
A publication of ISCA*:
International Society for Computers

and Their Applications

INTERNATIONAL JOURNAL OF
COMPUTERS AND THEIR

APPLICATIONS

TABLE OF CONTENTS

Page

Guest Editor’s Note . 51
Antoine Bossard

Evaluation of Fatigue from 90-min Reading by Paralanguage
Recognition and Gazing-Point Analysis . 52

Miyuki Suganuma, Saaya Urakabe, Ryota Kuramochi, Shinya Mochiduki,
Yuko Hoshino, and Mitsuho Yamada

Cloud Service Reliability Assessment and Prediction Based on
Defect Characterization and Usage Estimation . 61

Abdullah Bokhary and Jeff Tian

Computing Covers from Matchings with Permutations . 72
Ariel Fernandez, Ryszard Janicki, and Michael Soltys

A Software Development Environment for a Multi-Chip Convolutional
Network Accelerator . 81

Tetsui Ohkubo, Mankit Sit, Hideharu Amano, Ryo Takata, Ryuichi Sakamoto,
and Masaaki Kondo

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 24, No. 2, June 2017 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…P. O. Box 1124, Winona, MN 55987 USA…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2017 by the International Society for Computers and Their Applications (ISCA)
All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor
Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA
Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston-Clear Lake,
USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology, Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University,
Wrexham, UK
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and
Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University for
Technology, Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at
Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University, USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
at Stony Brook, USA

rong.zhao@stonybrook.edu

IJCA, Vol. 24, No. 2, June 2017 51

May 2017

Guest Editor’s Note

CATA (Computers and their Applications) is the flagship conference for the International
Society of Computers and their Applications (ISCA). The intent of the conference has
been to blend theory and practice as a means of stimulating researchers from both
research dimensions.

The papers for this special issue have been selected to illustrate the spectrum of the
52 papers presented at the CATA 2017 conference. The authors were asked to extend
their work to make the papers journal appropriate, and to change the title of their paper
to avoid confusion with their conference paper. This CATA special issue contains the
following four papers.

In their paper “Evaluation of Fatigue from 90-Min Reading by Paralanguage
Recognition and Gazing-Point Analysis”, M. Suganuma et al. describe an automated
system to evaluate the physical condition of patients.

In their paper “Cloud Service Reliability Assessment and Prediction Based on Defect
Characterization and Usage Estimation”, A. Bokhary et al. present a method to assess
the reliability of cloud services.

In their paper “Computing Covers from Matchings with Permutations”, A. Fernández
et al. propose a graph algorithm to derive covers from matchings.

Finally, in their paper “A Software Development Environment for a Multi-Chip
Convolutional Network Accelerator”, T. Ohkubo et al. describe a software development
environment which significantly improves development efficiency.

Antoine BOSSARD

52 IJCA, Vol. 24, No. 2, June 2017

Evaluation of Fatigue from 90-min Reading
by Paralanguage Recognition and Gazing-Point Analysis

Miyuki Suganuma*, Saaya Urakabe, Ryota Kuramochi,
Shinya Mochiduki, Yuko Hoshino, Mitsuho Yamada

Tokai University, Minato-ku Takanawa 108-8619, JAPAN

Abstract

In 2025, 8 million baby-boomers in Japan will be 75 years
old. It is called “2025 problem.” Due to the aging of Japanese
society, many hospitals and nursing homes require more
nurses. If it were possible to determine patients’/care receivers’
condition from their everyday behavior, it could reduce nurses’
burden and improve patients’ quality of life (QOL). In previous
research, we examined utterance recognition and training based
on lip movement. Also, we examined eye-movement in gazing-
point when driving. We found that it was possible to detect
not only utterance recognition but also participants’ feelings
and condition from paralanguage. It has been suggested that
activation status of the brain can be measured from visual
fixation while gazing. In this study, we collected gazing point
(using two types of devices), critical fusion frequency (CFF)
value, lip-movement data and pulse in an effort to comprehend
participants’ fatigue and physical condition.

Key Words: Fatigue; physical condition; paralanguage; lip-
movement; eye movement; gazing-point.

1 Introduction

Feelings such as pleasure, sadness and anger have been
implemented in emotional recognition technology based on
voice analysis (AGI Inc. 2015), and applied in humanoid
robots (Softbank Robotics Corp. 2015). In such emotional
recognition technology, involuntary elements of the brain
affected by emotion create an emotional-recognition algorithm
that directly affects the fundamental frequency of the voice
(Sato 2007). This means we recognize emotions from
nonlinguistic keys like voice quality and variety of phonation,
instead of from the words used. These nonlinguistic keys are
called paralinguistic information. Paralanguage is information
attached to language, such as voice quality and manner of
utterance. It is nonverbal elements, such as pitch, volume,
speech speed, and voice quality, which were defined by Trager
(Trager 1958). We have been working on utterance recognition
without voice information, and utterance training based on lip
movement to improve participants’ pronunciation (Saito 2012
and Wakamatsu 2014).

*Graduate School of Information and telecommunication engineering.
Email: m.suganuma@hope.tokai-u.jp.

Figure 1 shows one participant’s lip movements as he
pronounced “Wabinureba”, which is from Ogura Hyakunin
Isshu (a traditional Japanese card game). We collected his data
at two different times per day on four different days. The left
figure shows the morning data, while the right figure shows
the evening data. We had already confirmed that similar lip
movements could be seen when we collected lip-movement
data on the same day at different times. However, utterance
timing, strength and weakness of rhythm, and amplitude were
different on different days at the same time. This transition
was considered to reflect not only vigorousness, but also of
fatigue, ingestion, brain disorder, aphthous ulcers, etc. Miwa, et
al. indicated that the relationship between fatigue and daytime
sleepiness is likely complex, and might be related to Parkinson’s
disease (Miwa 2011). In the process of this research, we
observed fatigue effects of articulation. In addition, stroke
patients cannot speak clearly, and they exhibit a prodome of
down-curved lips. Based on this background, we consider lip
movement to be useful for checking physical condition and
symptoms in those new to paralanguage.

On the other hand, our eyes convey a great deal of information
in daily life; for instance, they can be energetic or glazed over.
Nevertheless, such eye changes cannot be evaluated objectively
or measured psychophysically. Thus, we have been focusing on
involuntary eye movement during fixation, and evaluating the
level of alertness and the concentration ratio (Saito 2015). There
are three types of visual fixation: drift, tremor, and flicker. The
microsaccade component is said to be particularly reflective of
mental state (Stasi 2013). For example, visual fixation is biased
in the direction of individuals’ attention when they are attending
to surrounding areas without changing the gaze point (Kaneko
2009). When we continued the eye movement measurement for
a long time, however, the gazing point was expanded because
of unstable eye movement while gazing. We then hypothesized
two reasons for the gazing-point expansion. The first was an
increase in the microsaccade component when an individual’s
attention is increased. The second was that eye movement
became unstable due to fatigue and illness. Based on these two
hypotheses, we examined changes in physical condition from
eye movement during activity.

In order to expand on our two previous studies of lip
movement and eye movement, we carried out three types of
measurement: measurement of the gazing point, acquisition

ISCA Copyright© 2017

IJCA, Vol. 24, No. 2, June 2017 53

Figure 1: One participant’s lip movements pronouncing the word “Wabinureba”, which is from Ogura Hyakunin Isshu (a traditional
Japanese card game) Left: morning data; Right: evening data

of lip movements, and critical flicker frequency (CFF) value,
which is implemented as an evaluation index over time. We
proposed two hypotheses for this research. The first was that
eye movement of the gazing point and convergence angle would
get gradually larger during a 90-min reading task. The second
was that lip movement value before reading task would be
different from that after reading task. Our aim is to reduce
the nurse/caregivers’ burden, by helping them to comprehend
the patient/care receivers’ physical condition, and ultimately,
improve their quality of life. Our approach is to attempt to
determine changes in fatigue, physical condition, and emotions
of patients by analyzing miniature eye and lip movement in face-
to-face talk.

