schedules for preceding operators. To allocate operator A to
a server S, we need to find an appropriate time slot on S to
satisfy the time requirement of A. After looping through all
the severs, A will be assigned to the server that achieves the
minimum partial query completion time. Line 11 calculates the
final query completion time T (SG) and cost C(SG). Line 12

returns the T (SG) and C(SG).

6 Experimental Evaluation

In this section, we describe the overall experimental setup
and the analysis of results.

6.1 Experimental Setup

6.1.1 Data Center and Dataflow Configurations. The
experiments conducted are characterized by three elements:

Cloud Environment: In our experiments, we realistically
assume that all the servers within a data center are homoge-
neous, i.e., they have the same resources (CPUs, memories, and
network, etc.).

Dataflow Structure: There are several commonly used
families of dataflows such as: Montage [13], Ligo [7], Cy-
bershake [9] and more generally Lattice [14], etc. The first
three are abstractions of actual dataflows that are used in real
applications, and Lattice is a purely synthetic dataflow family
that generalize the typical Map-Reduce dataflow [14]. To
ensure the generality of our model, dataflows with multiple
starting or ending operators can be converted to our general
model (as discussed in Section 3) by creating a virtual starting
or ending operator of complexity zero and connect it to all
starting or ending operators without any data transfer along the
edges.

We experiment with several sizes of dataflows which are
represented by a two-tuple (m,n) in Table 4, where m is the
number of operators, and n is the number of flows as defined in
the dataflow model.

Table 4: Dataflow Configurations

Dataflow Dataflow Size
ID m,n

1 10, 21
2 20, 43
3 40, 79
4 50, 96
5 50, 500
6 100, 205
7 200, 438
8 300, 601
9 400, 784
10 500, 1138

We develop a dataflow generator to randomly generate our
test dataflows. By giving two attributes of dataflows, m for
number of operators and n for number of flows, our dataflow
generator can automatically generate random dataflows with
varying parameters within a suitably predefined range of val-
ues: (i) aggregated and complexity normalized input data size;
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(ii) operator type; (iii) the number of flows and the data transfer
size between two operators. This generator will ensure that
each operator has at least one input edge and one output edge.

Operator Types: In our experiments, we examine complex
dataflows with intermixed PL and S&F operators. For the
dataflows with the same size, we examine the following five
cases:

(1) all operators being S&F operators
(2) 25% operators being PL operators, and 75% being S&F

operators
(3) 50% operators being PL operators, and 50% being S&F

operators
(4) 75% operators being PL operators, and 25% being S&F

operators
(5) all operators being PL operators

6.1.2 Performance Metrics and Experimental Scenarios.
The following performance metrics are considered:

• Dataflow query completion time
• Monetary cost

We evaluate our algorithm from the following experimental
scenarios:

• Impact of data center size
• Impact of unit execution price of servers and network links
• Impact of operator types
• Impact of data transfer sizes
• Impact of budget constraint
• Impact of dataflow size

By default for plotting figures, if not specify otherwise, the
dataflow used for demonstration is the 4th one G(50,96) in
Table 4 and the data center contains 100 nodes. The ratio of
server and link unit cost is set as 10:1.

6.2 Analysis of Results

6.2.1 Impact of Data Center Size To study the impact of
data center size, we create two data centers of different sizes.
Data center 1 contains 10 nodes and data center 2 contains 1000
nodes. Individual node and link capacities are the same in both
data centers. Impact of data center size on query completion
time (bar) and cost (plot) is given in Figure 7. We evaluate
two dataflows running on two data centers. Case 1 and Case
2 are the results of dataflow 6 running on data center 1 and
Case 2 is dataflow 6 running on data center 2. Case 3 is the
result of dataflow 10 running on data center 1 and Case 4 is on
data center 2. We can conclude from the figure that for smaller
sized dataflows the performance is irrelevant to the size of data
center, but for larger dataflows (e.g., dataflow 10 contains 500
operators compared to 100 in dataflow 6) the performance is
better on larger data center although the costs are almost the
same in different sized data centers for a same dataflow.
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Figure 7: Impact of data center size

6.2.2 Impact of Unit Execution Price of Servers and
Network Links. We consider the following seven different
ratios of server unit execution prices vs. network link unit
execution prices (as shown in Table 5). For all cases, the sum
of server and link unit price remains the same. Impact of server
and link price on query completion time (plot) and cost (bar)
are given in Figure 8.

Table 5: Unit Execution Price Ratios: Server vs. Network link

Case ID Ratio
1 1 : 100
2 1 : 10
3 1 : 5
4 1 : 1
5 5 : 1
6 10 : 1
7 100 : 1
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Figure 8: Impact of unit execution price of servers and network
links (Dataflow ID = 4)
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From the figure, we can see that the cost of dataflow is
sensitive to link cost, as the ratio of link vs. server decreases,
the total cost decrease. The difference between VEPlan and
actual cost is huge for the first few cases, and decreases as
the ratio of link vs. server decreases. The reason for this is
the node sharing between operators, as the link transfer cost
composes a great potion in VEPlan while it does not in actual
plan. Meanwhile, the changing of ration have no effect on the
completion time.

6.2.3 Impact of Operator Types. For the dataflows with
the same size intermixed with different percentages of PL and
S&F operators, we examine the five cases indicated in the
experimental setup section. As we can observe from Figure
9, generally, the completion time decreases as percentage of
PL increases, but the cost increases since the PL operators
will consume more server time while they are waiting for data
inputs from predecessors. For Case 4, where there are 75% of
PL operators and 25% of S&F , there is a huge increase for
the actual cost and completion time. The few scattered S&F
operators might be the bottleneck for execution and cause the
increase in time and cost.
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Figure 9: Impact of operator types

6.2.4 Impact of Data Transfer Sizes. We examine two
dataflows, 4 and 5, for the impact of data transfer sizes and
the results are shown in Figure 10. Dataflow 4 contains 50
nodes and 96 links, while dataflow 5 contains 50 nodes and
500 links. For each link in dataflow, take the original transfer
size as 1, we double the transfer size as the test case increases.
For Case 1 to 5, the transfer size increase by 1, 2, 4, 8 and
16 times. Although the transfer size increases exponentially,
for dataflow with smaller number of links, the cost (bar) and
query completion time(plot) only have linear increases; but for
dataflow with relatively large number of links, the cost (bar)
and query completion time (plot) have polynomial increase.

6.2.5 Impact of Budget Constraint. The impact of budget
constraint is studied for dataflow 4. The result is shown in
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Figure 10: Impact of data transfer sizes (top: Dataflow ID = 4,
bottom: Dataflow ID = 5)

Figure 11 and the budgets are set to the cost of Min-VEPlan
adding 0%-100% of the difference between the cost of Min-
VEPlan and Max-VEPlan).
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Figure 11: Impact of budget (Dataflow ID = 4)

From Figure 11 we can conclude that the completion
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time(plot) remains the same after a certain point, while the
actual cost still decreases as the budget decreases. From the
user’s point of view, if the completion time is not a big concern,
the budget should be set as close to minimum as possible,
otherwise the budget should be set as close to maximum as
possible.

6.2.6 Impact of Dataflow Size. To evaluate the impact of
dataflow size on query completion time and monetary cost, we
experiment with 9 dataflows of sizes from small to large as
indicated in Table 4. The fifth dataflow in Table 4 is excluded
in this study since its links number is incomparable with others.
The actual query completion time (plot) and cost (bar) are given
in Figure 12. The budget for each dataflow is set to 80% of
its Max-VEPlan. Generally, as the size of dataflow increases
linearly, the query completion time and cost increase linearly
too.
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Figure 12: Impact of dataflow size

7 Conclusion

In this paper, we formulate scheduling of dataflows on-
to Cloud resources under the objective of minimizing the
query completion time under certain budget constraints. A
heuristic scheduling algorithm, Layer-oriented Resource Al-
location within Budget constraint (LRA-B) is proposed and
evaluated. LRA-B first calculates a Min-VEPlan to check
if scheduling is available under the given budget constraint,
and then calculates a Max-VEPlan and adjust the VEPlan
by keeping reassigning the operators on non-critical paths to
results in the minimum increase in query completion time
for the latest cost savings until the cost is within the budget
constraint. Finally the VEPlan is mapped to the Cloud while
minimizing the query completion time by adapting a layer-
oriented mapping strategy and keeping selecting the minimum
partial query completion time for each operator. Experiments
are conducted on numerous dataflows and Cloud environment
configurations, and the overall results are quite promising and
indicate the effectiveness of our algorithm. Our future plan
is to run our experiments on a local private Cloud, called

Saluki Cloud established and managed by Eucalyptus with a
few Beowulf clusters. We also would like to extend our model
to consider various factors such as energy consumption and
resource utilization of data centers.
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Abstract 

 
This paper1 addresses the problem of energy-aware job 

scheduling for underlying cloud nodes using cooperative game 
theory.  The objectives are on resource utilization 
maximization and the power consumption minimization 
without violating the job’s latest completion time (Makespan).  
Cloud computing can deliver platform, software, storage and 
data services through web browsers as a metered service.  Due 
to the skyrocketed electricity cost and a large number of active 
users, Cloud service providers are highly motivated to adopt a 
performance guaranteed and cost-effective job scheduler with 
low power consumption and high job throughput.  Therefore, 
an energy-aware job scheduling algorithm is proposed for a 
bag of tasks based on the premise of Nash Bargaining Solution 
(NBS), which can ensure Pareto-optimality.  In such a 
cooperative theoretical gaming, each job seeks to locate a 
cloud machine that can both guarantee the low energy under 
certain makespan constraint.  Simulation results show that our 
approach significantly reduces the power consumption by 
strategically selecting appropriate mapping nodes for 
prioritized task modules.  Our approach consistently achieves 
lower energy consumption and higher resource utilization than 
some comparable methods. 

Key Words:  Cloud computing; game theory; NBS; power 
consumption; makespan. 

 
1 Introduction 

 
High Performance Computing (HPC) systems are playing an 

ever-increasing important role for large-scale scientific 
applications that are collaborated among a group of distributed 
scientists [17].  In order to meet the intensive data and 
computing needs, HPC system together with the managing 
software needs to be designed as a highly flexible, scalable and 
cost-effective platform [49].  Cloud infrastructure provides 
users with on-demand and pay-on-the-go services realized 
through virtualization technology [9].  There are three 
basically main types of cloud services, namely Infrastructure-
as-a-Service (IAAS), Platform-as-a-Service (PAAS) and 
Software-as-a-Service (SAAS).  SAAS allows users of the 
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cloud to run different software over web browsers remotely.  
PAAS provides users with an environment to run their 
applications using specific development environments.  
Furthermore, IAAS has virtual machines (VMs) that can be 
setup and configured on physical nodes to execute the assigned 
job modules.  Gartner estimated that he market opportunity for 
Cloud computing will be worth around $150 billion by 2014 
[18].  In recent years, the electricity cost on managing data 
centers for clouds have skyrocketed [3, 5].  For example, a 
typical data center with 1,000 racks consumes about 10 
Megawatt of power during normal operation [17].  Over the 
past decade, the cost of servers running and cooling systems 
has increased by 400 percent [15].  Thus, the design and 
development of a power efficient cloud infrastructure have 
become a critical research area in today’s HPC system.  From 
the cloud provider’s view, high job throughout is desired to 
satisfy as many user requests as possible with the limited 
computing and networking resources.  The Service level 
Agreement (SLA) between provider and customers must also 
be met to provide some guaranteed Quality of Service (QoS).  
Many researchers have been working on efficient resource 
management/job scheduling strategies to reduce the energy 
consumption.  Hardware manufactures on the other hand, 
focus more on the power-efficient chip and technology design 
(e.g., [12, 29, 44, 52]).  Incorporating power management to 
scheduler design adds complexity due to the difficulty of 
balancing power optimization with other objectives [20, 49].  
Several techniques have been applied to decrease energy 
consumption [46].  Dynamic Voltage Scaling (DVS) technique 
has been used as one of the effective techniques that scale the 
CPU frequencies without compromising the execution end-
time [8, 19, 50].  The cloud scheduling tackles the energy issue 
from a higher software level and such optimized problem has 
been proven to be NP-complete [51].  Thus, we propose a 
heuristic energy-aware job scheduling algorithm that takes into 
account both makespan and energy consumption as well as 
higher utilization rate.  Since the minimized energy 
consumption and execution time are two contradicting 
objectives, a tradeoff is sought by using cooperative game 
theory to find a better payoff for both factors (makespan and 
power consumption).  We formulate our problem as a min-
min-max optimization problem.  Since min-min-max 
optimization has a high complexity, we convert the min-min-
max problem optimization into the max-max-min problem 
optimization based on previous work [25].  In addition to the 
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low complexity of a max-max-min problem, Pareto optimality 
from the Nash Bargaining Solution can be guaranteed [25].   

The rest of the paper is organized as follows.  A survey of 
cloud scheduling algorithms is given in Section 2.  
Mathematical models for cloud meta-modules, cloud 
environments, and energy consumption are constructed in 
Section 3.  The makespan and power consumption as two 
conflicting objectives is proved in Section 4, thus optimizing 
both at the same time is not possible.  The problem is then 
formulated as min-min-max problem optimization.  The 
mathematical model and a cooperative game-based approach 
with the objective function of reducing both makespan and 
power consumption of cloud jobs are proposed in Sections 5 
and 6.  The details of the algorithm are presented in Section 7.  
Simulation results are given in Section 8.  Finally, the 
conclusion can be found in Section 9. 

 
2 Related Works 

 
Many researchers have studied the problem of scheduling a 

bag of tasks onto heterogeneous computing nodes with 
guaranteed completion time and low power consumption.  
Some of these studies proposed approaches using the DVS 
model to adjust the frequency of processor while others 
incorporated methods to optimize the dynamic power 
management [21].  Energy and time optimization using game 
theory has been gently investigated in the cloud.  Young 
Choon Lee and Albert Y. Zomaya [30] proposed a scheduler 
named Energy-Conscious Scheduling (ECS) to minimize the 
energy consumption for precedence-constrained applications 
with DVS.  Samee Ullah Khan and Ishfaq Ahmad [25] 
developed a cooperative technique for mutli-constrained multi-
objective Generalized Assignment Problem (GAP) with DVS 
technique in computational grids.  Kim et al. [26] proposed an 
energy-aware scheduling algorithm for bag-of-tasks 
applications with each subjected to specific deadline 
constraint.  Garg et al. [17] proposed near-optimal energy 
efficient scheduling polices to determine the scheduling order 
of data center to minimize some factors such as 2CO , cooling 
system, and power consumption.  Chen et al. [10] proposed 
three online solutions strategies to control the power 
consumption for running servers based on steady state 
querying analysis, feedback control theory, and a hybrid 
mechanism.  Zhu et al. [50] proposed two novel power-aware 
scheduling algorithms for task sets with and without 
precedence constraints for multiprocessor systems.  Their 
algorithm was based on the concept of slack sharing among a 
set of processors.  The scheduling techniques reclaimed the 
time unused by a task to reduce the execution speed.  Bradley 
et al. [7] presented a solution for power consumption problem 
via workload history.  Lawson and Smirni [28] designed an 
algorithm that can dynamically scale the number of processors 
in order to decrease the power consumption by turning the 
nodes into sleep modes.  Huang et al. [22] proposed a near 
optimal solution for heterogeneous processors to minimize the 
power consumption of the system and complete all tasks by 
their deadline.  Duy et al. [13] proposed a green scheduling 

algorithm to optimize server power consumption in cloud 
computing.  Their algorithm focused on how to turnoff unused 
servers and restart them to minimize the number of active 
servers.  Borgetto et al. [6] presented an integrated approach 
for VM migration, reconfiguration, and Physical Machine 
(PM) power management.  They proposed a method to unify 
all three above-mentioned methodologies.  The goals of the 
approach were to minimize energy consumption and minimize 
SLA violations.  Pinheiro et al. [37] proposed an idea of 
categorizing the servers in a cluster system into two groups, 
namely one group with high capacity executing the 
applications with intensive data while the other one can be 
switched-off to save the power.  Rountree et al. [38] proposed 
a technique to bound optimal energy saving using linear 
programming.  Ge et al. [19] proposed a distributed 
performance-directed DVS scheduling strategy to reduce the 
power consumption during parallel applications.  hey aim to 
decrease the power when the peak CPU performance is not 
necessary.  In general, power managements were heuristic [23, 
33, 43] or stochastic approaches [39, 41].  There were several 
commonly used job scheduling policies including Greedy 
(First Fit) and Round Robin algorithms in open-source cloud 
computing management systems such as Eucalyptus [35].  
Queuing system, advanced reservation and preemption 
scheduling were adopted by Open Nebula [36].  Nimbus uses 
some customizable tools such as PBS and SGE [34].  The 
Greedy and Round Robin were heuristic approaches that select 
adaptive physical resources for the VM to deploy without 
considering the maximum usage of the physical resource.  The 
queuing system, advanced reservation and preemption 
scheduling did not consider any balanced overall system 
utilization either. 