In section two, we explain the lip feature point-collecting
application developed in our laboratory. The third section
describes the methods used in this study, and the fourth presents
our results and discussion. Finally, the fifth section contains our
conclusions.

2 Lip Feature Point-Collecting Application

Figures 2 and 3 contain screen shots of the display used for
the acquisition of lip feature points, and the display for lip-
movement training, respectively. When a subject is recognized
by the lip feature point-collecting application, the acquired
face feature points can then be shown for training. This
application was developed in our laboratory using faceAPI
(Seeing Machines, Inc., Australia) (Seeing Machines Inc.
2014). To collect lip-movement data, we used the “Get data”
function and saved the file name to save data. Data acquisition
was initiated by clicking the “Start” button. When a subject
closed his or her mouth for 0.5 s, the application recognized
that person’s mouth, and subjects could start speaking. If the
application did not recognize a subject, the “Re-recognition”
button was used. The “Stop” button was used to end a
recording. The lip-movement training display was shown
after the recording was stopped. The red line in the lip-
movement training display (Figure 3) shows the teacher’s lip
movements, which are used as model data; the black line shows
the participant’s lip movements. The two sets of lip movements

Figure 2: Display for the acquisition of lip feature points

Figure 3: Display for lip movement training

could then be compared by clicking the “Start” button (Figure
3).

3 Methods

The present study was carried out to evaluate participant’s
fatigue and assess their physical condition based on involuntary
eye and lip movements using a lip feature-point collecting
application developed in our laboratory. We conducted two
types of experiments to confirm the relation between two eye-

54 IJCA, Vol. 24, No. 2, June 2017

movement measuring devices: Tobii EyeX (Tobii AB), and
EMR-9 (nac Image Technology Inc.).

3.1 Experiment 1

Figure 4 is a flow chart of the experimental process. First, we
measured the participant’s CFF value using a flicker-measuring
instrument (Takei Scientific Instruments Co., Ltd. 2012). Figure
5 is an experimental image of measuring CFF value. We
used the raising and descending method. We then obtained
the lip-movement data. Figure 6 is an experimental image of
obtaining lip-movement data. Table 1 lists the sentences used in
experiment 1. We chose three sentences. “Watashino namaeha
xxdesu (My name is xx)”, “Kyouha kumotte imasune (Today is
cloudy)”, and “Attara aisouyoku aisatsu shinasai (You should
greet him/her in a friendly way when you meet them)”. These
are common phrases used in daily life. We choose these 3
sentences because they were easy to analyze in terms of how
much speakers opened their mouths. Participants pronounced
each phrase 3 times. They then read a novel for an hour using a
SONY note PC (VAIO Duo 11). Figure 7 is an experimental
image of reading a novel. We selected, “The night of the
milky way train”, by Kenji Miyazawa for this purpose. We
also collected participants’ involuntary eye movements using
the eye-movement tracker (Tobii AB, Tobii EyeX) while they
were reading the novel (Tobii AB. 2014). Finally, we measured
the CFF value and lip movement again, in order to compare the
participants’ fatigue before and after reading the novel.

Four students participated in this experiment (2 males and 2
females); age range was 20-22. The experiment was conducted
in our laboratory. To obtain lip-movement data, we used a
DELL note PC (Dell XPS). The web camera screen resolution
was 640x480.

Start

Measure CFF value

Collect
lip movement data

Subject: Read for 90min
（Measure pulse: 0min,

30min, 60min, 90min）

Measure CFF value

Collect
lip movement data

End

Repeat＜3 or 5
Repeat＜3 or 5yes

yes

no
no

Figure 4: Flow chart of the experimental process

3.2 Experiment 2

The experimental procedure was basically the same as in
experiment 1. In experiment 2, we selected five sentences,
“Attara aisouyoku aisatsu shinasai (You should greet him/her
in a friendly way when you meet them)”; “Ikigai-wo motomete

Figure 5: Experimental image of measuring CFF value

Figure 6: Experimental image of obtaining lip movement data

Table 1: Sentences used in experiment 1

Watashino namaeha xxdesu (My name is xx)
Kyouha kumotte imasune (Today is cloudy)
Attara aisouyoku aisatsu shinasai
(You should greet him/her in a friendly way
when you meet them)

ikou (Let’s seek fulfillment in your life)”; “Uta-wo utatte
usabrashi (I sing away my troubles)”; “Eiyo-yo eikou-yo eien-
nare (Honor and glory, forever)”; and “Ookami-no ookina
tooboe (The howling of the wolf)”. These sentences were
selected from a book called “Easy training for a good voice”
(Fukushima 2006). Table 2 presents the five sentences used
in experiment 2. Participants pronounced each phrase five
times. Participants again read a book for 90 minutes using
the same novel and PC. We collected participants’ involuntary
eye movements using an eye-movement measuring device (nac
Image Technology Inc., EMR-9). Figure 8 is an example
image of a subject reading a novel in experiment 2. In
addition to lip movement, eye movement, and CFF data, we also
collected pulse (Custom Corp., NURSE ANGIE Pulse oximeter
PLS-01BT). Participants were five students (two males and
three females) aged 20–21. The experiments were conducted
according to the Ethics Committee regulation about “research
for people” of our university.

IJCA, Vol. 24, No. 2, June 2017 55

Figure 7: Experimental image of reading a novel (using Tobii
EyeX)

Table 2: Sentences used in experiment 2

Attara aisouyoku aisatsu shinasai
(You should greet him/her in a friendly way
when you meet them)
Ikigai-wo motomete ikou (Let’s seek fulfillment in your life)
Uta-wo utatte usabarashi (I sing away my troubles)
Eiyo-o eikou-yo eien-nare (Honor and glory, forever)
Ookami-no ookina tooboe (The howling of the wolf)

4 Results and Discussions

4.1 Analysis of Standard Deviation of Eye Movement
During Gazing While Reading

4.1.1 Experiment 1 (Tobii EyeX)

Figure 9 shows participant WTN’s eye movement from the
beginning to the end of reading. The vertical axis indicates
pixels obtained from the eye tracker, while the horizontal
axis is time in minutes. In order to confirm the transition of
a gazing point’s standard deviation (SD), we collected three
intervals: 2–3 min, 29–30 min, and 59–60 min. It is clear
in the figure that eye movements appeared more frequently at
the end of reading compared to the beginning. To calculate
the SD of gazing point, we extracted gazing point from the
eye movement data while reading. In this paper, we applied
fixation separated by the Tobii EyeX as the gazing point. The
maximum velocity of smooth-pursuit eye movement, which
is eye movement that occurs while gazing at a moving target,
is at most 30 deg/s (Westheimer 1954 and Robinson 1961).
Therefore, smooth-pursuit eye movement did not occur in the
present experiment. Additionally, eye movement velocity of
30 deg/s was used as the threshold for distinguishing saccade
and gaze point from eye movement (Matsumiya 2004). The
mean SD of the gazing point of all participants is shown in
Figure 10. The SD decreased slightly in the middle of the
reading (30 min). However, it increased again at the end of
reading. We consider that participants were concentrating
on reading in the middle of the experiment. However, an

Figure 8: Experimental image of reading a novel (using EMR-
9)

indication of fatigue from reading was apparent.

4.1.2 Experiment 2 (EMR-9)

Figure 11 shows participant NKG’s average standard
deviations in the x- and y-directions during gazing from 2–
3, 29–30, 59–60 and 89–90 min after starting measurement.
The horizontal axis shows time, while the vertical axis
shows angle. The blue bar indicates the eye’s movement
in the X-direction movement, and the white bar movement
in the Y-direction. Gazing point was determined based on
eye-movement components with velocity below 5 degrees/s
(Yamada 1986). It may be seen in Figure 11 that the average
of the standard deviation of the gazing point gradually
increased in the X-axis direction. However there was no
similar change in the Y-axis direction. We considered that this
might have been due to the letters in the novel being written
from left to right.