To our best knowledge, the work is different from most 
existing works in these two aspects:  (a) time dependency on 
cloud infrastructure: the underlying Cloud 
infrastructure/Virtual Machine (VM) resource availability is 
time-dependent because of the dual operation modes namely 
on-demand and reservation instances at various Cloud data 
centers.  (b) Game theory in cloud management: using game 
theory to calculate the Pareto optimality at a point that 
guarantees the best utilization rate for cloud management.  
Some previous game theory work only considers grid 
environment.  

 
3 Analytical Models 

 
We construct the analytical cost models for cloud meta-

modules, underlying cloud computer network graph, and 
energy consumption model to facilitate a mathematical 
formulation of the performance constrained optimization cloud 
scheduling problem. 

 
3.1 Cloud Task Model 
 

Cloud users submit their job modules via a job scheduler to 
be executed by cloud infrastructure.  To generalize our model, 
we consider N concurrent modules represented as 
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}.....,,,{ 21 NuuuT = .  Each module characterized by specific 
deadline uid  has to schedule by a VM on a particular node jv .  
Before the mapping process, modules are sorted in decreasing 
order of their deadline. 

 
3.2 Cloud Network Model 
 
 Figure 1 shows the cloud environment which is comprised of 
a set of M heterogeneous nodes that are fully interconnected.  
Since each node may support multiple virtual machines which 
can be reserved, deployed and run, each VM can use DVS to 
adjust the frequency needed in a certain (i.e., discrete clock 
frequencies starting from ( minf  to )maxf .  Scaling the 
frequency of processor jv  from up to down and vice versa 
depends on whether an assigned module is processor bound or 
not [17].  Overhead of clock frequency transition are not 
considered in this paper because it takes only (10ms-150ms) 
[30].  We consider a general cloud environment where VM 
reservation and on-demand requests are both supported, which 
means resource allocation status for the cloud network graph is 
time dependent.  It implies that available computing resources 
on each node and the bandwidth on each vary over time as 
shown in Figure 2.  We model the underlying cloud network as 
an arbitrary fully directed network graph ),( cmcmcm EVG = , 
where cmV  consists of a set of computing nodes 

)...,,,( 21 Mcm vvvV =  as well as directed edges between each 
pair.  Node jv  is featured by its normalized computing power 

including CPU and memory as tv jp , .  The communication 

link jiL ,  between nodes iv  to jv  is featured by bandwidth 

tvv jib ,,   and the minimum link delay 
ji vvd ,  . 

 

 
Figure 1:  Cloud network graph 

 
 Figure 3 shows an example of three reservation requests 
made on one cloud node during different time slots.  Lets 
assume that 30 percent of the node’s general capacity is 
reserved for request 1 from t0 to t2; request 2 reserves 20 
percent from t1 to t4; request 3 reserves 50 percent from t3 to t4.  
Taking this into consideration, we can get 

%)50%,70%,30%,50min(
4,0, =ttjvp  where 

4,0, ttjvp  is the 

maximal available computing power of node jv  from t0 to t4. 
Each node is occupied by one or a set of VMs to execute 
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Figure 2: Shows several allocable resource graphs for a cloud 
network at different time points due to resource 
allocation 
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Figure 3:  An example of three reservation requests 
 

assigned modules.  The largest VM instance that can be 
allocated on jv  from time t0 to tn  is computed as the maximum 

VM instance that can be launched using 
nttjvp ,0, .  The 

execution time of module ui on node vj during time slot t0 and tn 
is then computed as: 

 

 
tntvj

u
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Where 

iuC  denotes the computational cost of module iu .  

Similarly, the maximum link bandwidth along 
ji vvL ,  during 

time slot tm and tn is ).min( ,,, nmji ttvvb
 

 
3.3 Energy Model 

 
The energy model is based on the power consumption in 

complementary metal-oxide semiconductor (CMOS).  
Dynamic and static power are two factors that contribute to 
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COMS circuit power consumption [10, 17, 24, 47].  As 
reported in [2, 30], dynamic power has the main rule in 
adjusting power consumption of the system, which can be 
reduced by lowering the supply voltage using the DVS 
technique.  Dynamic power consumption of a CMOS-based 
microprocessor is defined to be:  

 
 efjv CfVP ××= 2  (2) 
 
Where V denotes the supply voltage, f is the frequency, and 

feC  is the effective switched capacitance of circuit.  From 
Equation (2), we can see that power consumption will be 
reduced by lowering supply voltage which is linearly 
proportional to CPU frequency [1, 14].  This implies that 
reducing supply voltage will also reduce the frequency of the 
processor.  From this point, we consider that the frequency of 
the processor for each computing node in cloud infrastructure 
can be scaled down from maxf  to minf  using DVS model.  
 
3.4 Meta-Module Execution Cost 

 
The cost of running meta-modules over cloud infrastructure 

is measured by the sum of the total time, during which virtual 
machines are setup on node jv  multiplied by the power 

consumption by node jv  to execute parallel modules via 

deployed VMs.  Power of node jv , 
nttjvp ,0,

, that shares 

between all virtual machines deployed on node jv  from time 
slot t0  to tn consider as the major contributor to adjust the total 
running cost for meta-modules which also has a significant 
effect on the execution cost of cloud systems.  The time spent 
on deploying VMs on node vj consists of the following 
components:  1) The startup time for the virtual machines 
includes selecting a virtual node and transferring a virtual 
image as well as the boot-up time, and is assumed to be a fixed 
value of startt .  2) The running time for every assigned module 
on that VM.  Suppose that a set U of modules are assigned to 
node vj to be executed on the KthVM, and start to run from 
time ts and end at time te in a sequential manner.  The running 
time for assigned modules on this VM is computed as: 
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3) When two modules run on the same VM, there could be 

some idle time after one module is completed and before 
the next module starts.  The total idle time for kv jVM ,  

can be calculated as: 
 
 ∑
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4) The time to shut down that virtual machine is assumed to 
a constant of shutt .  Consequently, we can define the 
Total Energy Cost as the summation of cloud modules 
computation cost cT  and cloud underlying network cost 

cE .  Mathematically, we can formulate: 
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 cc ETTEC +=  (7) 
 
Where N is the total number of modules from a particular job, 
M represents the total number of nodes that have been 
allocated in the system, and kv jvm , , where k ranges from 1 to 

Sj, which denotes the total number of VMs that have been set 
up on a computing node vj.  The Utilization Rate for one job 
with single module is defined as (8-1) or for multiple modules 
as (8-2): 
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It is understood from equation (7) that the cloud networkcost 

is linearly proportional to TEC of the system.  This implies that 
by lowering cE , TEC will be reduced and this results in 
maximizing UR of the cloud provider due to the goal that we 
achieved from equation (8), which states that UR is inversely 
proportional to TEC. From this point, we can state that total 
energy cost considers the dominating factor in equation (8-1) 
or (8-2) that leads us to get a higher throughput.  For 
convenience, we provide a summary of the notations used in 
the cost models in Table 1. 

 
4 Problem Formulations 

 
We first consider a bi-objective scheduling problem to 

minimize the total energy that is required by the computational 
nodes to setup VMs and execute the parallel assigned modules 
over cloud infrastructure and also minimize the makespan (i.e., 
completion time) of cloud modules at the same time.  
However, these are two conflicting objectives and cannot be 
achieved at the same time, as stated in Theorem 1, and then we 
propose a novel solution to find a Pareto-optimality point from 
NBS that balances these two conflicted objectives at point that 
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guarantees the minimum power consumption with the 
minimum acceptable makespan of assigned modules.  

 
  

Table 1:  Notations used in the analytical models 
Parameters Definition 
 The number of modules  

 The i – th computing module 

 The computational cost of module  
 The start time of module  
 The end time of module  

 The cloud network 

 The total number of nodes in the cloud 

 The  j – th computer  node 

 The source node 

 The destination node 

 The total computing power of node  

 The maximal percentage of computing power 
of VM on node  from  to  

 The network link between nodes and  

 The bandwidth of link  from  to  

 The minimum link delay of link  

 The time spent on setting up a virtual 
machine  

 The time spent on shutting down a virtual 
machine 

 The execution time of module  running on 
node  

 The k – th VM on the j – th node 

 The total number of VMs on the j – th node 

 The computing power of  

 set of modules scheduled on node vj’s k th 
VM 

 
Theorem 1:  The bi-objective problem of minimizing the 

makespan and minimizing the power consumption is non-
approximable within a constant factor. 

Proof:  Assume:  (1) there are two different scheduling 
strategies each with a different objective function.  A schedule 
S has the objective of minimizing the power consumption 
while schedule Q has the objective of minimizing the 
completion time (2) arrange of frequencies )( maxmin ff −  that 
operates the processor of computing node 1v  to execute the 
assigned module 1u  via virtual machine 1vm .  Thus, two cases 
exist. 

 
Case 1:  (Schedule S with the objective of minimizing 

power).  Schedule S starts with executing module 1u  over 
node 1v  using )( minf  to satisfy the objective of minimizing 
power. According to [25], the frequency of CPU is 
proportional to the energy consumption per operation in the 
system which means that operating the processor of computing 
node 1v  at a lower frequency )( minf  to execute the assigned 
modules 1u  over virtual machine 1vm  results in decreasing the 

system’s energy due to the fact that )( 2fE ∝ .  On the other 
hand, the time required to finish the execution process for a 
particular module 1u  is inversely proportional to the frequency 
of CPU [49].  This means that running CPU at lower 
frequencies will incur more time to complete an operation.  

Case 2:  (Schedule Q with the objective of minimizing 
makespan).  In the second case, Schedule Q operates the 
processor of computing node 1v  at the maximum level of 
frequencies and because the frequency of CPU for node 1v  is 
inversely proportional to the time required to execute and 
finish module 1u  due to )( 1−∝ tf  [25], the makespan of 
assigned module 1u  will decrease satisfying the deadline 
constraint.  But due to the fact that frequency is cubic 
proportional to power consumption )( 3fP ∝  [40], this will 
result in increasing/maximizing power consumption. 

Case 1 has the minimum power consumption with the 
maximum makespan while case 2 results in the minimum 
makespan and maximum power consumption.  None of the 
above cases is considered in our simulation because both cases 
contradict our assumption, which focuses on finding a tradeoff 
between the power consumption and the makespan for 
improved utilization rate.  Our algorithm tries to balance these 
two conflicting objectives using the Nash Bargaining Solution 
(NBS) from a theoretical cooperative game, which guarantees 
a bargaining point that results in high utilization throughput.  
In other words, the point that gives a minimum acceptable 
makespan operates at the minimum CPU frequency with the 
constraint of module’s deadline. 

 
Definition (1): Given: 
 
1- A module’s computation cost: 
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2- A module’s execution time: 
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3- An arbitrary computer network in a cloud environment 
:),( cncncn EVG =  
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4- Total Energy Cost TEC: 
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 cc ETTEC +=  (12) 
 

5- Cloud Utilization Rate for N  jobs: 
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With time-dependent link bandwidth and node computing 
power, we formulate the energy-aware job scheduling 
algorithm as: 
 

 ∑∑∑
= = =

⎜⎜
⎝

⎛
×=

N

i

M

j

jS

k
startipc tuCEMinimize

kjvvm
1 1 1

()(
,

 
 

 

) kjishutkv xtVMIdle
j ,,, ))( ++  (14) 

 

 kji
VM

uUu
ivmv x

p

C
uetMinimize

kjv

ii
kj ,,,

,

)(
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∑
=

∈
 (15) 

 

 
TEC

C
URMaximize iu

N
i 1=∑

=  (16) 

 
Subject to: 
 
(1) )())]([( , ij uikv duet <    
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Constraint (1) is a deadline of each module and execution time 
of module iu  should be less than its deadline.  Constraint (2) is 

near-optimal frequency between )( minf  and )( maxf  such 
that the utilization rate is maximized and the minimum 
makespan of the system is guaranteed. 
 

5 Cooperative Game Theory for Scheduling Cloud 
Modules 

 
In ordinary game, a finite number of players perform 

different strategies based on their payoffs’ matrices [11].  Their 
set of strategies can be a compact or a convex subset of a finite 
dimension of Euclidean space [16, 32].  A game, in general, 
can be either cooperative or non-cooperative as proposed by 
John Nash in [16].  Cooperative game has several more 
primitive advantages while non-cooperative game has a 
generalization of min-max theorem aimed at zero-sum games 

[16].  Cooperative games [25], a) do not require specific details 
of the players’ movement, b) are more powerful since their 
convergence to solution is stable and will not drift away from 
the equilibrium.  Nevertheless, non-cooperative games are 
highly susceptible for any changes in the strategy, which may 
lead to different results, and c) achieve a better performance of 
each player than in anon-cooperative game at the Nash 
equilibrium stage.  In light of this, a cooperative game has 
been used in our model since the focus is on minimizing the 
total energy required by the computational nodes to setup VMs 
and execute the assigned modules and maximizing the 
resource utilization over cloud infrastructure.  In particular, 
higher efficiency of the collective benefits can be reached 
through the NBS.  The players usually interact through 
bargaining of a partial desire of some payoffs in NBS, and they 
will keep interacting unless they reach their goal.  NBS ensures 
the Pareto optimality.  Thus, NBS provides a sufficient 
outcome to the proposed problem as in the cloud system, the 
cloud provider’s objective is to cooperatively minimize 
module’s completion time and power consumption, and the 
preference is finding the Pareto optimality.  A Cooperative 
game includes a set of M players who competes to achieve 
better performance.  Each player, j, })...,,1{( Mj∈  has an 

objective function and desired initial performance 0
jv  defined 

as the minimum performance required to be achieved by each 
player without any cooperation [48].  Player’s objective 
function is on a subset of  describing P where P is 
nonempty, closed and convex set.  As one of the objective’s 
goals for each player is to achieve the minimum performance 

0v  to be able to enter the game [48], our scheme considers that 
there is at least a vector })...,,,{( 21 Mffff =  performance 
for all players each component should be equal or superior 
than to 0v .  This implies that there is a set of achievable 
performance, L, in the system, and if we assume that 0v  is part 
of  in case { }0

0 ),( vvLvV ≥∈= [48], we can define 0v  as 
the initial agreement point in the game where each player 
should have by the system to be able to execute the assigned 
job modules.  Let , we define the idea 
of Pareto optimality in the cooperative game as based on some 
previous work [25, 48]: 

 
Definition 2:  v is Pareto optimal if for each ,, vzLz ≥∈  

then z = v.  In large scale cloud systems with a set of data 
centers and computing machines, a set of Pareto optimal points 
exist with a set of infinite number of points [48].  It is our goal 
to find the point from those infinite points to operate the 
scheduler that guarantees the system’s utilization rate. 

To find the desired point: - first, we define fairness axioms 
because it is considered as the satisfactory method in game 
theory [48], then we introduce the concept of NBS which can 
satisfy the above requirement.  Thus, the concept of NBS is 
defined according to the definition proposed by [25, 48]:  A 
mapping  is said to be a NBS under two 
conditions:  a) 0

0 ),( VvLS ∈  and b)  ),( 0vLS  is Pareto 



IJCA, Vol. 20, No. 4, Dec. 2013 

 

227

Optimal and it should satisfy axiom (1), (2), and (3).  The 
details of each axiom can be found in references [25, 48].  

 
Definition 3:  when ∗v  is given by ),( 0vLS , we can say 

that: 
 
1) ∗v  represents the Nash Bargaining Point. 
2) )(1 ∗− vf represents the set of Nash Bargaining Solutions. 
 
After defining NBS, we need to define the bargaining point 

as explained in references [25, 48].  
 
Theorem 2:  according to [25, 48], if jf  is injective on 0X  

where Jj∈ , and based on theorem 1 in [25], there are two 
problems that can be considered )( jvp  and )( jvp ′ :- 

 

)( jvp   ( )∏
∈

−
Jj

jj vxfMax 0)(  0Xx∈  (17) 

 

)( jvp ′  ( )∑
∈

−
Jj

jj vxfMax 0)(ln  0Xx∈  (18) 

 

Depending on the above considerations, we achieve: 
 
a) )( jvp  has a unique solution; the Nash Bargaining 

Solution set will be considered as a single point. 
b) )( jvp ′  is a convex and has a unique solution. 

c) It is understood that )( jvp  and )( jvp ′  is equivalent 

with each other which makes the unique solution of 
)( jvp ′  as NBS. 

 

There are two reasons behind the objective of )( jvp ′ : 
 

1) The low complexity of )( jvp ′ . 
2) )( jvp ′  always can guarantee the NBS 

 

From this point, we need to optimize the cloud scheduling 
problem as )( jvp ′ . 
 

6 Optimality and Fairness Scheduling Scheme for  
Cloud Meta Modules 

 
A few grid-scheduling schemes have been proposed based 

on the usage of the game theory.  Some of them simulated the 
algorithm based on the idea of Nash equilibrium point [27, 42] 
while other applies the concept of the Pareto-optimal points 
[25].  In [25], the Nash bargaining point was proposed as a 
suitable solution for scheduling a set of tasks each with 
deadline constraint onto heterogeneous computational grids.  
Our mathematical models are different from [25] in two 
aspects:  (1) The underlying Cloud infrastructure/Virtual 

Machine (VM) resource availability is time-dependent because 
of the dual operation modes namely on-demand and advance 
instances reservation supported by various cloud data centers.  
(2) Using game theory in cloud management to calculate the 
Pareto optimality at a point that guarantees the best utilization 
rate for cloud management.  Similar to [25] we consider the 
Nash bargaining point as the desired point for the cloud 
scheduler to schedule the cloud meta-modules onto cloud 
infrastructure and execute over deployed VMs due to the 
Pareto optimality and fairness property related to NBS [48].  
Achieving Nash bargaining point depends on the initial 
performance )( 0v  required for each machine by the system. 
Machines with the least minimum performance can compete 
for assigned job modules in the system.  To generalize our 
model: - first, we assume that there are N job modules,  
i= {1, …, N}, each with deadline constraint and M cloud 

computing nodes, j= {1, …, M}, each with j
kvm  virtual 

machines, k= {1, …, M}.  Each node jv  aims to increase its 
performance better than its initial performance for assigned 
modules.  All nodes in the cloud infrastructure have the same 
goal.  In this case, the cloud scheduler has to schedule the 
cloud modules such that the scheduling should be fair for all 
machines.  To address such an issue, we need to find the NBS.  
Because cloud architecture needs to meet the requirements of 
both the cloud users and cloud provider, NBS can be defined 
as solving the energy optimization problem for provider and 
also satisfying the deadline for each assigned module for users.  
Assuming that there are M nodes each with VM virtual 
machines compete for N job modules.  Each computing node is 
characterized by:  a) The Minimum Performance Rate (MPR) 
b) Peak Power Rate (PPR) c) Achieving performance higher 
than MPR with power consumption less than or equal to PPR 
d) the capacity for assigned job module iu  should be less than 
or equal to capacity of deployed VM.  Based on this 
assumption and according to theorem 2, NBS can be the 
solution of the following optimization problem as stated in 
[48]: 
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To construct our optimization problem defined by equation 

(19) and search the NBS for our cloud infrastructure, we need 
to firstly transform our problem into a cooperative game theory 
problem which considers each computing node as a player 
with the objective function of:  a) achieving at least the 
minimum performance to be able to enter the game and 
compete for assigned job modules b) executing assigned 
modules with the minimum completion time (under deadline 
constraint) and consuming the minimum power as much as 
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possible.  Similar to what is described in [25], the cooperative 
game theory in the context of cloud computing scheduling 
system is defined by the following: 
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We add constraint (3) because the power of each VM 

deployed on jv  should be a positive number to satisfy the 
cooperative game theory which states that the objective 
function, )(xf j , for each player is closed, nonempty, and 
convex set [25] that makes the dimension of the set a positive 
number.  Constraint (4) indicates that the total power 
consumption by VMs should be less than the total power of jv .  
According to [25], to reduce the complexity of our problem 
and guarantee the bargaining point, we convert the min-min-
max problem into the max-max-min problem which is 
equivalent to the above definition: 
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Cloud providers are always interested in decreasing the power  
 

and increasing the resource utilization of cloud infrastructure 
which is also the same objective as players in the second 
definition. Based on equation (19), the NBS can be achieved 
by solving the optimization problem of total cost of cloud 
infrastructure as: 
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6.1 The Strategy for Each Player/Machine 
 

The game starts with the condition that each player has to 
have initial performance 0

jv  to be able to execute the assigned 
modules.  Players satisfying this condition can enter the game 
and each one has an objective of optimizing both the energy 
and makespan.  Because the objective is to optimize 
cumulative performances, players collectively cooperate to 
find a decision that is both energy and makespan efficient.  
When the scheduler receives a new task, the players interact 
with each other and use their best strategies to determine some 
factors such as how long the execution time takes and how 
much power is needed to execute the task in a way to reduce 
the makespan while keeping the power consumption low.  In 
our cloud system, each computer node/machine has a different 
capacity during a different time slot.  Machines collectively 
search and find the best capacity from various nodes that 
guarantee both energy and makespan requirements.  This 
cooperative action continues until overall system performance 
improves.  

 
Theorem 3:  The total cost for cloud infrastructure depends 

on two factors while executing the assigned cloud modules: 
 

(a) Power consumption: Inspired by previous work [25], the 
power that consumed by VMs for executing job modules 
during different time slots: 
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To prove that for each machine kv  there is a unique solution 

jf , we apply Lagrange method [45] for our optimization 
problem, which is defined as:    



IJCA, Vol. 20, No. 4, Dec. 2013 

 

229

∑∑∑ ∑∑∑
= = = = = = ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−α=δ,α

N

i

M

j

jS

k

N

i

M

j

jS

k
kck PPRvPvf

1 1 1 1 1 1
)(),( lnl

 
 

∑∑∑
= = =

−δ+
N

i

M

j

jS

k
ckj Pv

1 1 1
)(  (21) 

 
Where vmik ...,...2,1;0,0 =≤δ≤α  denotes the Lagrange 
multipliers.  It is observed that constraints are linear in kv , and 

)(xf  of each machine is to reduce 
kjvvmpC

,
 which implies that 

the first-order Kuhn–Tucker conditions are necessary and 
sufficient for optimality [48].  The proof can be found in [25]. 

(b) VM overhead: Each computer node has an overhead 
caused by deployed VMs to execute job modules defined as: 
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Based on equation (20) and (22) we can define the NBS for 
total energy cost as: 
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7 Algorithm Design 

 
The power cost in cloud consists of two parts, namely useful 

power for VMs to execute assigned modules and the overhead 
to setup and tear down VMs as well as idle VM time.  By 
incorporating the equation (20) to mathematical model (12), 
we calculate the total energy and propose a heuristic Job 
scheduling approach referred to as Energy-Aware job 
Scheduling Algorithm (ESAD) within Deadline constraint for 
each assigned module.  Our algorithm aims to maximize the 
Utilization Rate (UR) in equation (25) by balancing the 
following two factors: a) reducing the power consumption, b) 
reducing the makespan or execution time of assigned modules 
in meta-task structure under certain deadline constraints.   The 
proposed algorithm starts with sorting the entire task modules 
in decreasing order of their deadlines and scheduling each 
module with a different deadline value.  When ESAD starts to 
schedule the job modules onto cloud infrastructure, it takes 
into account two levels of optimization:  a) Minimizing the 
overhead incurred by deploying and shutting down VMs 
including the VM idle time.  Existing VMs are considered as 
candidate to be reused for new module execution.  Reducing 
VM’s overhead improves the resource utilization rate as fewer 
resources are wasted.  b) Selecting appropriate nodes by cloud 

scheduler in cloud infrastructure to execute assigned module 
that satisfy the module’s deadline.  Controlling the frequencies 
that operate the processors of cloud infrastructure is done by 
DVS model as stated in section (4). 
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Satisfying phases 1 and 2 can achieve the objective of 
maximizing the utilization rate of cloud system.  The pseudo 
code of ESAD is presented in Algorithm 1. 
 
Algorithm 1: Energy-aware job scheduling algorithm 

(ESAD) within Deadline constraint 
 

Input: Meta-modules and set of DVS-enabled processors 
Output: A task scheduling scheme with the minimum power 
consumption and minimum makespan   
 

1 Sorted-Array1:  Sort modules in decreasing order of their 
deadlines 

2 for all ∈iu  Sorted-Array1 do 
3 compute power consumption for each node jv where   

}{Mj∈  

4 
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5 Sorted-Array2:  sort computing nodes in decreasing 
order of their power consumption 

6 for all ∈jv  Sorted-Array2 do 

7 if  the node jv
 
can satisfy the module iu ’s deadline 

then 
8 if jv  has allocated VMs then 

9 if )(
jvvm pp ≤  and ))()(( VMCuC i ≤  then 

10 call ReuseVM() to see the chance of reusing a 
VM on jv  

11 break 
12 end if 
13 end if 
14 call AllocateNewVM() to allocate a new VM on jv  
15 end if 
16 end for 
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17 Update 
jvp  

18 end for 
 
 

We provide below a brief description of the functions and 
methods that applied in Algorithm 1.  We categorize the 
functionality of the methods into two phases: 
 

Phase 1) Sorting job modules and cloud nodes:  Sorting both 
job modules and cloud nodes based on their deadlines and 
power consumption respectively.  Modules with critical 
deadlines are mapped onto computing nodes that result in 
reduced acceptable makespan with power consumption as 
much as possible.  Figure 4 illustrates an example of a 
mapping process for modules each with different deadline 
restriction onto cloud nodes. 

 

 
 
Figure 4: Cloud meta-modules mapped onto cloud 

infrastructure 
 

Phase2) Mapping Process:  To schedule module iu  onto 
computing node jv , three considerations have to be taken into 

account: a) How long it takes by node jv  to deploy VMs and 

how much power consumed to execute assigned module iu  b) 
Whether or not deployed VMs on node jv  has enough capacity 

to handle the computation cost of module iu  c)  The processing 
cost of module iu  on node jv  over virtual machine kvm  

should be less than the power cost of node jv  due to the peak 
power provided.  To address these considerations, first we 
compute the power consumption by each node in cloud 
infrastructure and then we sort all nodes in decreasing order of 
their power consumption.  Because each node is equipped with 
DVS model, the frequencies that operate the processors for the 

system have been controlled by the proposed algorithm.  ESAD 
always seeks for a frequency that operates the node jv ’s 

processor to execute module iu  with the minimum acceptable 
makespan and the minimum power consumption as much as 
possible.  Cloud nodes with the minimum power consumption 
execute the assigned job modules under two conditions: a) if 
and only if it guarantees the module’s deadline and b) matching 
between modules’ required capacity and VM’s capacity should 
be satisfied.  Two functions are called in this process: 
 

1) ReuseVM():  ESAD calls this method when the 
computing node jv  has allocated VMs.  ESAD starts 
checking whether or not we can reuse one of these VMs 
on node jv .  Two conditions must be satisfied if we reuse 
a particular VM:  a) The available VM resource should be 
sufficient to run the module iu . b) Any possible idle time 
between two assigned modules should be less than the 
time to shut down a VM and start up a new one. 

2) AllocateNewVM ():  If the computing node jv  has no 
VMs or those VMs cannot be reused, ESAD calls 
AllocateNewVM () to allocate a new VM for module iu .  
The AllocateNewVM () includes creating a new VM with 
the maximum allocable resource.  With Figure 5 as an 
example, we can calculate the end time of the module iu  
as iET .  We have three different strategies to deploy a 
VM as VM1, VM2 or VM3.  Let xve  be the VM’s end 
time and xvs  be its start time.  We calculate the running 
time for module iu  to be mapped on each VM as: 
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Figure 5: Three different VMs to execute module iu  with end 
running time of  

 
The complexity of our heuristic, ESAD algorithm, is in  
0(nm log(m)), where n represents the number of modules and 
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m denotes the number of computing nodes in the cloud system.  
Although finding NBS considers as NP-Hard problem [25], the 
heuristic polynomial time complexity is quite efficient due to 
convex objective functions in the game. 
 

8 Results and Discussion 
 
We implement the proposed ESAD in Visual C++ on 

windows 8 desktop PC equipped with Intel Centrino2 CPU of 
2.27 GHz and 4.0 GB memory.  In the experiments, we 
compared the system utilization rate, job makespan, and power 
consumption with that from the Greedy (FirstFit) and Rank 
Match algorithms in [31].  For the Rank algorithm, we used the 
cost of each possible scheduling result as the rank value.  In the 
Greedy algorithm, the computing nodes were selected for VMs 
to be deployed without considering the maximum usage of the 
nodes.  We ran four tests on a set of random modules and 
network each with different number of edge as illustrated in 
Table 2.  The job scheduling results in term of utilization rate 
and makespan are presented in Table 3 and 4.  Also the charts 
of utilization rate, makespan, and power consumption are 
explained in Figures 6, 7, and 8, respectively. 
 