4.2 Changes of Convergence Angle and Standard
Deviation

Convergence angle is the angle between the visual axes
of the right and left eyes when a subject looks at an object
(Nakamizo 1982). When gazing at a point on a 2D plane, the
line of sight of both eyes should converge to that one point.
However, due to fatigue from reading, we predicted that the
angle of convergence would increase by gazing.

Figure 12 presents the changes in participant NKG’s
convergence angle and standard deviation in each time
course. The horizontal axis shows time, and the vertical axis
shows angle. Results show that convergence angle decreased
from the start of reading to 59–60 min, and then increased
again at the end. This suggests that the convergence angle
widened due to fatigue.

4.3 CFF Value Before and After

4.3.1 Experiment 1

Table 3 shows the CFF value results before and after
reading of 4 participants. We collected this data 4 times, and

56 IJCA, Vol. 24, No. 2, June 2017

Figure 9: Participant WTNs eye movement from the beginning to the end of reading

Figure 10: Mean standard deviation of gazing point for all
participants

Figure 11: Average standard deviations in the X- and
Y-directions of eye movement while gazing
(Participant NKG)

then we took an average. We confirmed that all participants’
CFF values decreased. Therefore, participants became tired
over the 1 hour reading period.

4.3.2 Experiment 2

Table 4 shows results for the CFF value before and after
reading in the five participants. We collected this data six
times, and results were averaged. We confirmed that CFF
values decreased in four of five participants. Therefore, a
tendency toward mental fatigue was shown over the 1 hour
reading period, as in experiment 1.

Figure 12: Changes of convergence angle and standard
deviation in each time course (Participant NKG)

Table 3: CFF value results before and after reading in
experiment 1

Before After
WTN 32.6 31.5
KYM 38.8 37.6
KRS 35.9 34.8
KBY 34.9 34.6

Table 4: CFF value results before and after reading in
experiment 2

Before After
NKG 34.8 30.9
ONE 33.9 33.2
KSM 35.8 33.8
KYM 36.8 36.8
NKI 29.6 28.8

4.4 Lip-Movement Before and After

4.4.1 Experiment 1

Figure 13 shows an example of the area of open-lip space.
The hatched area indicates the mouth opening. The open

IJCA, Vol. 24, No. 2, June 2017 57

Figure 13: Example of the area of open lip space

Table 5: Area of the opening space of lip movement before and
after reading novel for each sentence

Before After
Hello. My name is xx. 867.4 761.3
Today is cloudy. 356.3 474.4
You should greet him/her in a friendly way
when you meet them. 654.3 807.7

space in the lip movement for each sentence before and
after reading the novel is shown in Table 5. Figure 14 is
a longitudinal lip-movement line graph of participant KRS
uttering, “Konnichiha. Watashino namaeha xxxx” (Hello.
My name is XXXX). Figure 15 shows the longitudinal lip-
movement line graph when participant KRS pronounced,
“Kyouha kumotte imasune” (Today is cloudy), and Figure 16
is for the same participant saying, “Attara aisouyoku aisatsu
shinasai” (You should greet him/her in a friendly way when
you meet them). As you can see from these 3 line graphs,
utterance time length and opening of the mouth were different
before and after reading.

In Figure 14, before reading the participant moved his
mouth clearly, because some parts show a closed mouth, and
utterance time was 3.9 s. On the other hand, in Figure 14
after reading, it appears at first glance that his mouth was
opened widely. However, utterance time was shorter (3.0 s).
We confirmed fatigue due to reading by the decrease in the
lip-opening space.

In Figure 15, utterance time transitions were 2.3 to 1.9 s,
not a huge difference. Also, the lip-opening space became
larger after reading the novel. It was considered that this
was because this sentence was shorter than the others in
comparing the difference between before and after reading.

In Figure 16, the utterance time was 2.3 s before reading
and 2.2 s after, a little bit decreased. We confirmed that
participants were not able to speak clearly, because the
number of wave crests also decreased. Moreover, it was
suggested that this sentence was most affected by fatigue as
the reason for the decrease in lip-opening space.

In Table 5, the sentences “Hello. My name is XXXX,” also

Figure 14: Longitudinal lip-movement line graph when
participant KRS uttered Konnichiha. Watashino
namaeha xxxx (Hello. My name is XXXX)

Figure 15: Longitudinal lip-movement line graph when
participant KRS uttered Kyouha kumotte imasune
(Today is cloudy)

Figure 16: Longitudinal lip-movement line graph when
participant KRS uttered Attara aisouyoku aisatsu
shinasai (You should greet him/her in a friendly way
when you meet them)

indicate decreased lip-opening space. However, this space
increased in the sentences “Today is cloudy” and “You should
greet him/her in a friendly way when you meet them”. It
is assumed that participants attempted to pronounce words
carefully even after the reading task. From these results, we
confirmed that reading a novel for an hour tended to affect not
only visual fixation but also participant’s utterance speed and
lip-opening space.

58 IJCA, Vol. 24, No. 2, June 2017

-15

-10

-5

0

5

10

15

0.0 0.7 1.3 2.0 2.7 3.4 4.0 4.7

Am
ou

nt
 o

f d
is

pl
ac

em
en

t
(p

ix
el

)

Time (s)

Subject KYM "Attara aisouyoku aisatsu shinasai"
("When you meet a friend, greet him or her in a friendly way.")

Before After

Before: 3.6s

After: 3.0s

Figure 17: Longitudinal lip-movement line graph when
participant KYM uttered Attara aisouyoku aisatsu
shinasai in experiment 2

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

0.0 0.7 1.3 2.0 2.7 3.3

Am
ou

nt
 o

f d
is

pl
ac

em
en

t
(p

ix
el

)

Time (s)

Subject NKG "Attara aisouyoku aisatsu shinasai"
("When you meet a friend, greet him or her in a friendly way.")

Before After

Before: 2.5s

After: 2.7s

Figure 18: Longitudinal lip-movement line graph when
participant NKG uttered Attara aisouyoku aisatsu
shinasai in experiment 2

4.4.2 Experiment 2

Figure 17 shows subject KYM’s lip movement when she
pronounced “Attara aisouyoku aisatsu shinasai”. The red
line indicates lip movement before reading, and the blue line
after reading. The utterance time was 3.6 s before reading,
and 3.0 s after. Therefore, the time became shorter after
reading. Figure 18 shows subject NKG’s lip movement
pronouncing the same sentence (“Attara aisouyoku aisatsu
shinasai”). Unlike KYM, NKG’s utterance time was 2.5 s
before reading, and 2.7 s after; i.e., utterance time increased.

As for open-lip space, it was calculated using the same
method as in experiment 1 (Figure 13). Table 6 shows only
the increase and decrease of lip-opening space before and
after reading. The sentences used in this experiment included
many Japanese vowels. For example, “Attara aisouyoku
aisatsu shinasai” includes many “a” sounds. Japanese has
five vowels: /a/, /o/, /u/, /i/, /e/. Pronouncing /a/, /o/ and
/u/ requires opening the mouth widely in the longitudinal
direction; meanwhile, for /i/ and /e/ the mouth must open
widely in the horizontal direction. The area of open-lip
space increased in subject KYM when sentences had a lot
of vowel “i” and “e” sounds. In contrast, the area of lip-
opening space increased in subject NKG during sentences
that had a lot of vowel “a”, “u” and “o” sounds. As

these results were opposite, we could not affirm whether
such changes in open-lip space increased from fatigue or if
subjects became accustomed to using the lip-feature point
collecting application.