Table 2:  Test cases used in the analytical models 
Test Case Number of Modules Number of 

Nodes/Edge 
1 5 6 / 29 
2 10 6 / 29 
3 10 10 / 66 
4 15 10 / 70 

 
 

Table 3:  Mapping experimental in (%) for utilization rate 
Algorithms Test Case 

1 
Test Case 

2 
Test Case 

3 
Test Case 

4 
Greedy 0.37  0.41 0.41 0.53 
Rank 0.48 0.51 0.52 0.67 
ESAD 0.61 0.63 0.64 0.71 

 
 

Table 4:  Mapping experimental in (sec) for makespan   
Algorithms Test Case 

1 
Test Case 

2 
Test Case 

3 
Test Case 

4 
Greedy 21.84 61.6 58.47 59.51 
Rank 19.06 50.43 45.71 41.1 
ESAD 18.14 26.91 24.25 40.1 
 
The results demonstrate that our algorithm achieves better 
mapping performance compared in terms of utilization rate, 
makespan, and power consumption.  In each of the first two 
cases, we map cloud meta-modules in cloud infrastructure with 
six computing nodes.  Because we define the rank algorithm 
based on the cost, the rank always achieved a better utilization 
rate compared with the greedy algorithm.  Since neither of these 
two algorithms considers the module’s makespan, this 
considerably increases the execution time for modules as the 
utilization rate increases.  It implies that that there is no balance 
between these two performances.  However, since our  
algorithm is based on a trade-off between power and execution 

 
 

Figure 6:  Comparison of UR among different algorithms 
 

 
 

Figure 7:  Comparison of makespan among different algorithms 
 

 
 
Figure 8: Comparison of power consumption among different 

algorithms 
 

time under module’s deadline constraint using NBS, it can 
produce high utilization rate.  In each of the last two cases, we 
map job modules to a cloud infrastructure with 10 computing 
nodes.  The rank algorithm achieves better results than the 
greedy algorithm in terms of utilization rate. 
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 Because the matching between module’s requirements and 
VM’s capacity needs to be met at each level of mapping 
process, the common available cloud computing nodes may be 
different due to the deadline constraint.  Figure 9 illustrates an 
example of 5 test jobs each with different deadline constraint 
mapped onto cloud infrastructure with a different number of 
computing nodes.  Axis (x) represents the nodes that have the 
capacity to handle the module’s requirements while axis (Y) 
represents the execution time in (sec) that each node needs to 
execute the assigned modules.  For each job, the number of 
computing nodes is different due to: (1) resource capacity that 
each computing node has (b) matching between the module’s 
and node’s requirements.  Because our time-dependent 
algorithm uses a cooperative game theory to seek and find 
Pareto-optimality at point that guarantees both the execution 
time and the power consumption without violate the deadline 
constraint, the results in Figure 9 show that our algorithm 
achieves smaller execution time than that of greedy and Rank 
due to the efficiency of mapping results.  For instance in Mode 
l#1 for all computing nodes, the execution times for our 
algorithm are smaller than that of the greedy and Rank. 
 

9 Conclusions 
 

In this paper, we presented a cooperative game theory based 
approach for job scheduling in a cloud environment under some 
constraints.  Apparently, it is of the cloud service provider’s 
interest to improve the system throughout in order to satisfy 
more user requests with the limited hardware resources.  The 
resource utilization rate is a very important performance metric.  
Furthermore, minimizing the job’s execution time and power  
 

Model 1 

Model 3 

Model 2 

Model 4 

Model 5  
 

Figure 9: Execution time of scheduling cloud modules onto 
different cloud nodes using various algorithms 

consumption are also very important. Our approach aims to 
achieve multiple goals, namely minimizing the energy 
consumption given certain maximum makespan bounds.  Such 
trade-off between these two objectives is realized by using 
Nash Bargaining from cooperative game theory, which 
guarantees the Pareto optimality from bargaining points. 

Our simulation experiment results have demonstrated that our 
algorithm significantly improved the utilization rate compared 
with two other scheduling algorithms of greedy and rank 
matching.  It is of our future interest to incorporate the task 
consolidation and VM migration technique into our algorithm 
for better system performance. 
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Abstract 
 

 In this paper we present a cloud-based service oriented 
approach for collecting, integrating, storing, and analyzing 
energy consumption data.  Our approach models energy 
sensors as services that can be composed to provide value 
added information with various granularity levels that best suit 
users’ needs and requirements: home-owners, energy 
providers, local and regional planning authorities, etc.  The 
resulting system is a layer oriented service network where each 
layer provides information at different levels of aggregation 
based on a polyglot persistence approach.1 
 Key Words:  Cloud computing, data integration, service 
based querying, smart energy. 
***** 

1 Introduction 
 

 Cloud computing has recently emerged as a new computing 
paradigm where unlimited computing and storage resources 
can be allocated for building and delivering applications and 
services over the Internet.  Cloud infrastructures manage such 
resources transparently without requiring the application to 
have code to manage them or to reserve more resources than 
those it really requires. The difference with the conventional 
paradigms is that the application can have an ad hoc execution 
context and that the resources it consumes are not necessarily 
located in one machine. Cloud infrastructures provide data 
management functions as services that must be tuned and 
composed for efficiently and costly managing, querying and 
exploiting huge data sets (e.g., big data). 
 Consider a smart home scenario where intelligent control 
technology enables homeowners to monitor and reduce energy 
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consumption of smart home electronics, conserve resources, 
and save money without sacrificing comfort or convenience.  
Smart energy monitors measure energy consumption and 
production in real-time, and exploit the histories of available 
energy management devices to provide consumers and 
managers with real-time information on electricity use and 
costs.  A homeowner can monitor each and every aspect of 
electricity usage, from appliances to heating and lighting, and 
view her entire electricity usage or production at home or 
remotely.  On a larger scale, energy providers, local and 
regional planning authorities can follow the behavior and the 
energy consumption trends of energy consumers to provide 
new energy provision plans, facilities and costing models more 
adapted to consumers needs and requirements.  However, 
providing such monitoring and analysis capabilities involves 
handling considerable amounts of raw data that need to be 
processed, analyzed and stored.  Moving data aggregation and 
analysis to the cloud can be interesting for many reasons.  
First, it allows process of huge amounts of produced data in an 
efficient way with the existence of unlimited and adaptable 
computation and storage resources.  Second, it can provide an 
ad hoc personalized energy consumption analysis to different 
types of users. 
 In this paper we present a multi cloud-based service oriented 
approach for collecting, integrating, storing, and analyzing 
energy consumption data.  Our approach models energy 
sensors as services that can be composed to provide value 
added information with various granularity levels that best suit 
users’ needs and requirements:  home-owners, energy 
providers, local and regional planning authorities, etc. 
 The remainder of the paper is organized as follows.   
Section 2 analyses related works and puts our work in context 
with respect to existing results regarding data integration, 
polyglot persistence and query rewriting.  Section 3 describes 
our approach that is based on the notions of view for modeling 
data, and computations; and strata for describing the 
aggregation levels associated with data related to energy 
consumption.  Section 4 presents our three-layer service 
architecture providing a polyglot data store [6] for storing 
energy consumption data histories and associated models.  
Section 5 concludes the paper and discusses future work. 
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2 Related Work 
 

 Cloud storage represents a paradigm to store, retrieve and 
manage large amounts of data, using highly scalable 
distributed infrastructures.  This area has received a great deal 
of attention in recent years, due to a growing interest in the 
challenges and opportunities associated to the NoSQL 
movement [2].  However, unlike traditional environments, 
where the use of the relational model is pervasive, there is a 
wide variety of data models that can be used in cloud 
applications.  These data models include [2]:  key-value, 
document, extensible record, graph and relational repositories.  
Each of these data models are designed for different use cases, 
and provide different support for functional and non-functional 
requirements of distributed systems [3], such as different 
degrees of consistency, scalability, replication and concurrency 
[2].  Moreover, there is also a wide variety of both public and 
private providers for the distributed infrastructure that is 
required for cloud data storage [9].  These providers offer 
different combinations of pricing, support, service levels, and 
usually have different APIs to store, retrieve and manage data.  
These differences make it difficult to design and deploy 
applications targeting different cloud environments [10].  In 
our polyglot system we use existing SpringRoo binding 
generation tools and we also developed bindings that were 
plugged in this environment.  The idea is to couple our 
integration rewriting strategies with the spring code that 
implements the actual calls to the NoSQL stores participating 
in the polyglot solution. 
 Query rewriting using views (a.k.a. query answering using 
views) is the process of reformulating a query Q expressed 
over a mediated schema in terms of a set of views V1...Vn 
expressed over the same schema [7] (where a view is a named 
query).  The obtained query is called a rewriting.  The problem 
of query rewriting using views has been considered for two 
different purposes: (i) query optimization using materialized 
views, and (ii) data integration. 
 In the context of query optimization, the goal is to find an 
expression that uses the materialized views (which represent 
cached data) and is equivalent to the original query.  The 
rationale behind query reformulation here is that using cached 
data (i.e., the materialized views) is much faster than accessing 
the actual database relation directly.  In the context of data 
integration, the views describe a set of autonomous 
heterogeneous data sources.  Users queries over the mediated 
schema need to be formulated to refer to the data sources the 
mediated schema itself does not contain any data. 
 In this context we usually cannot find a rewriting that is 
equivalent to the user query because of the data sources limited 
coverage (i.e., the data inside data sources are incomplete).  
Instead, we search for a ”maximally contained rewriting”, 
which provides the best answer possible, given the available 
data sources.  When both the query and the views are 
conjunctive queries, the maximally contained rewriting is the 
union of all rewritings that are possible given the views.  
Different query rewriting algorithms were proposed in the 

literature including, the MiniCon [8], Inverse Rules [5] and 
Bucket algorithms for the relational model, [12] for XML 
queries and recently [3] for RDF queries. 
 An advantage of modeling services as views is that queries 
can be resolved “on the fly” by combining relevant services 
using a query rewriting algorithm (e.g., Inverse Rules, 
Minicon, Buckets, etc.) [7].  Similarly, value-added aggregated 
views (that could be needed in higher layers) can be 
constructed and populated on the fly.  Application developers 
need only to express their data needs as queries over the global 
schema, the query rewriting algorithm can then select the 
relevant services and combine them to answer the queries; i.e., 
application developers are relieved from the painstaking task 
of selecting and combining services manually. 
 We believe that the challenges introduced by energy data 
integration must be supported both by cloud based polyglot 
persistence and query rewriting techniques as shown in the 
following sections. 
 

3 Service-Oriented Approach for Collecting and 
Integrating Energy Data 

 
 Figure 1 shows an overview of our approach for energy data 
integration.  In our approach, energy sensors organized as an 
observation network are represented as services (called 
Sensing Services see 1 in Figure 1).  The semantics of sensing 
services are modeled as relational views.  Our approach 
combines the data produced by sensing services to provide 
value added integrated views with different aggregation levels, 
called Strata (see 2 in Figure 1). 
 Continuing with the example scenario described in the 
introduction, in-house sensors and smart energy counters in a 
monitored area form a network of services that can be 
combined to construct strata.  Strata provide useful 
information about, for example, the average energy 
consumption (per hour) at the scales of room, house, blocks of 
houses, quarter, city. 
 Since the construction of strata necessitates considerable 
processing and storage capabilities (as it is performed on huge 
data histories), our approach relies on computing services (e.g., 
data transformation services, indexation services, etc. see 3 in 
Figure 1) and on a polyglot [6] distributed data store to manage 
data histories and their associated analysis results.  We define 
below the notions of view and strata that are fundamental in 
our approach. 
 
3.1 Services and Views 

 
 This section introduces how data produced on demand and 
continuously by data services are modeled using the notion of 
view.  Views are then used to compute Strata that provide 
aggregated views of data.  Such aggregations are done by 
computing services defined in the following lines. 
 
 Sensing Services: are data services that represent the 
sensors in the monitored area.  We model the semantics of a 
sensing service as a relational view over a mediated schema.   
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Figure 1:  Stratified data flow consumption and delivering for analyzing energy consumption behavior 
 
Formally, a sensing service is defined as: 

 
WS(Xb, Yf):- R1(X, Y, Z),..., Rn(X, Y, Z) 

 
Where WS(Xb, Yf) is the view head, it is a relational predicate 
containing the service inputs Xb and outputs Yf.  Inputs should 
be bound in order to invoke the service, therefore marked with 
the superscript b, outputs are free, therefore marked with the 
superscript f; Ri is a relational predicate and X, Y, and Z are 
attributes.  For example a service monitoring the status of an 
air conditioner is represented as follows: 
 
 Air Conditioner WS (timeb, statusf, tempf) : - 

Apparatus(status, time, location), 
Temperature(time, temp, location), 
Location = home 

  
 A service monitoring the presence of people in a given 
location is represented as follows: 
 
 Presence WS(timeb, locationb, statusf) : - 
  Person(status, time, location) 
 
 Concretely, the data returned by sensing services are stored 
in views (that correspond to the view heads in the previous 
definition) in a polyglot data store that we present in 
subsequent sections.   
 Sensing services can produce data on demand or as streams 
according to their exported interfaces.  Data is gathered from 
on-demand data services by invoking their methods with the 
appropriate parameters, producing tuples as output.  Stream 

services export subscription methods that after invocation, will 
produce a stream.  For example, a location service is a 
streaming service that exports: 
 

subscribe()→ ⎡location:〈id, coor〉⎤ 
 

which is a subscription method that after invocation, will pro-
duce a stream of location tuples with a nickname that iden-
tifies the object coordinates.  Note that a stream is a continuous 
(and possibly infinite) sequence of tuples ordered in time. 
 Computing Service:  performs data management and 
processing tasks (e.g., data analysis, indexation, storage, etc.) 
or particular calculations (e.g., mathematical functions), which 
can be useful for processing data.  These operations are used 
for computing data aggregations, correlations and other 
processing operations necessary for providing an analytic view 
of energy consumption. 

Computing services can be simple or composite.  They are 
simple when they provide a basic functionality.  For example, 
a distance computation service computes the geographical 
distance between two points, for instance, by using Vincenty’s 
formula2. 
 They are composite when they combine multiple simple or 
composite services to realize a complex functionality.  They 
are specified as a workflow-based service coordination of basic 
computation services.  This approach enables us to take 
advantage of existing services for programming more complex 
data processing operations.  By developing data processing 

                                                           
2http://en.wikipedia.org/wiki/Vincenty%27s_formulae 



IJCA, Vol. 20, No. 4, Dec. 2013  

 

239

operations by either simple or composite computation services, 
we can develop the core functionality required for observing 
energy consumption. 
 As we will describe in the following lines, data and 
computing services are coordinated to answer hybrid queries 
used for expressing data consumption requirements.  Details 
on how these computation services are built and implemented 
are out of the scope of this paper.  The interested reader can 
refer to [4] for details. 
 
3.2 Stratified Data Integration 

 
 As we mentioned, a monitored area corresponds to a 
network of sensing services (refer to Figure 1).  The data 
produced by these services are aggregated to form data 
(providing) services (or simply views) with different levels of 
granularities that we call Strata.  Strata, simply, provide a 
logical organization of data provision represented by a 
hierarchy of aggregated granularities.  A granularity denotes a 
set of (complex) types (its extension).  In this work, we 
identified the following strata: 
 

room → house → block → quarter → city 
 

 Sensing services that are located in the same room form a 
data service corresponding to the Room stratum.  The different 
room-level data services in a given house form a data service 
called inHouseMasterNode that corresponds to the house 
stratum.  Similarly, inHouseMasterNodes can be grouped into 
block, quarter and city strata.  Data services of the types 
house, block, quarter and city can have attributes to 
characterize their geographic locations. 
 A granularity also has an associated aggregation function 
that applies to the aggregated data (i.e., the aggregation 
function computes the tuples set that is stored in the view 
based on the sensed data).  Examples of aggregation functions 
include:  the average energy consumed during a day in the 
kitchen for all the days of the year, the pick of consumed 
energy during a day in the living room during winter. 
 The hierarchy of strata also defines transformation functions 
among granularities.  The functions for the strata room are 
classic aggregation functions like average or maximum and 
they are computed on data windows.  Transformation functions 
among room → house → block → quarter → city are defined 
by statistical analysis that compute the behavior of energy 
consumption using the data of the lower level as input for 
computing the measure of a more general level.  These 
computations are done by computing services. 
 Data consumers can access data by combining data from the 
same or more general granularities.  As shown in Figure 1, in 
our work we rely on a logical network of data services that are 
devices represented logically grouped for defining the stratum 
room.  For example, sensing services are connected to a device 
with more computing capacity that is connected with the 
external world called the inHouseMasterNode and that 
represents the stratum house.  So, this strata provides an 
aggregated view of the energy consumption in a whole house 
during specific periods of time. 

 The nodes of type inHouseMasterNode are also services that 
form networks organized in layers called block, quarter and 
city.  inHouseMasterNodes can be geographically located and 
they can be logically organized according to spatial geographic 
regions that denote either their location (lowest granularity), 
and then concentric regions grouped into quarters, and cities.  
The organization of the network and the computing capacities 
of the services are exploited to have different levels of 
aggregation and analysis views of such data. 
 
3.3 Consuming Data 

 
 Energy consumption data can also be correlated with data 
stemming from other homes in order to determine the behavior 
on energy consumption of communities of homes, quarters, 
cities, regions and countries.  More critical decision making for 
determining how to deliver energy to consumers can be done 
using such information. 
 “Software as a service” like solutions interact with these 
nodes for providing analysis and decision making support to 
different actors.  For example give me the a graphic 
representing the average energy consumption between 17:00 - 
23:00 during summer of the private consumers living at rue 
Alembert in Grenoble. 
 

meteringDashboardService (nodeIDb, userRoleb, timeWindowb, 
 GraphicTypeb, GraphicFlowFunctinf): - 
AggregatedConsumptionViewPerRole (nodeID, userRole, 

timeWindow),  
ConsumptionOverTime(nodeID, timeWindow, GraphicFlowFunction) 

 
 This hybrid query [4] expresses data consumption 
requirements.  A hybrid query is a query that can be mobile 
and continuous, and evaluated on top of on demand or 
streaming static or nomad data services [11]. 
 An hybrid query combines data from the rooms of a house 
and a meteorology service providing information about the 
region where my house is located.  In our approach the hybrid 
query is first expressed in Data log as shown in the above 
expression and rewritten according to available services. 
 The evaluation of such type of queries requires data services 
but also storage and computing services that can be used for 
logging continuous data.  This can be useful for performing 
aggregations on data collected on given time windows. 
 For example data can be correlated with meteorological data 
histories to identify the time windows where: 
 

−5 ≤ temperature or temperature ≥ 30. 
  

 The query is rewritten according to the available services 
exported views.  In the case of our example, there are three 
services of type BlockNode and a MapService shown below. 
 

Query: 
 
Q1〈Average, client〉:- AveragePerUser (average, user, timeWindow, 

zip), StreetZips (streetName, zipA, zipB),  
 zipA <= zip <= zipb, timeWindow=”17:23”, StreetName – 

‘Alembert’. 
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 Data services: 
 

MapService(streetNamebzipAfzipBf) : StreetZips(streetName, 
zipA, zipB) 

 
 BlockNodes: 
 
BN1(average, user, timeWindow) : AverageaPerUser(average, 

user, timeWindow, sip), zip=69101 
BN2(average, user, timeWindow): AveragePerUser(averagae, 

user, timeWindow, sip), zip=69106 
BN3(average, user, timeWindow): AveragePerUser(average, 

user, timeWindow, zip), sip=20100 
 

 The query is rewritten into two sub-queries expressed in 
Data log below:  the first one retrieves the region in which rue 
d’Alembertis located; the second one computes the average 
energy consumption per user (house) within a predefined time 
window and filters the result with respect to the geographic 
location. 
  
 Q1 = Q2 ∧ Q3 

Q2(zipA, zipB) :- Streetzips(streetName, zipA, zipB, 
StreetName=”Alembert”. 

Q3(average, client) :- AveragePerUser(average, user, 
timeWindow, zip), zipA <= xip <= zipB. 

 
 A hybrid query is implemented by a query workflow that 
coordinates services for consuming and retrieving data in a one 
shot or a continuous manner.  The query workflow (see  
Figure 2) is a program that runs continuously for executing the 
query and generating new results.  In a query workflow, 
activities can call several services for computing the average 
consumption of users located within a specific geographic 
region and at a specific time interval (i.e., [17:00, 23:00] ).  
The query workflow runs as a data processing service and is 
supported by a polyglot data store service for storing partial 
and final results (see the following section). 
 Home control and energy consumption observation need  
 

huge amounts of heterogeneous data flows produced by data 
services (sensors, temperature and meteorology services) that 
must be processed and stored by computing services.  We 
addressed the storage problem by defining a polyglot data store 
solution based on NoSQL and relational models, as shown in 
the following section. 
 

4 Description of our Cloud-Based Architecture 
 

 This section describes the implementation of our approach.  
The use of multiple and heterogeneous data stores within a 
single information system is a common practice in real-life 
application development.  Modern applications very often rely 
on a polyglot approach [6] to data persistence, where 
conventional databases, non-relational data stores, and scalable 
systems associated to the emerging New SQL movement, are 
used simultaneously.  We followed this approach for building 
our system and we adopted a service-oriented multi-cloud 
architecture for deploying our solution.  We implemented a 
three layer system that integrates a data provision layer with a 
SaaS layer, thanks to a data integration layer implemented as a 
polyglot database system (see Figure 3). 
 As shown in the Figure 3, our system is comprised of three 
Spring Java web applications that are in charge of different 
data collections, and expose services through REST interfaces 
(i.e., the metering dashboard, the energy business intelligence 
analysis, the energy load control).  These business services rely 
on data services, such as on the sensing services and aggregate 
this information.  For instance, the energy load services 
(composite activity).  In Figure 2 the activity Get control relies 
on the information of the sensing service and on business rules 
to act on actuators that can automatically reduce temperature 
of an air conditioner system.  The applications are deployed in 
different Platform as a Service (PaaS) providers, and access 
data through Database as a Service (DaaS) vendors providing 
NoSQL data stores: relational, document and graph databases, 
deployed on multiple cloud providers (OpenShift, 
CloudFoundry, Xeround and MongoLab). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Query workflow example 
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Figure 3: Energy data management multi-cloud polyglot architecture  
 
 
4.1 Physical Layer 
  
 The physical layer is composed of services for collecting 
raw energy consumption data from sensors and electrical 
devices.  Each sensing service collects data from one or more 
sensors and sends its measurements as messages via Internet 
protocols (i.e., XML messages in SOAP for SOAP-based 
service implementations).  Services are clustered in the 
physical layer based on their functionalities and registered in a 
service registry.  These services communicate with a MySQL 
server deployed on Xerund for periodically storing their data. 
 The services are proprietary devices of an energy company 
and because of confidentiality issues we cannot give technical 
details of their characteristics.  A sensor is a monitoring device 
programmed for reading analogical data that can be 
transformed to a digital representation.  A sensor has specific 
computing, storage, information transmission/reception 
capacities and limited energy.  In the paper, it is enough to say 
that sensors that are wrapped as OSGi services (www.osgi.org) 
exporting an interface that enables the retrieval of measures 
from the sensor buffer. 
 We profit from the OSGi technology for building a sensor 
network that integrates the data they produce in the so-called 
InHouseMasterNode.  The InHouseMasterNode is a sensor 
with more storage and computing capacity that communicates 
recurrently with the data integration layer deployed in the 
Xerund cloud provider for flushing data histories.  The 
InHouseMasterNode serves as global controller for 
synchronizing sensors so that they can beat under the same 
global clock.  The views associated to services (sensors and 
InHouseMasterNodes) are recurrently computed due to the 
arrival of new data flows.  This is done by services that are 

continuously observing data consumption by interacting with 
the data integration for storing views given their reduced 
storage capacity.  The arrival of new data triggers views 
computation. 
 
4.2 Data Integration Layer 

 
 Data integration and processing requires alot of storage and 
computing capabilities as well as data processing functions 
that can vary according to the analysis requirement of different 
consumers.  This layer implements a polyglot approach for 
integrating data from different services to provide value added 
information. 
 Data integration is based on a data pivot model [1] 
associated to a polyglot distributed database.  The data model 
used in this layer relies on four main constructs (Structs, Sets, 
Attributes and Relationships), that can be used to represent 
data modeled using the key-value, document and column- 
family and graph data models.  Data stemming from different 
NoSQL stores can be transformed into this model and made 
available to the application.  In our scenario the representation 
of the logical nodes network is stored on the graph oriented 
Neo4J vendor deployed on Open shift cloud provider.  The 
data produced by computation and data services that in general 
produce JSON documents, are stored on the document store 
MongoDB deployed on the MongoLab cloud provider. 

 
 Graph Database:  the information about the devices 
networks at different levels is managed by the system Neo4J 
that supports graph oriented databases.  The description of the 
networks organized by strata where each stratum is a graph 
managed by a service that stores it persistently for maintaining 
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information about the network state:  which nodes join or leave 
the network.  At the creation of the system, the graph database 
was tuned using the Eclipse UML tool.  Given the classes that 
implement the service functions for managing information 
about the networks of the different Strata (e.g., sensor 
networks), we use the Model2Roo plugin3 for generating a 
SpringRoo4 binding to the Neo4J data store. 
 For the time being the graph database serves for answering 
queries and guiding the aggregation of data.  For example 
given a query asking for the average energy consumption of 
the rooms that are near the kitchen in my house, the graph 
database will help to determine which are the sensors that will 
participate as data providers for answering the query (i.e., the 
sensors that are installed in the room for solving the query 
presented in the previous section).  The database is updated 
every time nodes adhere or leave the network.  This is not very 
often for the time being because we consider that the network 
is rarely modified.  In a future version of our system we will 
consider that the network is dynamic and that this database 
will have to be updated. 
 Document Database:  Our system uses information 
stemming from Web services, for example the meteorology 
service, for correlating the data produced by the energy 
consumption physical layer.  For example, for determining that 
the temperature sensed in a house corresponds in fact to the 
second week of summer 2013.  The meteorology data are 
recurrently retrieved according to specific geographical 
locations and points in time (hours, weeks, seasons).  These 
services produce data as JSON documents that are stored in the 
MongoDB document database.  As for the graph data store we 
used tour Model2Roo plug in for configuring the database and 
generating the SpringRoo binding for storing the documents 
produced by the Web services. 
 Polyglot Database System:  integrates these databases into 
a global view used for querying and exploiting them.  As said 
above, these stores are populated as new data arrive from the 
networks.  Views associated to services are computed 
recurrently and stored in Neo4J.  The polyglot database system 
enables then the evaluation of queries on continuous data.  
Therefore, our system exploits query-rewriting techniques to 
automatically determine the data services that are needed to 
answer data requests.  For instance, to determine the services 
for constructing a desired stratum, or for answering a given 
data analysis query.  This is possible as the semantics of our 
services are modeled as relational views.  Strata developers 
and data analysis applications need only to specify their data 
needs as queries over a mediated schema.  Then, the system 
rewrites that query in terms of calls to relevant services.  Our 
system uses the MiniConquery rewriting algorithm [8]. 
 Running Example: assume we are interested in studying the 
energy extra consumption related to the use of cooling systems 
in summer.  At the InHouseMasterNode level, we are 
interested in constructing a view (or a service) to observe the 
working of air conditioners, along with the house temperature 

                                                           
3http://code.google.com/p/model2roo/ 
4http://www.springsource.org/ 

and whether or not there are people in proximity of 
conditioners.  Such data needs can be expressed using the 
global schema (in the Data log notation) as follows: 
 
 InHouseMasterNode_View1 (time,status,temp,presence,location): 

Apparatus (status, time, location), 
Temperature (temp, time, location), 
Presence (presence, time, location), 
location = 65266 Lyon 

 
 Assume the existence of the following services: 
  

- Service observing an air conditioner: 
 

ACWS(timeb, statusf) : - 
Apparatus (status, time, location), 
location = 65266 Lyon 
 

 - Service observing the house temperature: 
 

TempWS (timeb, tempf) : - 
Temperature (temp, time, location), 
location = 65266 Lyon 

 
- Service observing the presence of people: 

 
PresenceWA (timeb, presencef) : - 

Presence (time, presence, location), 
location = 65266 Lyon 

 
 Given these services, the query-rewriting algorithm rewrites 
the InHouseMasterNodeView1 as follows: 
 

InHouseMasterNode_View1 (time,status,temp,presence,location):- 
ACWS (timeb, statusf), 
TempWS (timeb, tempf), 
PresenceWS (timeb, presencef), 

 
 Similarly, blockNode Strata views can be constructed using 
InHouseMasterNode Strata views.  For instance, assumes we 
are interested in constructing a block view observing the 
working of air conditioners in houses located between 65250 
Lyon and 65260 Lyon.  Such view can be expressed as follows 
over the global schema: 
 
 BlockNode_View (time, status,temp, location) : - 

Apparatus (status, time, location), 
Temperature (temp, time, location), 
65250 Lyon <location< 65260 Lyon 

 
 Such view could be rewritten in terms of the 
InHouseMasterNodeviews as follows: 
 

BlockNode_view(time, status, temp, location) : - 
InHouseMasterNode_View1 (time,status,temp,-,65251 Lyon) 
InHouseMasterNode_View2 (time,status,temp,-,65252 Lyon) 
… 

 
 Once the query has been rewritten the system generates a 
workflow using another rewriting algorithm that transforms 
Data log expressions into a query workflow.  This algorithm is 
out of the scope of this paper, but the interested reader can see 
details in [4].  The workflow can implement continuous or one 
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shot queries, according to the arrival rate of new data to the 
stores.  The data integration layer serves as mediator between 
the physical layer.  The physical layer produces data and the 
energy consumption analysis layer that consumes data.  The 
layer consists of services that implement analysis applications 
that deliver information to final users.  This layer is described 
in the following section. 
 