Table 6: Area of open lip space in five sentences

KYM NKG
Attara aisouyoku aisatsu shinasai -0.1 +179.4
Ikigai-wo motomete ikou +111.0 -45.3
Uta-wo utatte usabarashi -162.3 +29.4
Eiyo-yo eikou-yo eien-nare +21.7 -200.2
Ookami-no Ookina tooboe -117.9 +106.1

4.5 Pulse (Only Experiment 2)

Figure 19 shows the pulse rate of five subjects during
reading. The horizontal axis shows time, and the vertical axis
shows pulse. In this experiment, no tendencies were observed
between the five subjects during 1.5 hour reading. This was
possibly because the pulse is very individual. KSM’s pulse
was high at the beginning of reading, but this reaction was
likely due to strain, because it was his first time participating
as a subject.

60

70

80

90

100

110

1 min 30 min 60 min 90 min

Pu
ls

e
(ti

m
es

 a
 m

in
ut

e)

Changes in pulse rate in each time course

Subject KYM

Subject KSM

Subject NKG

Subject NKI

Subject ONE

Figure 19: Changes in pulse rate in each time course of five
participants

5 Conclusions

We investigated participants’ fatigue and physical
condition based on involuntary eye movement and lip
movements with the goal of ultimately reducing nurses’/
caregivers’ burdens by allowing them to more easily
comprehend patients’/care receivers’ physical condition.
This will also improve patients’ quality of life. As we
mentioned in the beginning, we set two hypotheses for this
research. The first was that eye movement of gazing point
and convergence angle would gradually increase during a
90-min reading task. This hypothesis was disproved due to
individual differences. The second was that lip-movement
values before the reading task would be different from those
after the reading task. This hypothesis was confirmed. There

IJCA, Vol. 24, No. 2, June 2017 59

was an evident difference in lip movement before and after
reading.

Our results showed that the SD of the gazing point was
decreased in the middle of the reading task (30 min) in
experiment 1. However, the SD gradually increased in
experiment 2. The convergence angle decreased from the
beginning to the middle of reading, suggesting the possibility
of mental fatigue due to reading.

As for the CFF value results, we confirmed that almost all
participants had mental fatigue over the course of the reading
task in both experiments, causing the CFF values to decrease.

The lip-movement data confirmed that reading a novel for
1 or 1.5 h tended to affect not only the gazing point but
also the participants’ speaking speed and lip-opening space.
In experiment 2, two participants had opposite results in
terms of time and area of open-lip space. We therefore
cannot assert whether these changes were caused by fatigue.
We plan to attempt to prove this phenomenon in future
research. Nor did we observe a tendency in the relationship
between pulse and other parameters. Participants were
pronounced Japanese sentences in this experiment because
they were Japanese students. However, we need to apply
the lip feature point-collecting application to English or
any other language utterance data in order to expand this
research to worldwide. In our previous research, we had
been researched English pronunciation training using the lip
feature point-collecting application and the results suggested
that the participants’ pronunciation was closer to the English
teacher’s pronunciation (Suganuma 2017). With regard to
this research, it is assumed that this application can apply
to other language such as English. Our findings indicate the
possibility of being able to recognize changes in fatigue and
physical condition from miniature eye and lip movements.

In future research, we plan to collect more data to clarify
the usefulness of the indexes that we implemented and to
conduct statistical analysis. In addition, we plan to include
other physiological indicators, and carry out a detailed fatigue
questionnaire, and a short quiz about the novel to prevent
aimless reading. In terms of eye movement, we would like to
confirm there is further change in the gaze point depending
on the task content. We will reexamine tasks with fewer
burdens on the subject’s posture, because some participants
reported that the posture during the task was difficult. For the
lip movement, we need to compare and examine each phrase.
Although we collected only students’ data in this experiment,
Hara et al. said that the sound factors of the speech of the
caregivers showed a significant association with the QOL
score related to the physical health condition. Also, they said
the value of Pitch Period Perturbation Quotient, Amplitude
Perturbation Quotient and Noise-to-Harmonic Ratio by the
sound analysis may be one evaluation index for tracking the
elderly health survey and its progress (Hara 2015). Therefore,
we are going to apply this research to the elderly people by
analyzing not only the lip-movement data also the speech
data. Furthermore, we will apply this research in various

fields such as robots that communicate with patients and care
givers, robot receptionists, and remote diagnosis via smart
phone.

Acknowledgments

This work was supported by JSPS KAKENHI Grant
Number 16K01566.

References

[1] AGI Inc. Emotion Recognition. http://www.agi-
web.co.jp/english/index.html, October 2015.

[2] E. Fukushima, Easy Training for a Good Voice, Seibido
Printing, Tokyo, 2006, in Japanese.

[3] S. Hara, H. Miura, K. Yamasaki, N. Morisaki and Y. Sumi,
“The Association Between Health-Related Quality of Life
and Voice as Evaluated by an Acoustic Analysis in Elderly
Japanese Nursing Home Residents,” Japanese Journal of
Geriatrics, 52(4): 391-398, 2015, in Japanese.

[4] H. Kaneko, “Fixational Eye Movements”, The Journal
of the Institute of Image Information and Television
Engineers, 63(11): 1538–1539, 2009.

[5] K. Matsumiya and K. Uchikawa, “Measurement of
Contrast Sensitivity in the Peripheral Visual Field During
Saccadic and Pursuit Eye Movements Using Method of
Fixed Retinal-Area Stimulation,” Japanese Journal of the
optical society of Japan, 33(2): 122–129, 2004.

[6] H. Miwa and T. Miwa, “Fatigue in Patients with
Parkinson’s Disease: Impact on Quality of Life,” Internal
Medicine, 50(15): 1553–1558, 2011.

[7] S. Nakamizo, K. Shibuta and M. Noguchi,“Magnitudes of
Disparity Vergence Responses at Different Convergence
Levels,” Japanese Psychological Research, 24(4): 181–
187, 1982.

[8] D. A. Robinson, “The Mechanics of Human Smooth
Pursuit Eye Movements,” F. Physiol., 180: 569–591, 1961.

[9] N. Sato and Y. Obuchi, “Emotion Recognition Using Mel-
Frequency Cepstral Coefficients,” Information and Media
Technologies, 2(3): 835–848, 2007.

[10] T. Saito, M. Ohiro, T. Onoue, A. Kasahara, T.
Shinkawa and M. Yamada, “A Study of an Utterance
Recognition Method Using Correlation of Power
Spectrum of Characteristic Lip Movements,” Bulletin
of Tokai University Department of information and
telecommunication engineering, 5(2): 36–44, 2012, in
Japanese.

[11] Y. Saito, G. Iiduka and M. Yamada, “Gazing Point
Analysis by 4K Driving Simulator,” IEICE technical
report, 115(133), pp. 5–8, 2015, in Japanese.

[12] Seeing Machines Inc. FaceAPI.
https://www.seeingmachines.com/, May 2014.

[13] SoftBank Robotics Corp.
http://www.softbank.jp/en/robot/, July 2015.

60 IJCA, Vol. 24, No. 2, June 2017

[14] D. Stasi, L. Leandro, M. B. McCamy, A. Catena,
S. L. Macknik, J. J. Canas and S. Martinez-Conde,
“Microsaccade and Drift Dynamics Reflect Mental
Fatigue,” European Journal of Neuroscience, 38(3): 2389–
2398, 2013.

[15] M. Suganuma, T. Yamamura, Y. Hoshino and M. Yamada,
“Proposal of the Way of English Pronunciation Training
Evaluation by Lip Movement,” Japan Personal Computer
Application Technology Society, 11(2): 8-20, 2017, in
Japanese.

[16] Takei Scientific Instruments Co., Ltd. http://www.takei-
si.co.jp/en/index.html, April 2012.

[17] Tobii AB. Tobii EyeX. https://tobiigaming.com/, March
2014.

[18] G. L. Trager, “Paralanguage: A First Approximation,”
Studies in Linguistics, 13: 1–12, 1958.

[19] E. Wakamatsu, Y. Hoshino and M. Yamada, “Proposal for
an Utterance Training Method Based on Lip Movements,”
Image Media Quality and its Applications 2014, pp. 44–
47, 2014.

[20] G. Westheimer, “Eye Movement Responses to a
Horizontally Moving Visual Stimulus,” Arch Ophthamol,
52: 932–941, 1954.

[21] M. Yamada and T. Fukuda, “Quantitative Evaluation of
Eye Movements as Judged by Sight-Line Displacements,”
SMPTE Journal, 95(12): 1230–1241, 1986.

Miyuki Suganuma received the
B.S. in Information Technology
from Tokai University in
2016. Currently underway of
paralanguage recognition and
gazing point study for fatigue
and health condition evaluation
at graduate school of Tokai
University.

Saaya Urakabe received the
B.S.in Information Technology
from Tokai University in 2017.
Engaged paralanguage recognition
and gazing point study for fatigue
and health condition evaluation at
School of Tokai University.

Ryota Kuramochi received the
B.S.in Information Technology
from Tokai University in 2017.
Engaged paralanguage recognition
and gazing point study for fatigue
and health condition evaluation at
School of Tokai University.

Shinya Mochiduki received
the B.S. and M.S. degrees in
Information Technology from
Tokai University in 2015 and
2017. Currently underway of
information processing of visual
system and human interface
study at graduate school of Tokai
University.

Yuko Hoshino received the B.S.
and M.S. degrees in Electrical
Engineering from Kogakuin
University in 1998 and 2000,
respectively. Entered Creo, Co
in 2000. She is now with Tokai
University. Currently underway of
software development study.

Mitsuho Yamada received
the B.S. and M.S. degrees in
Electrical Engineering from
Nagoya University in 1978 and
1980, respectively. Entered
NHK (Japan Broadcasting
Corporation) in 1980. He is now
with Tokai University. Doctor of
engineering. Currently underway
of information processing of
visual system and human interface

study.

IJCA, Vol. 24, No. 2, June 2017 61

Cloud Service Reliability Assessment and Prediction
Based on Defect Characterization and Usage Estimation

Abdullah Bokhary*

Southern Methodist University, Dallas, Texas 75275, USA
and University of Jeddah, Jeddah, SAUDI ARABIA

Jeff Tian†

Southern Methodist University, Dallas, Texas 75275, USA
and Northwestern Polytechnical University, Xi’an, CHINA

Abstract

Cloud computing has become a major resource for fulfilling
people’s computational and storage needs. Investing in
these services requires measuring and assuring its reliability.
However, using traditional reliability models can be challenging
because of the environmental constraints and limited data
availability due to the heterogeneous environment and diverse
stakeholders. This paper proposes a framework to measure
reliability with alternative available information that most cloud
providers offer in three stages: 1) Defects are extracted and
weighed from issue report based on their validity. 2) Workload
is measured by the number of clients as a new proxy to estimate
daily clients usage. 3) Both results are linked together to
examine the defect behavior over time. Software reliability
growth models (SRGMs) are used to analyze this behavior,
to assess current reliability, and to predict future reliability.
Google Maps APIs is used as a case study to demonstrate the
applicability and effectiveness of our new framework. Finally
our framework is validated by extending the models to provide
reasonably accurate long term reliability predictions.

Key Words: Cloud reliability, usage measurement, clients
count, defect data, Google maps APIs.

1 Introduction

Nowadays, Internet gives birth to cloud computing, which
changes the way people use computation resources. According
to the National Institution of Standard and Technology
(NIST), cloud computing is a model that uses communication
technology to allow global customers to share computing
resources such as networks, servers, storage, applications, and

*Dept. of Computer Science and Engineering and Dept. of Information
Technology. Email: abokhary@uj.edu.sa

†Dept. of Computer Science and Engineering and School of Computer
Science. Email: tian@lyle.smu.edu

services [6]. In addition to providing cloud computing services
to end users, organizations use it to improve performance and
reduce cost by replacing server rooms with cloud computing.
Developers also take advantage of cloud computing to embed
cloud services in their systems and applications to satisfy their
customer’s needs.

The high demand for cloud computing increases the need to
assure its quality, including reliability, usability, and security as
primary concerns [10]. Reliability is an important attribute in
building a heterogeneous system with intrinsic high complexity.
Software reliability is the probability of not having a failure
over a specific period [8]. Therefore, we defined the cloud
service reliability as the probability of not having a failure for
the services, where a failure is the inability to correctly process
a customer request.

Researchers and practitioners have used many methods to
measure and predict software reliability during development
or operation phases. However, these traditional approaches
are difficult to apply in cloud computing because of the
environmental constraints and limited data availability. Unlike
in traditional software systems, defects can be associated
with heterogeneous components distributed over wide areas
and different layers of the cloud infrastructure. Workload
measurement is harder to obtain due to the different stakeholders
involved. Also, service providers may rely on clients to report
defects who may be reluctant to share detailed circumstantial
information about these defects due to legal and proprietary
concerns. These limitations need to be taken into consideration
when we address cloud reliability problems from the perspective
of clients or developers who use these services.

This paper proposes a framework which overcomes these
limitations to assess and predict cloud service reliability. The
framework has three stages: 1) extract and process defect
data from clients report system, 2) identify and extract proper
workload from client usage, 3) using both results to assess
and predict reliability using existing reliability models. Google

ISCA Copyright© 2017

62 IJCA, Vol. 24, No. 2, June 2017

Maps APIs was analyzed using the proposed framework as a
case study to demonstrate its applicability and effectiveness.

The paper is organized as the following: Section 2 includes
background and related work. Section 3 describes our new
method, its three stages, and steps for each stage. Section 4
uses the framework on Google Maps APIs to assess and predict
its reliability. Section 5 provides a long term validation for the
framework by extending the fitted reliability models to provide
reasonably accurate reliability predictions. Finally, Section 6
summarizes the paper and future work planned to overcome
some limitations of our study.

2 Related Work

Software quality is usually associated with satisfying user
expectations as characterized in user requirements and product
specifications [11]. Deviation to such expectations are
characterized by system defects, either in the form of failures,
which are observable behavioral deviations, or faults, which are
the internal problems in the system that may cause failures.
From a user’s perspective, system quality can be measured by
its reliability, or how likely the system is going to satisfy user
needs without causing a problem.

Software reliability is defined as the probability of a
software system to perform its specified functions correctly
during a specified exposure period under the customers’ usage
environment or similar environments [8]. Software reliability
growth models (SRGMs) are time-based models commonly
used to assess and predict reliability by analyzing defects data
over time [5]. The reliability growth is due to the defect
detection and fixing that lowers the number of system faults and
leads to improved reliability over time. One of the widely used
SRGMs is Goel-Okumoto model (GO) from Non-Homogenous
Poisson Process (NHPP) model class [4]. In this model, the
mean value function for the number of failures is:

µ(t) = N(1− e−bt) (1)

which predicts the cumulative defects in each given time (t),
where b and N can be estimated from observation data.

Another NHPP model is the S-shaped model [16], which
considers the learning curve in the beginning and uses the
following formula:

µ(t) = N(1− (1+bt)e−bt) (2)

where t, b, and N are similar to the GO model.
Another widely used NHPP model is Musa-Okumoto

Model(MO) [7]. It uses the following formula:

µ(t) = β0 ln(β1t +1) (3)

where β0 and β1 are constants that can be estimated from
observation data.

The period can be measured by time units that reflect actual
usage by the customer and users, because software failures are
triggered by actual usage that exposes some internal defects.