4.3 Energy Consumption Analysis Layer 

 
 The energy consumption analysis layer implements the 
business logic to offer decision maker assistance applications 
to homeowners and planning authorities.  This layer is 
deployed on the CloudFoundry cloud provider.  The business 
services made available by this layer compose external 
information (such as energy tariff) with the data provided by 
the sensing services of the data integration layer of our 
architecture.  These business services are the following: 
 
 The Metering Dashboard provides graphical energy 
monitoring by exhibiting the analyzed energy consumption 
behavior.  It provides aggregated information concerning 
energy consumption about specific zones such as rooms, or 
aggregated views of building and city zones.  The metering 
dashboard also gives the ability to alert excessive energy 
consumption provided that the user has previously defined 
corresponding thresholds. Graphical functionalities are 
configured with Google Charts Visualization API.5 
 The Energy Business Intelligence Analysis supports 
managers in the decision making process.  It offers energy 
benchmarks by combining the energy consumption 
information with energy tariff information, pricing and peak 
demand usage.  This business intelligence service generates 
energy audit reports and provides energy consumption 
simulation forecasts based on past energy usage. 
 The Energy Load Control implements energy saving 
strategies for automating local load control e.g., automatically 
turning off room lights if enough daylight is available and if 
the preset energy threshold is exceeded.  This service enables 
the definition of periodic schedules to automatically control 
actuators over facilities.  Each schedule communicates with the 
corresponding actuators that can be programmed for scheduled 
on/off periods.  For this, the energy load control combines the 
information provided by the sensing services and specific 
business rules to trigger actuators that will automatically take 
some action, such as reduce temperature of air conditioner 
systems.  Consider the case of the energy manager who wants 
to automatically turn off air conditioner systems of office 
rooms if no person is inside after working hours.  The 
following rule is executed:  if the service observing air 
conditioner ACWS(timeb , statusf) returns On for specific 
office room locations and the service observing the presence of 
people Presence WS(timeb , presencef ) returns False then the 
corresponding actuators will turn these air conditioner systems 
off. 

                                                           
5 https://developers.google.com/chart/interactive/docs/reference?hl=en 

 
5 Conclusion and Future Work 

 
 This paper presented an approach for collecting and 
integrating data produced by networks of energy consumption 
for the purpose of providing aggregated data on energy 
consumption.  This energy information can be further used to 
manage energy consumption and reduce energy waste. 

Our approach relies on the notions of view and strata for 
describing on demand and continuous data producers where 
data can be relational, streams, documents and produced on- 
demand and continuously. 

The main contribution of our work is the proposal of a three 
layer architecture that relies on a polyglot service based data 
management system that benefits from the flexibility of the 
cloud for deploying services for processing and analyzing of 
collected energy consumption data. 

We provide a service-oriented approach for our cloud-based 
architecture that provides a transparent access to autonomous 
services with their own resources. 

Beyond the application of energy consumption, we are 
currently addressing data management issues on the cloud.  
Particularly, concerning polyglot persistence, we have 
developed tools Model2Roo6 and ExSchema7 for supporting 
the definition of polyglot data stores and its maintenance. 
 We are also addressing the implementation of data 
processing operations using map-reduce models for better 
addressing the analysis and correlation of huge volumes of 
data given a certain “unlimited” availability of computing 
resources on the cloud.  These current actions are being tested 
and tuned for dealing with energy data management. 
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Abstract 
 
 The most common benchmarks for cloud computing are the 
Terasort benchmark and the YCSB benchmark.  Although 
these benchmarks are quite useful, they were not designed for 
data warehouse systems and related OLAP technologies.  The 
most prominent benchmarks for evaluating decision support 
systems are the various benchmarks issued by the Transaction 
Processing Council (TPC), namely TPC-H and its successor 
TPC-DS benchmarks.  TPC benchmarks mismatch cloud 
rationale (scalability, elasticity, pay-per-use, fault-tolerance 
features) and Customer Relationship Management rationale 
(end-user satisfaction, Quality of Service features).  In this 
paper, we present new requirements for implementing a 
benchmark for data warehouse systems in the cloud.  The 
proposed requirements aim at allowing a fair comparison of 
different cloud systems providers’ offerings 
 Key Words:  Data warehouse, OLAP, cloud, TPC-H, TPC-
DS, benchmark. 
 

1 Introduction 
 
 Business Intelligence (BI) aims at supportting better 
decision-making, through building quantitative processes for a 
business to arrive at optimal decisions and to perform business 
knowledge discovery.  Business intelligence often uses data 
provided by Data Warehouse Systems, in order to provide 
historical, current and predictive views of business operations.  
Nevertheless, data warehousing is very expensive, since it 
requires experts, advanced tools as well as costly hardware.  
Some organizations with limited means related to each of 
human, software and hardware resources for data analytics, are 
throwing terabytes of data away.  Thus, the arrival of pay-as-
you-go Cloud Computing presents new opportunities for 
decision support systems.  
 The cloud computing market is booming, and many research 
groups as Forrester [9] and Gartner [10], forecast a big invest 
in short-time on cloud technologies.  Also, the Business 
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Intelligence market continues growing and information 
analysts embrace OLAP concepts and related technologies 
(Microsoft Analysis Services, Oracle Business Intelligence, 
Pentaho BI suite, SAP NetWeaver, …).  According to Gartner’s 
latest enterprise software survey, the market for BI platforms 
will remain one of the fastest growing software markets in 
most regions (refer to [15] for details).  However, there are 
hurdles around dealing with Big Data.  Along Ralph Kimball, 
Big data is a paradigm shift in how we think about data assets, 
where do we collect them, how do we analyze them, and how 
do we monetize the insights from the analysis.  Therefore, a 
major reason for the growth of big data is financial and 
Decision Support Systems have to deal with the Big Data four 
V-dimensions} namely (i) Volume-challenge of management of 
huge volumes of data, (ii) Velocity-challenge of how fast data 
is analyzed, (iii) Variety-challenge of dealing with 
unstructured, semi-structured, relational data, and finally (iv) 
Veracity-challenge of semantics and variability meaning in 
language.  
 Cloud computing has gained much popularity recently, and 
many companies now offer a variety of public cloud 
computing services, based on traditional relational DBMS, 
extended RDBMS and NoSQL technologies.  Traditional 
software technologies tend to get quite expensive to manage, 
maintain and enhance.  Two architectures have emerged to 
address big data analytics, which are extended RDBMS and 
NoSQL technologies (Apache Hadoop/MapReduce 
framework).  Architectural developments for extended 
RDBMS are Massively Parallel Processing (MPP) and 
columnar storage systems.  NoSQL has emerged as an 
increasingly important part of Big Data trends, and several 
NoSQL solutions are emerging with highly variable feature 
sets.  Cloud services differ in service models and pricing 
schemes, making it challenging for customers to choose the 
best suited cloud provider for their applications.  Data 
Warehouse Systems place new and different demands on cloud 
technologies, and vice-versa.  In this paper, we propose new 
requirements for fair benchmarking of data warehouse systems 
in the cloud. 
 The outline of this paper is the following: first, in Section 2, 
we discuss related work in order to highlight our contribution.  
Then, we present preliminaries related to both cloud 
computing and data warehouse systems.  In Section 3, we 
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recall the most important characteristics of cloud computing, 
and what a benchmark for data warehouse systems should 
feature; and in Section 4, we briefly overview data warehouse 
systems and well-known decision support systems 
benchmarks.  We argue that TPC-H benchmark-the most 
prominent benchmark for decision support system, mismatches 
cloud rationale (scalability, elasticity, pay-per-use, fault-
tolerance features) and Customer Relationship Management 
rationale (end-user satisfaction, Quality of Service features).  
In Section 5, we present new requirements for benchmarking 
data warehouse systems in the cloud.  The proposed 
benchmark should allow a fair comparison of different cloud 
systems, as well as tuning of a cloud system for a given Cloud 
Service Provider (CSP) and selection of best optimizations and 
best cost-performance tradeoffs.  Finally, we conclude the 
paper and present future work.   
 

2 Related Work 
 
 In this section, we overview related work.  The following 
research projects addressed specific issues when migrating 
data warehouse systems to the cloud, 
 

• Forrester released a Cost Analysis Tool:  Cloud versus 
internal file storage Excel Workbook, as a tool for 
comparison of storage on-premises and in the cloud [8], 

• Nguyen et al. [20] propose cost models for Views 
Materialization in the cloud.  Proposed cost models fit into 
the pay-as-you-go paradigm of cloud computing.  These 
cost models help achieve a multi-criteria optimization of 
the view materialization under budget constraints. 

 
 There are few papers dealing with processing and evaluating 
by performance measurement OLAP workloads on cloud 
systems.  Next, we overview research projects related to OLAP 
experiments in the cloud, 
 

• Floratou et al. [7] conducted a series of experiments 
comparing cost of deployment in the cloud of different 
DBMSs, in order to make cloud customers aware of the 
high cost of using freeware software in the cloud.  For 
instance, they ran Q21 of the Wisconsin Benchmark, and 
compared its response time using the open-source MySQL 
to the commercial MS SQL Server.  For the SQL Server-
based service, the user has to pay an hourly license cost, 
while he does not need to pay any license fee for MySQL 
usage.  MS SQL server runs Q21 in 185sec, while MySQL 
runs the same query in 621sec.  Obviously, the end-user 
bill will be affected by this 3.3X performance gap, 

• In order to compare SQL technologies to NoSQL 
technologies, Pavlo et al. [22] compared the performance 
of Apache Hadoop/Hive to MS SQL Server database 
system using TPC-H benchmark, 

• In [18], we proposed OLAP scenarios in the cloud.  The 
proposed scenarios aim at allowing best performances, 
best availability and tradeoff between space, bandwidth 
and computing overheads.  Evaluation is conducted using 

Apache Hadoop/Pig Latin with TPC-H benchmark, for 
various data volumes, workloads, and cluster sizes.   

 
 Many cloud computing benchmarks exist, but have different 
objectives than data warehouse systems.  For instance, 
 

• The TeraSort [12] benchmark measures the time to sort 1 
TB (10 billion 100B records) of randomly generated data.  
It is used to benchmark NoSQL storage systems such as 
Hadoop and MapReduce performances.  

• The Yahoo Cloud Serving Benchmark -YCSB [4] measures 
the scalability and performance of cloud storage systems 
such as HBase-the column-oriented database of Hadoop 
project, against a standard workload.  

• The CloudStone Benchmark [24] is designed to support 
Web 2.0 type applications and measures the performance 
of social-computing applications on a cloud.  For data 
analytics. 

• The MalStone Benchmark [1] is specifically designed to 
measure the performance of cloud computing middleware 
that supports the type of data intensive computing 
common when building data mining models.  

 
 In [2], Binnig et al. presented initial ideas of requirements 
towards a web-shop benchmark (i.e., OLTP workload) in the 
cloud.  They introduced new metrics for analyzing the 
scalability, the cost and the fault tolerance of cloud services.  
Later, in [14] they listed alternative architectures to effect 
cloud computing for web-shop database applications and 
reports on the results of a comprehensive evaluation of existing 
commercial cloud services.  They used the database and 
workload of the TPC-W benchmark, with which they assessed 
Amazon, Google, and Microsoft’s offerings. 
 The CloudCMP project [14] aims at comparing the 
performance and the cost of various cloud service providers.  It 
models a cloud as a combination of four standard services, 
namely, (1) Elastic Computer Cluster Service:  The cluster 
includes an elastic number of virtual instances for a workload 
processing; (2) Persistent Storage Servic}:  The storage service 
stores application data.  Different types of storage services may 
exist:  table (SQL and NoSQL storage are considered), blob 
(binary files) and queue messages (as for Windows Azure); (3) 
Intra-cloud Network Service:  The network inside a cloud that 
connects the virtual instances of an application (4) WAN 
Service:  The wide-area delivery network of a cloud delivers an 
application’s contents to the end hosts from multiple 
geographically distributed data centers of the cloud.  The 
project scope is general, it does not address benchmarking data 
warehouses in the cloud specifities. 
 Most published research focused on benchmarking through 
exclusively performance measurements of high level languages 
and platforms of cloud systems, or investigation of a cost 
model for a particular topic in the cloud.  In this paper, we 
show that TPC-H benchmark-the most prominent benchmark 
for decision support system, mismatches both (i) cloud 
rationale (scalability, elasticity, pay-per-use, fault-tolerance 
features) and (ii) Customer Relationship Management 
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rationale (end-user satisfaction, Quality of Service features).  
Indeed, its metrics are not sufficient for assessing the novel 
cloud services.  Moreover, we propose new metrics which fit 
to the characteristics of cloud computing and to characteristics 
of OLAP workloads.  The proposed requirements and metrics 
are to make CSPs’ offerings comparable from capabilities, and 
services perspectives.  
 

3 Cloud Computing 
 
 The National Institute of Standards and Technology (NIST) 
[17] defines cloud computing as a pay-per-use model for 
enabling available, convenient, on-demand network access to 
a shared pool of configurable computing resources (e.g., 
networks, servers, storage, applications, services) that can be 
rapidly provisioned and released with minimal management 
effort or service provider interaction.  Hereafter, we recall the 
five cloud characteristics, the three cloud service models, and 
we overview Cloud Service Providers (CSP) pricing models.  
 
3.1 Cloud Characteristics 
 
 The cloud model is composed of three characteristics of 
virtualized systems, namely (1) broad network access-cloud 
computing is network based, and accessible from anywhere 
and from any standardized platform (i.e., desktop computers, 
mobile devices, …); (2) resource pooling-the multi-tenancy 
aspect of clouds requires multiple customers with disparate 
requirements to be served by a single hardware infrastructure, 
and therefore, virtualized resources (CPUs, memory, etc.) 
should be sized and resized with flexibility; (3) rapid 
elasticity-cloud computing gives the illusion of infinite 
computing resources available on demand.  In particular, it is 
expected that the additional resources can be (a) provisioned, 
possibly automatically in mere minutes, when an application 
load increases (scale-up) and (b) released when load decreases 
(scale-down).  In addition to the aforementioned 
characteristics, the cloud model is composed of two 
characteristics of on-demand computing services: (4) on-
demand self-service-consumers of cloud computing services 
expect on-demand, nearly instant access to resources; (5) 
measured service (a.k.a. pay as you go) cloud services must be 
priced on a short term basis (e.g., by hour), allowing users to 
release resources as soon as they are not needed, and metering 
should be done accordingly for different types of service (e.g., 
storage, processing, and bandwidth). 
 
3.2 Cloud Service Models 
 
 Based on user demand, cloud services include the delivery 
of software, infrastructure, and storage over the Internet, either 
as separate components or as a complete platform.  Three 
primary cloud service models exist. The first being 
Infrastructure as a Service (IaaS) -An IaaS provider delivers 
computer hardware (servers, network, storage) as a service.  It 
may also include the delivery of operating systems and 
virtualization technology to manage the resources.  Examples 
of IaaS CSPs are: Amazon Elastic Computing Cloud (EC2), 

GoGRID.  The second being Platform as a Service (PaaS) -a 
PaaS provider delivers infrastructure and an integrated set of 
software which provides everything a developer needs to build 
an application.  Examples of PaaS CSPs are:  Google 
AppEngine, Microsoft Azure Platform.  The third being 
Software as a Service (SaaS) -a SaaS CSP access to software 
and its functions remotely as a Web-based service.  Examples 
of SaaS providers for data analytics is:  Google BigQuery, and 
for database as a service is:  Amazon Relational Database 
Service. 
 

4 Data Warehouse Systems 
 
 Business Intelligence aims at supportting better decision-
making, through building quantitative processes for a business 
to arrive at optimal decisions and to perform business 
knowledge discovery.  Business intelligence often uses data 
provided by Data Warehouse Systems.  The concept of a data 
warehouse first appeared in articles published in the late 1988s 
by Bill Inmon.  A data warehouse is defined as a collection of 
subject-oriented, integrated, non-volatile, and time variant 
data to support management’s decisions.  Data warehousing 
definition evolved to the process of collecting, cleansing, and 
integrating data from a variety of operational systems and 
making the resultant information available for the foundation 
of decision support and data analysis.   
 