Software reliability modeling used calendar time as the time
measurement until Musa introduced execution time to better
characterize actual system usage or workload [8]. Alternative
usage related time measurements have also been used for
reliability modeling, including test runs and transitions from test
tracking reports and number of usage instances and web traffic
extracted from web logs [1][9][14][15].

Although cloud computing provides the advantage of sharing
computing resources, it has some limitations. One such
limitation can be a result of encapsulation of cloud service
which hides the system specification including low level
architecture. Also, the traditional data sources of defect such as
testing reports or log files are generally unavailable for clients
due to their legal or proprietary concerns.

Past failure data of other similar users were used to predict
the web service reliability for the current users [17][18]. An
enhancement to this work was done by considering provider and
client location, service load, and computational requirements
[12]. However, this approach required historical data from other
similar users which might not be available for cloud services.
Also, the approach does not predict future reliability.

Available methods for measuring software reliability would
be challenging to apply in cloud service because of the limited
data availability. Calendar time is not an accurate workload
representation in reliability models for cloud services due to the
fast growth or change of service usage. Also, execution time, or
number of service invocations are not available. Therefore, we
need an alternative data source that represents defect behavior
over appropriately defined usage time to measure cloud service
reliability.

3 A New Method

We propose a new framework that uses weighted defects from
issue report over a new client usage proxy to characterize defect
behavior over time and to assess and predict reliability.

3.1 Overall Approach

The limited information of cloud computing, such as lack
of access to source code or execution logs, prevents clients
from directly applying the traditional reliability models. Also,
difficulty of analyzing the extremely large log file motivates
providers to search for alternative metrics to measure and
predicate the reliability of their services. In order to measure
reliability, an alternative measurement of defect over an accurate
representation of workload need to be used.

Most cloud providers offer defect reports or a feature requests
system. This system can be a source for defect data, since it has
all the details of each defect, including discovery time and how
it has been treated. However, these defect data are in calendar
time, which is not an accurate usage metrics for cloud service
due to large usage variations. Also, invocation count for the
service by customer is not available. Therefore, we propose to
use the number of clients instead of calendar time or service

IJCA, Vol. 24, No. 2, June 2017 63

Figure 1: Framework to measure cloud reliability

invocations. In other words, the number of clients that accessed
the service when defects were reported can be a proxy for usage.
These types of information are offered by some providers or
available in external sources such as web analytics sites.

This paper proposes a new framework to measure cloud
service reliability in three stages: defects characterization,
workload characterization, and reliability modeling, as shown
in Figure 1 and briefly described below:

• Defects characterization: Extract and process defects from
the issue tracking system which contains all issues that the
clients have reported or suggested to improve the service.
Then classify each issue according to its validity. The
result of this stage is weighted defects depending on their
validity.

• Workload characterization: Extract service workload from
published number of clients statistics. Then estimate the
number of clients for each day to calculate the cumulative
usage or workload.

• Reliability modeling: Use the weighted defects over clients
usage to plot the defect profile. Then use SRGMs to assess
current reliability and predict future reliability.

Details of the framework and its three stages, including
individual steps in each stage, are described below.

3.2 Defects Characterization

An issues report system is offered by most cloud service
providers for clients or developers who use the services. Since
each record in the system is created by a client, it needs to
be confirmed by a provider before it is considered as a defect.
Therefore, we propose the defects characterization stage in
Figure 1 consisting of:

1. Screening: Collect all records from issues report system,
and exclude all records unrelated to defect observations or
the target environment.

2. Classification: Categorize remaining issues to three types:
valid, invalid, and uncertain.

3. Consolidation: Using historical data to weigh uncertain
issues.

The screening step is to extract issues from the issue
system that the provider offers to record all client issues,
including system failures or any request to improve or add new
functionality. The issue system covers all types of environments
or programing languages that the provider uses to deliver the
service. The screening step should exclude unrelated data such
as enhancement requests or defects related to languages or
environments outside the study scope. The result should be all
defect issues in the specific services or the environment for the
specific clients of a given study.

The classification step is to classify the output of the previous
step to three categories: valid, invalid, and uncertain. This
classification is not part of the data rather than a label we
provide according to the provider team response to each issue.
Valid issues are all records that are agreed as defects by the
service provider. Invalid issues are all records that the provider
disagreed as defects due to several reasons, e.g. it can be
labelled as a duplicate, it works as intended, or it is obsolete
because of a new release. The uncertain issues are all pending
records that the provider did not categorize yet because it is a
new record or awaiting clarification. The result of this step is a
classification for all issues under the three classes we suggested.

The consolidation step counts all the valid defects but
excludes all the invalid ones. Uncertain issues will be
considered according to the history of the clients issues.
Actually, every issue starts as a new status which is uncertain,
then it ends eventually as a valid or an invalid issue. Therefore,
we can use the historical data to estimate the likelihood of its
validity. In other words, we use the valid to invalid ratio as
a weight for uncertain issues using this formula w = (V

V+I),
where V and I are the total number of valid and invalid issues
respectively. In effect, the uncertain issues are partially counted
as defects according to the weight.

3.3 Workload Characterization

Calendar time is not an accurate representative for workload
in cloud service due to large usage variations. Also, the number
of invocations for the service is not available for the clients.
Therefore, we propose the workload characterization stage in

64 IJCA, Vol. 24, No. 2, June 2017

Figure 1 to use an alternative workload measure, the number of
clients, which consists of the following steps:

1. Extraction: Find and extract a statistical information about
clients count of the service.

2. Estimation: Estimate the daily clients count using a
statistical model.

3. Accumulation: Calculate the cumulative clients count by
the suggested formula.

The extraction step is to find alternative data sources for
workload since the number of service invocations by end users
or customers is not available for the clients. As a proxy of
cloud service usage, we extract the number of clients from the
service provider report or from a public report that include usage
statistics about the desired service. In other words, the report
should provide the number of clients, such as websites or mobile
applications, that embedded the desired service in their system
during the investigation period. The number of clients will be
used as a proxy for workload in reliability models. The result
of this step is the number of clients that accessed the service on
some given days.

The estimation step concerns about the number of clients
that use the cloud service in each day. If the report does not
show clients access for every day, we propose to estimate this
number by applying a statistical model or some other estimation
methods on the available data. In effect, we use such models as
interpolations to estimate the number of clients for every day by
filling the gaps in the available data.

The accumulation step is to calculate the cumulative number
of clients that embed the service in their software for the
investigation period using the following equation:

Ui =
di

∑
j=d0

N j (4)

where Ui is the cumulative usage or cumulative clients count
up to day di and N j is the number of clients in day d j that we
estimated in the previous step.

3.4 Reliability Modeling

Most SRGMs require time between failures or the actual time
instance or period that the software failed. In our framework,
the time is represented by the sum of the number of clients that
used the service each day until the day of the specific defect
discovery. Therefore, the cumulative weighted defects over
the cumulative clients count will be used to plot the defects
behavior over time for cloud services. Then, we assess the
current reliability and predict the future reliability using the
suggested models in Section 2. Reliability modeling stage in
Figure 1 consists of the following steps:

1. Defect behavior profile: Plot weighted defects over clients
count to examine the defect profile.

2. Assessment: Use SRGMs to assess the current reliability
of the service.

3. Prediction: Use SRGMs with partial data as training data
set to predict future reliability.

The first step employs the results of the previous stages
to plot the defect behavior profile. The result of defects
characterization stage is the cumulative weighted defects in
their arriving sequence. The result of workload characterization
stage is the number of cumulative clients that subscribed to the
service up to a given day. We link the weighted defects and
cumulative clients count using the data. Plotting the defects
that we extracted in the defect characterization stage over the
cumulative clients count allows us to examine the shape and
trend of the defect profile over time.

The assessment step uses the output of the previous step
to assess the cloud service reliability using the selected
models in Section 2. The defects behaviors profile over
cumulative clients count will be quantitatively assessed using
reliability models including Goel-Okumoto, S-shaped, and
Musa-Okumoto SRGMs. The goodness of fit to the actual data
will also be examined.

The prediction step will use the selected models to predict
future defect behavior. The models will use 75% of the clients
count and associated defect observations as training data to
make reliability prediction into the future and to test the models’
prediction accuracy.

4 Case Study

We chose Google Maps APIs as a case study since it is one of
the mature, well developed, and widely used cloud services. The
case study will demonstrate the applicability and effectiveness
of our proposal approach.

4.1 Background and Data Availability

One of the earliest cloud services that provide geographic and
location information is Google Maps APIs [13]. According to
Google, “it is a collection of APIs that enable you to overlay
own data on customized Google Maps”. Frequently, Google
is updating, adding, and terminating types and versions of
APIs. However, each version has its own updates and it is
backward compatible. Google introduced Google Maps as a
website only in February 2005. In June 2005, Google Maps
APIs was announced for public use. Nowadays, Google Maps
APIs supports different environments using several programing
languages. The three main environments are: Android for
smart devices, iOS for Apple devices, and Java-Script for web
browsers. This case study focuses on Java-Script Version 3
(JS3) since it is the most popular and well developed in contrast
to the other APIs.

Google does not offer specific information about usage
or number of subscribers on a daily basis. Therefore, we
estimate the daily usage by using a web analytics site called
BuiltWith.com that provides general information about various
services. One of its services is a usage statistical reports for

IJCA, Vol. 24, No. 2, June 2017 65

thousand of web technologies including Google Maps APIs
usage statistics1.

4.2 Defect Characterization

This stage in the framework has three steps as shown in
Figure 1. First, we extracted defects information. Google
Maps APIs uses a web application system called gmaps-api-
issues2 for reporting and tracking all defect and enhancement
requests by customers. We analyzed the collected data to
exclude unrelated issues. We focused on the following fields
in issue reports:

ID: Each issue has a sequence ID, which was given at the time
of filling the report by a client.

Type: The issue type can be a defect or an enhancement. Defect
type is an issue that causes a failure to the system or
disables a functionality. Enhancement type is a request
to add a new functionality. This latter issue type does
not affect the reliability of the service, therefore it was
excluded.

Status: This field has fifteen different categories. Each issue
that was reported by a client will start as a “new” status.
Then it will change from one to another status by Google’s
team until it is closed. Table 1 contains all status types and
our explanation based on the team response.

API Type: It includes Java script, Java Script v2, Java Script
v3, Android2, IosSDK, and other language that support
different environments. This case study covers Java Script
v3 only. Therefore, all other API types are excluded.

Time Open: When the report is issued or opened. This field
will allow us to link the defect to the usage in reliability
modeling.

The second step is classifying records according to defect
validity to three categories: Valid, Invalid, and Uncertain.
The classification process uses the status as indication for the
provider treatment for each issue as shown in Table 1. Table 2
shows each class with its collection of statuses and the number
of observations in the data.

The final step is to weigh each defect according to its
classification. All valid issues were included, while invalid
issues were excluded. We used the percentage of valid defect
issue to invalid defect issue as a weight for each uncertain
issue. According to Table 2, 524 issues are valid, while
1214 issues are invalid. The weight of uncertain issues is

524
524+1214 = 0.30. Therefore, uncertain issues were weighted by
0.30 corresponding to the ratio of valid issues in the past.

To exam our weighting process for uncertain defects, we
followed up on all uncertain issues six months after the initial
investigation period. 171 of the 346 uncertain issues have been
resolved, where 45 issues became valid and 126 became invalid.

1Google Maps API usage statistics. Accessed on 09/27/2015
http://trends.builtwith.com/mapping/Google-Maps-API

2Google Maps API bug reports and feature requests. Accessed on
09/27/2015-https://code.google.com/p/gmaps-api-issues

Table 1: Google Maps APIs issue status
Status Num Explanation
New 116 just posted, no action taken
Accepted 60 team has accepted as bug
Acknowledged 3 team is aware of this issue
Cannot reproduce 172 team can’t reproduce the same

bug, so it is closed
Confirmed 27 team understands the bug and

it remains open
Duplicate 220 team merged the bug with

other ones and closed it
Fixed 433 team fixed the bug and closed

it
Fixed not released 1 team fixed the bug and closed

it but not released yet
Invalid 495 team sees no problem since

there is a work around
Needs more info 160 team needs more details

before it is confirmed
Obsolete 173 team sees that it is not an

issue anymore because of new
updates

Pending further review 70 team leaves it for future
review

Post elsewhere 94 team sees it as not related to
this type of API or it is a
browser issue, so it is left open

Won’t fix 15 team can’t fix this bug due
to unsupported browser
or internal and external
constraints

Working as intended 45 team sees it not as a bug and
it works as it should be, so it
was closed

Table 2: Issues classification & defect weight

Class Status Total weight

Valid accepted, acknowledged,
confirmed, fixed, and fixed
not released

524 1

Invalid cannot reproduce, duplicate,
invalid, obsolete, post else
where, won’t fix, and working
as intended

1214 0

Uncertain new, need more inof, and
pending further review

346 0.30

The result shows that the ratio of invalid issues (73%) to valid
issues (27%) is very close to our estimation (70% vs. 30%).

4.3 Workload Characterization

The next stage in our framework is workload characterization,
which contains three steps. We extracted the number of clients
that accessed Google Maps API JS3 in the first step. Since

66 IJCA, Vol. 24, No. 2, June 2017

0

200000

400000

600000

800000

1000000

1200000

Jan-13 May-13 Aug-13 Nov-13 Mar-14 Jun-14 Sep-14 Dec-14 Apr-15 Jul-15

N
U

M
B

ER
 O

F
W

EB
SI

TE
S

Figure 2: Number of websites using Google Maps APIs

API JS3 is offered for website environment, we need statistics
about the number of subscribers to this API or the number of
websites that embedded Google Maps in their pages during the
investigation period. As stated earlier, BuiltWith.com provides
statistical information about technology usage. One of their
statistics is a report showing the number of websites using
Google Maps APIs, as shown in Figure 2.

The second step is to estimate the clients daily usage for
the service. Figure 2 shows the number of websites using
Google Maps APIs from May 2013 to April 2015 with some
repetitions. The repetitions appeared in several periods such as
from July 2013 to October 2013 and from December 2014 to
March 2015. These repetitions are likely caused by a lack of
updates. Therefore, we only included first occurrence point and
excluded each repeated ones. We observed a linear trend in the
results, so we applied a linear regression to estimate the daily
usage in Figure 3. This regression is fitted with high accuracy,
where R2 =0.97. Then, we used the regression to predict the
number of websites in each day from May 2013 to April 2015.

Finally, we calculated the cumulative websites count up to
each day according to Equation 4 from Section 3.3. The result is
the sum of the number of the websites that had access to Google
Maps API up to each day in the investigations period. The result
is plotted in Figure 4.