4.1 Typical DWS Architecture 
 
 Figure 1 illustrates a typical architecture of a data warehouse 
system.  The latter is composed of three components:  (1) 
Source integration system, (2) Data warehouse storage system 
and (3) Data analysis system.  Next, we describe these 
components.   
 

 
 

Figure 1:  Typical data warehouse system architecture 
 
 4.1.1 Source Integration System.  The source integration 
process deals first with acquiring data from a set of relevant 
data sources (e.g., legacy systems, relational databases, 
spreadsheets, …), then with integrating the schemas of the 
sources in order to obtain a global schema.  For this purpose, it 
specifies the mapping between the global schema and the 
sources, and includes the specification of how to load and 
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refresh data according to the global schema.  Integration has to 
deal with the problem of cleaning and reconciling data coming 
from different sources, and consequently resolving naming, 
structural and data conflicts. 
 
 4.1.2 Data Warehouse Storage System.  Two main 
approaches can be distinguished for storing data within a data 
warehouse, namely (i) MOLAP, where both the source data 
and the aggregation calculations are stored in a 
multidimensional data structures; and (ii) ROLAP, the data 
warehouse is physically stored using conventional Relational 
Database Management System and cubes are defined logically.  
There are also hybrid OLAP products (HOLAP), which allow 
both direct access to relational data for multidimensional 
processing, as well as having their own optimized 
multidimensional disk storage for aggregates and pre-
calculated results.  MOLAP is the fastest option for data 
retrieval, but it requires the most storage space and it is not 
very scalable.  
 
 4.1.3 Data Analysis System.  The data analysis system 
embeds an OLAP server.  The latter is a high-capacity, multi-
user data manipulation engine specifically designed to process 
an OLAP workload.  Multidimensional querying implemented 
by OLAP clients is an exploratory process, performed by 
navigating along the dimensions and measures, and allowing, 
(i) increase/decrease the level of detail (respectively drill-down 
and roll-up OLAP operations), (ii) focus on specific subparts 
of the cube for on-screen viewing (slice and dice OLAP 
operations), and (iii) rotation of dimensions to new on-screen 
viewing (rotate OLAP operation). 
 
4.2 Common Optimization Strategies 
 
 Data warehouse solutions and appliances achieve better 
performances with the following technologies, 
 
 4.2.1 Hardware Technologies.  Some data warehouse 
appliances provide special hardware products as storage 
solutions on-premises.  Hardware solutions propose data 
storage devices allowing high I/O throughputs such as DRAM, 
Solid-State Drives (SSDs) and Parallel disks I/O.  Notice that 
these hardware-based solutions are expensive and obsolete 
over time. 
 
 4.2.2 Columnar Storage Technology.  A column-oriented 
storage system stores each record’s column value (or familty of 
columns) in different data blocks.  This technology allows 
higher compression ratio and higher scan throughput than 
ordinary row-based storage systems.  
 
 4.2.3 Derived Data.  In order to get a fast response, data 
warehouses use derived data, such as OLAP indexes (e.g., 
bitmap, n-tree), derived attributes, aggregate tables (a.k.a. 
materialized views), and data synopsis.  There are multiple 
techniques to perform approximate query processing using 
data synopsis.  The most popular involve histograms, wavelets, 

sketches and sampling [5].  Nevertheless, derived data present 
disadvantages related to complexity of derived data calculus 
and refresh cost.  
 
4.3 Decision Support Systems Benchmarks 
 
 There are few decision-support benchmarks out of the TPC 
benchmarks.  Next, we overview most known benchmarks in 
the community.  
 
 4.3.1 APB-1 Benchmark.  APB-1 [21] has been released in 
1998 by the OLAP council, a now inactive organization.  APB-
1 warehouse dimensional schema is structured around five 
fixed size dimensions and its workload is composed of 10 
queries.  APB-1 is proved limited [8] to evaluate the 
specificities of various activities.  It proposes a single 
performance metric termed AQM (Analytical Queries per 
Minute).  The metric AQM denotes the number of analytical 
queries processed per minute including data loading and 
computation time.  
 
 4.3.2 TPC-H Benchmark.  The most prominent 
benchmarks for evaluating decision support systems are the 
various benchmarks issued by the Transaction Processing 
Council (TPC).  Since two decades, TPC-H benchmark is the 
most used benchmark in the research community.  The TPC-H 
benchmark exploits a classical product-order-supplier model.  
It consists of a suite of business oriented adhoc queries and 
concurrent data modifications.  The workload is composed of 
22 parameterized decision-support SQL queries with a high 
degree of complexity and two refresh functions:  RF-1 new 
sales (new inserts) and RF-2 old sales (deletes).  Scale factors 
used for the test database are:  1, 10, …, 100,000; and resulting 
raw data volumes are respectively 1GB, 10GB, …, 100TB. 
 TPC-H benchmark, and its successor TPC-DS, report two 
main metrics (see details in Appendix A) 
 

• TPC-H Composite Query-per-Hour Performance Metric 
(Qph@Size):  The Qph@Size metric reflects multiple 
aspects of the capability of the system under test for query 
processing.  These aspects include (i) the selected database 
size against which the queries are executed (i.e., scale 
factor), (ii) power test which is the query processing 
power when queries are submitted by a single stream, and 
(iii) the throughput test, which is the query throughput 
when queries are submitted by multiple concurrent users.  

• TPC-H Price-Performance Metric ($/Qph):  The $/Qph 
metric reflects the ratio of costs to performance.  The 
calculation of the priced system consists of (i) the price of 
both hardware and software present in the system under 
test, (ii) the price of the communication interface 
supporting the required number of user interface devices, 
(iii) the price of on-line storage for the database and 
storage for all software, (iv) the price of additional 
products (software or hardware) required for customary 
operation, administration and maintenance for a period of 
three years, and finally (v) the price of all products 
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required to create, execute, administer, and maintain the 
executable query texts or necessary to create and populate 
the test database. 

 
 4.3.3 Mismatching of TPC-H Benchmark for Evaluation 
of DWS in the Cloud.  The use of TPC-H for benchmarking 
Data Warehouse Systems in the cloud reveals the following 
problems, 
 First, considering the technical evolution of OLAP 
technologies in the last years, the TPC-H benchmark does not 
reflect modern implementations of data warehouse systems, 
and is not suitable for the benchmarking of commercial 
business intelligence suites, i.e., integration services (ETL 
performances), OLAP engines (OLAP hypercubes building) 
and reporting tools.  Most business intelligence projects query 
the data warehouse system using Multi-Dimensional 
eXpressions language (MDX) [18], while the TPC-H and TPC-
DS benchmarks feature an SQL workload.      
 Second, the primary metric used by TPC-H -Qph@Size, is 
the number of queries processed per hour, that the system 
under test can handle for a fixed load.  The system under test is 
then considered static, and this metric does not show the 
system scalability, i.e., system performance under variable 
loads and for variable cluster size.  
 Third, the second metric used by TPC-H -$/Qph, is the ratio 
of costs to performance, such that the pricing is based on the 
total cost of ownership of the system under test on-premises.  
The ownership cost includes hardware pricing, software 
license costs, as well as administration and maintenance costs 
during three years.  This is incompatible with the pay-as-you-
go model of cloud computing, since the cloud customers are 
not directly exposed to the hardware, software maintenance, 
and administration costs of their deployment.  For the cloud, 
different price-plans exist and the cost-performance ratio 
depends on data volume, workload, services, selected 
hardware, and consequently on the CSP pricing plan.  Also, the 
demand for required hardware and software resources shall 
vary over time, and then is better formulated by the dynamic 
lot-size model.     
 Fourth, currently none of the TPC-benchmarks reports a 
cost-effictiveness ratio metric.  Migration to the cloud should 
help the company determine the best hardware configuration 
for managing efficiently its data and running efficiently its 
workload.  Indeed, it does not make sense to afford an Amazon 
EC2 Extra Large Instance (15GB of memory and 8 EC2 
compute units for $0.480 per Hour), when an Amazon EC2 
Large Instance (7.5GB of memory and 4 EC2 compute units 
for \$0.240 per Hour) satisfies the workload requirements.  A 
second motivating example for cost-effectiveness ratio is the 
following:  Oracle publishes a detailed DBaaS service catalog 
for DBaaS [1], where the main variables are:  (i) DB service 
name-defined as combination of load estimate complexity and 
workload type, particularly {small, medium or large} and 
{OLTP or OLAP}, (ii) CPU Size -2,4,8 or 16 cores, (iii) Server 
Memory -6, 8, 16, 24 or 48GB, (iv) Storage Redundancy (2-
way or 3-way), (v) Service Availability (Node, Server or Site).  
Hence, a given company may choose a not cost-effective 

DBaaS service.  The cost-effectiveness ratio should help a 
company defining its needs.   
 Fifth, the CAP theorem [3], also known as Brewer’s 
theorem, asserts that any networked shared-data system can 
have only two of three following properties, namely, (i) 
Consistency which guarantees that all nodes see the same data 
at the same time; (ii) Availability which guarantees that every 
request receives a response about whether it was successful or 
failed; and (iii) Partition tolerance which guarantees that the 
system continues to operate despite arbitrary message loss or 
failure of part of the system.  Benchmarking data warehouse 
systems in the cloud on a networked data system should 
implement all different combinations of guarantees, namely 
CA, CP and AP when considering refresh functions and high-
availability. 
 Finally, the TPC-H benchmark lacks adequate metrics for 
measuring the features of cloud systems like scalability, pay-
per-use and fault-tolerance, and service level agreements.  In 
the next section, we present requirements and new metrics for 
benchmarking data warehouse systems in the cloud. 
 
5 Benchmarking Data Warehouse Systems in the Cloud 
 
 The data warehousing process is inherently complex and, as 
a result, is costly and time-consuming.  The deployment of a 
data warehouse system in the cloud is very different than its 
deployment on-premises.  Indeed, the relationship between the 
CSP and its customers is different than the relationship 
between a company and its BI department.  Migration to the 
cloud should improve end-user satisfaction and induce greater 
business productivity.  Thus, benchmarks designed for 
evaluation of data warehouse systems in the cloud should 
reflect end-user satisfaction, Quality of Service (QoS), as well 
as all inherent characteristics of cloud systems, namely high 
performance, elasticity, scalability, pay-per-use and fault-
tolerance.  Next, we first present use cases of benchmarking 
data warehouse systems in the cloud, then we present new 
requirements and corresponding metrics which aim at a fair 
comparison of different cloud systems providers of data 
warehouse systems.  
 
5.1 Use Cases 
 
 Two main use cases are identified of benchmarking data 
warehouse systems in the cloud.  First, the comparison of 
different cloud systems, which aims to select the best CSP for 
final deployment of a data warehouse system.  Second, the 
tuning of a system:  which aims to select, for a given CSP, the 
capacity planning (operating system, number of instances, 
instance hardware configuration, …), best optimizations, best 
cost-performance tradeoffs, best cost-effectiveness 
tradeoffs. 
 
5.2 Proposed Requirements 
 
 Next, we detail new requirements and corresponding metrics 
for benchmarking data warehouse systems in the cloud. 
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 5.2.1 High Performance Metering.  Data warehousing is 
intended for decision support.  The latter requires high 
performance for greater business productivity.  Two main 
features of data warehousing in the cloud affect high 
performance, which are (i) data transfer to/from the CSP and 
(ii) workload processing.  
 

• Data Transfer to and from the Cloud Service Provider:  
the source integration system and the data analysis system 
manipulate huge data sets.  Practically, big data uploads on 
remote servers require a lot of bandwidth and perform 
better on local networks.  The operational system of the 
company may be serviced at a different cloud service 
provider, at the same cloud service provider (CSP) 
selected for the data warehouse or on-premises.  So, unless 
creation of an expensive private link between the 
operational system location and the data warehouse 
provider location, data warehousing in the cloud is 
constrained by low-speed connections and network 
congestion issues.  The worst case presents an operational 
DB serviced at a different cloud service provider.  Indeed, 
in this case, data transfer from a CSP to a different CSP 
should be considered.  As usually data download from any 
CSP is charged, the cost of data migration from a CSP to a 
different CSP will be very expensive.  If on-premises, 
companies are confronted to I/O-bound and CPU-bound 
applications, in the cloud they will confront to network-
bound applications.  Indeed, the bottleneck will be the 
network bandwidth available to perform huge data transfer 
to/from the CSP.  Most CSPs provide data transfer to their 
data centers at no cost (e.g., Data Transfer IN To Amazon 
EC2 From Internet costs $0.00 per GB).  Nevertheless, 
data download is priced (e.g., Data Transfer OUT To 
Amazon EC2 From Internet $0.12 per GB per month for 
data volumes comprised between 1GB and 10TB, and it 
costs cheaper for higher data volumes, and it is free for 
lower data volumes). 

• Workload Performance:  most OLAP engines implement 
intra-query parallelism to provide faster performance.  
Intra-query parallelism consists in breaking a complex 
single query into sub-queries, processing the workload 
over multiple processors, and finally performing post-
processing for presenting the final query response.  Three 
factors impact the final response time to a query, which 
processing implies intra-query parallelism.  First, Start-up 
costs, which are related to starting up multiple processes 
for processing simultaneously sub-queries.  The time to 
set-up these processes may dominate computation time if 
the degree of parallelism is high.  Second, Skew costs, 
these costs show that in a distributed system the overall 
execution time is determined by the slowest of parallely 
executing tasks.  Third, Interference costs, these costs 
relate to the time the processes are idle.  Indeed, processes 
accessing shared resources (e.g., system bus, disks, or 
locks) compete with each other and spend time waiting on 
other processes.  Most systems, relational DBMS or 
NoSQL technologies [18] feature a concave curve, with an 

optimum response time for a particular cluster size and 
where performance degrades from this optimum onward 
(see Figure 2).  For cloud computing, the slope, showing 
performance gain (from N to N’) should be also expressed 
in a cost metric.  Indeed, to obtain an improvement in 
response time, the system scales-out horizontally, and 
more instances are provisioned.   

 

 
 
Figure 2:  Response times of OLAP queries across cluster size 
 
 5.2.2 Cost Metering.  Even though many services look 
similar from the outside, the services vary when it comes to 
system architectures, performance, scalability, and cost.  Cloud 
Service Providers have different pricing models for storage, 
CPU, bandwidth and services.  Next, we present the different 
charging plans adopted by cloud service providers,  
 

• Compute Cost: There are two types of providers’ charging 
for CPU cost, 

 
- Instance-based:  the CSP charges the customer for the 

number of allocated instances and how long each 
instance is used.  This is regardless of whether the 
instances are fully utilized or under utilized. Examples 
of CSPs which fall in this CPU pricing model are 
Amazon AWS and Windows Azure. 

- CPU cycles-based:  the CSP charges the customer for the 
number of CPU cycles a customer’s application 
consumes.  Examples of CSPs which fall in this CPU 
pricing model are CloudSites and Google AppEngine.  

 
• Storage Cost:  Data Warehouse Systems are IO intensive 

applications.  Thus, storage performance, throughput and 
bandwidth capacity planning become critical for data 
warehousing in the cloud.  Storage devices have two 
limits (i) the amount of storage available and (ii) the 
amount of sustainable IOPs (Input/Output Operations per 
Second).  Most CSPs implement a bundling-pricing for 
storage space charging (first 1 TB cost/ month, next N TB 
cost/ month and so on).  Nevertheless, the real measure of 
storage performance is IOPS.  Flash based storage 
whether it be DRAM or Solid State Drives (SSDs) 
maximize IOPS, but are expensive.  Some CSPs charge 
for IO request.  For instance, MS Azure charges $.01 per 
10,000 IO requests, while Amazon S3 charges more per 
write operation:  $.01 per 1,000 put, copy, post, or list 
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requests and $.01 per 10,000 get requests.  
• Software cost:  the CSP may provide some software at no 

cost.  Notice that most operating systems are charged to 
customers with the cost of instance.  Applications are 
either charged on a pay-as-you-go basis or on subscrip-
tion basis.  For pay-as-you-go, the cost is aligned to usage.   

• Intra-network cost:  most providers offer intra-cloud 
network bandwidth consumption at no cost.  Basically, no 
information is available about interconnectivity of nodes 
within a data center.  Notice that, intra-network bandwidth 
is very important for distributed processing of OLAP 
workloads, for both SQL and NoSQL solutions. 

• WAN cost:  Charges for using the wide-area delivery 
network are based on the amount of data delivered through 
the cloud boundaries to the end-users.  Currently, most 
providers have similar prices for this service, where data 
upload is free of charge and data download is priced. 

• Services’ cost:  SaaS offers for analytics are different than 
IaaS and PaaS offers.  Indeed, the cost of the service is 
included in the price model.  For instance, BigQuery [24] 
pricing for storage resources depends on data volume, and 
the pricing of workload processing depends on the number 
of bytes retrieved for each business question.  BigQuery is 
a columnar-storage system, which adopts an I/O-based 
pricing model.  Other cloud service providers propose a 
subscription-based pricing model, for instance the 
Clustrix/GoGrid DBaaS cloud solution is available on a 
monthly subscription basis. 

 
 5.2.3 Scalability Metering.  Scalability is the ability of a 
system to increase total throughput under an increased load 
when hardware resources are added.  Ideally, cloud services 
should scale linearly with a fixed cost per processed business 
question.  Current TPC-H implementation measures the 
capacity of a system for a static workload.  We propose that the 
benchmark for data warehousing should assess the system 
under test with an ever increasing load, and measures the 
throughput consequently.  Scalability can be measured with 
speed-up metric and scale-up metric.  Speed-up metric refers to 
the workload processing time gained as a consequence of 
adding new nodes and keeping the workload constant, and 
Scale-up metric refers to the throughput processing capacity 
gained by adding new nodes and increasing the workload.  In 
order to quantify this requirement, we can vary the workload 
on a time scale basis, every 1hour for instance, and measure 
the number of business questions processed during the time 
interval across a variable cluster size. 
 
 5.2.4 Elasticity Metering.  Elasticity adjusts the system 
capacity at runtime by adding and removing resources without 
service interruption in order to handle the workload variation.  
First, the metric should assess the system capacity to 
autoprovision and release resources without service 
interruption, and in case it does, it reports first scaling latency, 
i.e., the time required for a system to scale-down or to scale-up 
horizontally, and second the scale-up cost, i.e., the cost of 
newly acquired resources or the scale-down gain, i.e., the cost 

of newly released resources.  Finally, it reports the impact of 
the scale-up or scale-down operation on system performances. 
 
 5.2.5 High Availability Metering.  Data distribution among 
multiple disks increases the distributed storage system failure 
likelihood.  Many approaches to build highly available 
distributed data storage systems have been proposed. They 
generally use either (i) replication or (ii) parity calculus.  The 
latter approach uses systematic erasure-codes (e.g., Reed 
Solomon (RS) codes, Low-Density Parity-Check (LDPC) 
codes, Tornado code).  With replication, data management is 
straightforward.  However, the storage overhead with 
replication is always higher than it is with systematic erasure 
codes.  When a certain level of availability is targeted the 
erasure codes are able to provide service with a lower storage 
overhead than replication techniques. For data warehousing, 
high availability through erasure codes saves storage costs, 
particularly for big data of type write-once (i.e., not subject to 
delete refreshes).  Nevertheless, data recovery is more 
complicated than replication.  Indeed, first data recovery is not 
a simple copy to operation as for replication, it performs 
complex decoding calculus, and second data recovery involves 
different servers, which send their contents to a recovery 
manager and consequently it implies a high communication 
overhead.  Erasure codes were investigated and proved 
efficient for highly available distributed storage systems [16] 
and grid systems [23].  Figure 3 illustrates the storage space 
requirements in different file high-availability schemes, 
namely replication and erasure codes.  In our example, we 
show 4 blocks of a data file (m = 4) stored in such a way that 
any (n - m) = 2 missing blocks can be tolerated; values n = 6 
and m = 4 are used as an example.  With replication, k copies 
of the entire file are stored into separate places.  The group of 
data blocks is 2-available through replication with a 
redundancy overhead of 200 percent versus the same group of 
data blocks 2-available through erasure-codes with a 
redundancy overhead of 50 percent.  
 Some CSPs implement replication for increasing the 
availability of stored data and preventing discontinuity of 
service.  They also offer replicas management in data centers 
situated in different geographic locations.  This allows disaster 
 
 

 
 
Figure 3:  Replication vs. erasure codes for a group of 4 data 

blocks 
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recovery from a failure node within the data center as well as 
whole data center outage.  Nevertheless, most CSPs do not 
customize high availability services to their customers.  For 
data warehousing in the cloud, the end-user should be notified 
of the cost of rendering its data highly-available through 
different high availability strategies (i.e., for both synchronous 
and asynchronous refreshes), and different levels of 
availability should be offered which enables customization of 
the recovery capacity following disasters.  Consequently, the 
benchmark should embed metrics measuring the cost of 
different targeted levels of availabilities (1-available, …, k-
available, i.e., the number of failures the system can tolerate), 
as well as the recovery cost.  We propose two metrics which 
denote the cost of maintaining of a k-available system $@k, 
with k is the targeted level of availability, and a metric 
denoting the cost of recovery expressed in time and decreased 
system productivity caused by the hardware failure from 
customer perspective.  The latter should be charged to the CSP. 
 
 5.2.6 Cost-Effectiveness and Cost-Performance Metering.  
The cloud-based solutions should help companies, which look 
to optimize costs without compromising on efficiency and 
quality of service.  Therefore, there is an emerging need to 
understand, manage and proactively control costs across the 
cloud from two perspectives, namely performance perspective 
and effectiveness perspective.  Indeed, instead of searching for 
the minimal execution time, the user may want to run his 
application more cost effectively, which ensures a maximal 
computation at minimal costs.  The cost management plan 
should include determination of the best hardware 
configuration versus performance and versus effectiveness; 
this assumes a systematic monitoring of resource utilization.  
For these purposes, we propose measuring the ratio of 

configuration cost to performance and to resource utilization.  
Resource utilization is the ratio of used resources to allocated 
resources. Notice that used resources and allocated resources 
vary over time. 
 
 5.2.7 Service Level Agreements and QoS Metering.  A 
Service Level Agreement (SLA) is a contract between a service 
provider and its customers.  SLAs capture the agreed upon 
guarantees between a service provider and its customer.  They 
define the characteristics of the provided service including 
service level objectives, as maximum response times, 
minimum throughput rates and data consistency, and define 
penalties if these objectives are not met by the service 
provider.  Penalty is an amount that the provider must pay to 
the customers if the SLA is not met.  For example, in Google 
AppEngine, Microsoft Azure, or Amazon S3, if availability is 
lower than 99.9 percent, then the customers receive a service 
credit, according to SLA, and proportional to the revenue.  
 Sousa et al. [26] proposes QoSDBC framework, an approach 
to QoS for databases in the cloud.  The SLAs categories for the 
data warehousing in the cloud are scalability, elasticity, 
performance (throughput and response time are both 
considered), high-availability and independency of the CSP.  
For the latter, the company should be able to easily migrate to 
another Cloud Service Provider (CSP), and get its data back in 
a standard format.  This will limit losses in case the CSP 
requires the purchase of new software, imposes exorbitant 
prices, or goes bankrupt. 
 
5.3 Summary of Proposed Metrics 
 
 In Table 1, we propose a summary of metrics for data 
warehouse systems’ benchmarking in the cloud.  

 
Table 1:  Summary of metrics for data warehouse systems’ benchmarking in the cloud 
Requirement Proposed Metrics 
High Performance  Data Transfer IN/OUT the CSP, 

• time and cost for data upload IN the CSP,  
• time and cost for data download OUT the CSP  
Workload Processing, 
• Workload processing time  

Cost • depends on cloud service provider pricing scheme 
Scalability  • scale-up:  workload processing performances under an ever increasing workload across variable 

cluster size  
• speed-up:  workload processing performances under a constant workload across variable cluster size  

Elasticity  • capacity of scale-up/ scale-down,  
• scaling latency  
• scale-up/ scale-down impact on system under test performances  
• scale-up cost(+$) or scale-down gain (-$),  

High-availability  • cost of a targeted $k$ level-of-availability,  
• mean time to recovery  
• decreased productivity due to discontinouity of service  

Cost-Performance • ratio of cost to performance, 
Cost-Effectiveness  • ratio of cost to aggregated resources' usage percent,  
Service Level Agreements  • QoS assessment through tracking of unsatisfied service level agreements,  
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6 Conclusion 
 
 The rationale of migration of data warehouse systems to the 
cloud, are basically thrice, (i) reduction of capital expenditure 
through measured service, with infrastructure, platform, 
services are provided on a pay-per-use basis (ii) rapid elasticity 
for adaptive resource capacity to workload, and (iii) better 
cost-performance tradeoff.  In this paper, we propose new 
requirements and metrics to be fulfilled by a benchmark for 
data warehouses in the cloud, such as high-performance, high-
availability, cost-effectiveness, cost-performance, scalability, 
elasticity, as well as SLAs.  In future work, we foresee to 
assess and compare most known CSPs for data warehousing in 
the cloud. 
 

References 
 
[1] Collin Bennett, Robert L. Grossman, David Locke, 

Jonathan Seidman, and SteveVejcik, “Malstone:  Towards 
a Benchmark for Analytics on Large Data Clouds,” 
Proceedings of the 16th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
KDD ’10, ACM, pp. 145-152, 2010.  

[2] Carsten Binnig, Donald Kossmann, Tim Kraska, and 
Simon Loesing, “How is the Weather Tomorrow?: 
Towards a Benchmark for the Cloud,” Proceedings of the 
Second International Workshop on Testing Database 
Systems, DBTest ’09, ACM, pp. 91-96, 2009.  

[3] Eric Brewer, “Pushing the CAP:  Strategies for 
Consistency and Availability,” Computer, 45(2):23-29, 
February 2012 

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu 
Ramakrishnan, and Russell Sears, “Benchmarking Cloud 
Serving Systems with YCSB,” Proceedings of the 1st 
ACM Symposium on Cloud Computing, SoCC ’10, pp. 
143-154, 2010. 

[5] Graham Cormode, Minos Garofalakis, Peter J. Haas, and 
Chris Jermaine, “Synopses for Massive Data:  Samples, 
Histograms, Wavelets, Sketches,” Found, Trends 
Databases, 4:1-294, 2012.  

[6] Database as a Service:  Reference Architecture, 
http://www.oracle.com/technetwork/topics/entarch/oes-
refarch-dbaas-508111.pdf, 2011. 

[7] Avrilia Floratou, Jignesh M. Patel, Willis Lang, and Alan 
Halverson, “When Free is not really Free:  What does it 
Cost to Run a Database Workload in the Cloud?” 4th 
TPC Technology Conference on Performance Evaluation 
and Benchmarking (TPCTC), pp. 163-179, 2011.  

[8] Forrester, “File Storage Costs Less in the Cloud than 
Inhouse,” http://www.forrester.com, 2011.  

[9] Forrester, Sizing the Cloud, http://www.forrester.com, 
2011. 

[10] Gartner Group, Forecast:  Public Cloud Services,  
Worldwide, 2011-2017, 1q13 Update, 
http://www.gartner.com/id=2391015, 2013.  

 

[11] Jim Gray, Sort Benchmark Home Page. http://re 
search.micro soft.com/barc/SortBenchmark/, 2008.  

[12] Donald Kossmann, Tim Kraska, and Simon Loesing, “An 
Evaluation of Alternative Architectures for Transaction 
Processing in the Cloud,” Proceedings of the 2010 ACM 
SIGMOD International Conference on Management of 
data, SIGMOD ’10, ACM, pp. 579-590, 2010.  

[13] Nicole Laskowski, “Business Intelligence Software 
Market Continues to Grow,” http://www.gartner.com/. 

[14] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming 
Zhang, “Cloudcmp:  Shopping for a Cloud made Easy,” 
USENIX HotCloud, pp. 5-5, 2010.  

[15] Witold Litwin, Rim Moussa, and Thomas J. E. Schwarz, 
“With LH*RS - a Highly-Available Scalable Distributed 
Data Structure,” ACM Trans. Database Syst., 30(3):769-
811, 2005.  

[16] Peter Mell and Timothy Grance, “The NIST Definition of 
Cloud Computing,” National Institute of Standards and 
Technology, csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf, 2011.  

[17] Rim Moussa, “Massive Data Analytics in the Cloud:  
Tpch Experience on Hadoop Clusters,” Intl. Journal of 
Web Applications (IJWA), 4:113-133, 2012.  

[18] Multi-Dimensional Expressions Language, msdn.micro 
soft.com/enus/library/aa216779(SQL.80).aspx.  

[19] Thi-Van-Anh Nguyen, Sandro Bimonte, Laurent 
d’Orazio, and Jérôme Darmont, “Cost Models for View 
Materialization in the Cloud,” EDBT/ICDT Workshops, 
pp. 47-54, 2012.  

[20] OLAP Council:  APB-1, www.olapcouncil.org.  
[21] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. 

Abadi, David J. DeWitt, Samuel Madden, and Michael 
Stonebraker, “A Comparison of Approaches to Large-
Scale Data Analysis,” SIGMOD Conference, pp. 165-
178, 2009.  

[22] Mikko Pitkänen, Rim Moussa, D. Martin Swany, and 
Tapio Niemi, “Erasure Codes for Increasing the 
Availability of Grid Data Storage,” AICT/ICIW, pp.185-
197, 2006.  

[23] Kazunori Sato, “An Inside Look at Google Bigquery,” 
https://cloud.google.com/files/.  

[24] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, 
H. Wong, A. Klepchukov, S. Patil, A. Fox, and 
D.Patterson, “Cloudstone:  Multi-Platform, Multi-
Language Benchmark and Measurement Tools for Web 
2.0,” Proceedings of Cloud Computing and Its 
Applications, http://www.cca08.org/papers/Paper33-
Armando-Fox.pdf, 2008.  

[25] Flávio R. C. Sousa, Leonardo O. Moreira, Gustavo A. C. 
Santos, and Javam C. Machado, “Quality of Service for 
Database in the Cloud,” CLOSER, pp. 595-601, 2012. 

[26] Erik Thomsen, “Comparing Different Approaches to 
Olap Calculations as Revealed in Benchmarks,” 
Intelligence Enterprises Database Programming & 
Design, 1998. 

 
 



 IJCA, Vol. 20, No. 4, Dec. 2013 254

 
Appendix A: TPC-H Benchmark Metrics 
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