4.4 Reliability Assessment

We begin with an examination of defect behavior by plotting
the cumulative weighted defects over calendar time. Each
defect will increase the y value according to its weight with
respect to the arriving sequence. Figure 5 shows the defects
behavior over calendar time which contains 428 records with
a total of 255.1 cumulative defects from 1-May-2013 to 21-
Sep-2015. There is no clear trend of reliability, which can
be explained by the fast growth of usage as characterized by
Figure 4. Therefore, alternative workload measurement instead
of calendar time should be used in reliability modeling.

y = 1213.2x - 5E+07
R² = 0.9724

0

200000

400000

600000

800000

1000000

1200000

Jan-13 May-13 Aug-13 Nov-13 Mar-14 Jun-14 Sep-14 Dec-14 Apr-15 Jul-15

N
U

M
B

ER
 O

F
W

EB
SI

TE
S

Figure 3: Regression line to estimate the number of websites
using Google Maps API

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

cu
m

u
li

ta
ve

 n
u

m
b

e
r

o
f

w
e

b
si

te
s

Figure 4: Cumulative websites count

Before applying any reliability model, we used the results
from both previous stages to plot defects behavior over time,
plotting weighted defect over the cumulative websites count in
Figure 5. Substituting calendar time with cumulative websites
usage yields a stable plot that resembles a typical reliability
growth curve. The data can be used now in SRGMs to assess
and predict reliability of Google Maps API JS3.

Table 3 shows fitted models, estimated defects, failure rate,
and R2 value respectively. The estimated defects at the end of
the investigation period N(t)|t=T are 454.98, 237.02, and 255.89
using GO, S-shaped, and MO models respectively, while the
actual defects is 255.10. Also, we used the slope of the models
at last data point λ (t)|t=T to estimate the failure rate at that
point. It is clear from Figure 6 that the service is estimated to
have a high reliability using both GO and MO models. Both
models have high goodness of fit to the actual defects where
R2=0.996. S-shaped model has R2 = 0.969, fitting the actual data
less closely that MO and GO models. This is expected because

IJCA, Vol. 24, No. 2, June 2017 67

******* *******************

2014 2015

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Calendar Time

C
u

m
u

la
ti
ve

 W
e

ig
h
te

d
 D

e
fe

c
ts

****** ***************

******** ***************
**

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

0
5

0
1
0

0
1

5
0

2
0

0
2
5

0

Cumulative websites count

C
u

m
u

la
ti
ve

 W
e

ig
h
te

d
 D

e
fe

c
ts

Figure 5: Weighted defects over time and over cumulative websites

***** ********

******** **************

****** ****** ***********

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Cumulative websites count

C
u
m

u
la

ti
ve

 W
e
ig

h
te

d
 D

e
fe

c
ts

++
++

++
++

++
++

++
++

++
++

++
++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

++++
++++

++++
++++

+

*
0
+

 Acctual
 GO
 MO
 S−Shaped

Figure 6: Reliability assessment using selected models

the service has already passed the learning curve that S-shaped
is considering. In other words, the investigation period does not
cover the learning period since Google Maps APIs have been in
the market for a long time.

4.5 Reliability Prediction

The prediction step uses 75% of websites count and
associated defect observations as a training set to make
predictions. Figure 7 shows the actual data with the three
selected models with a vertical line to separate the training data
set from the testing data set. The summary of prediction results
are shown in Table 4. It includes the fitted model equations for
each selected model, number of predicted defects in last data
point, and the failure rate λ (t)|t=T of the model from the last
data point. Also, we estimate the failure rate of the actual data
by fit linear regression in the last ten data points and use the
slope λ of this regression as the failure rate for actual data.

Figure 7 and Table 4 show that the models are
underestimating the actual defects. Therefore, we investigated
further and discovered that Google Maps APIs added sixteen
new functions during our investigation period. Each newly
added function can invite more failures to the system.

***** ********

******** **************

****** ****** ***********

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Cumulative websites count

C
u
m

u
la

ti
ve

 W
e
ig

h
te

d
 D

e
fe

c
ts

Testing data set

++
++

++
++

++
++

++
++

++
++

++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

++++
++++

++++
++++

++++
++++

++++
++++

++

*
0
+

 Acctual
 GO
 MO
 S−Shaped

Figure 7: Reliability prediction using selected models fitted to
partial data

Therefore, prediction in such cases would underestimate the
actual defects.

5 Long Term Validation

To provide a long term validation of our approach, we
continued monitoring the defect and usage trend for Google
Maps APIs JS3 since September 2015, the ending date for our
initial case study [3] described in the previous section. The
models fitted to the entire period of the previous case study were
extended to predict defects and reliability for the new period
from September 2015 to August 2016. These predictions were
compared to actual defect observations over time.

5.1 Defect Characterization

Google migrated issues data to a new system that contains all
Google cloud service products issues. However, this new system
did not change the concept or the policy of issues tracking
system. But it did change the interface and some structures
by renaming or adding fields. For instance, issue “Id” was
restructured to keep it unique and to avoid repetition with other

68 IJCA, Vol. 24, No. 2, June 2017

Table 3: Assessment results

Models Fitted models N(t)|t=T λ (t)|t=T R2

GO µ(t) = 493.8(1− e−1.16E−09t) 254.98 2.770E-07 0.996

S-shaped µ(t) = 258.3(1− (1+6.6E−09t)e−6.6E−09t) 237.02 1.130E-07 0.969

MO µ(t) = 249.4ln(1.7E−09t +1) 255.89 1.464E-07 0.996

Actual 255.10 5.105E-07

Table 4: Prediction results based on models fitted to partial data

Models Fitted models N(t)|t=T λ (t)|t=T

GO µ(t) = 384.3(1− e−1.57E−09t) 240.79 2.257E-07

S-shaped µ(t) = 206.3(1− (1+8.7E−09t)e−8.7E−09t) 200.51 4.251E-08

MO µ(t) = 189.8ln(2.3E−09t +1) 244.96 1.032E-07

Actual 255.10 5.105E-07

service issues. Also, “summary” field was renamed to “title”.
The most relevant change to the case study is the categories
of status which changed according to Table 5. Actually, they
moved all status data to a new field called “triaged” and reset
the pending status to “new”. Then, they used triaged field to
extract the old statuses for the resolved ones. Also, they added
a new status called “assigned” to distribute the responsibility of
issues among Google team members.

We started the defect characterization stage by collecting all
issues from the new Google issues tracker system for the new
period and used the new field called “component” to filter the
result by Google Maps APIs JS3 issues only. Then we classified
the issues according to the new validity classes as shown in
Table 5, providing a new mapping from individual statuses in
the new system to our validity classes.

The new period we added included 378 issues. We included
all valid issues (78), and excluded the invalid ones (238). For
uncertain issues (62), we used the same weight (0.30) we used
in the first period. The total of cumulative weighted defects is
109.

5.2 Workload Characterization

We used the same statistical website (BuiltWith.com) to
extract the usage statistics, with the result plotted in Figure 8.
One noticeable difference between data in Figure 8 for the new
observation period and that in Figure 4 is the lack of clear trend
or pattern. Therefore, we used the latest observation data for
each day between these points instead of polynomial or other
nonlinear interpolations to avoid overfitting [2].

To build the cumulative usage, we used the last cumulative
usage we reached in the previous period and added up the new
estimated usage for each day after, with the result plotted in
Figure 9.

Table 5: Google Maps APIs JS3 issue status before and after
migration with our classification

Old Status New status Class
New New Uncertain
Accepted Accepted Valid
Acknowledged Accepted Valid
Cannot reproduce Won’t fix (not reproducible) Invalid
Confirmed Accepted Valid
Duplicate Duplicate Invalid
Fixed Fixed Valid
Fixed not released Fixed Valid
Invalid Won’t fix (infeasible) Invalid
Needs more info New Invalid
Obsolete Won’t fix (obsolete) Invalid
Pending further review New Invalid
Post elsewhere Won’t fix (infeasible) Invalid
Won’t fix Won’t fix (infeasible) Invalid
Working as intended Won’t fix (intended behavior) Invalid
Non Assigned Uncertain

5.3 Reliability Modeling

We extended the defect behavior profile for the previous case
study. The defects for the new period were added to these from
our initial investigation period, and plotted over calendar time
in Figure 10. The defect behavior profile contains 607 records
with a total of 364.8 cumulative defects. The same defects were
also plotted in Figure 11 against the cumulative website count
we obtained above.

Figure 10 shows that defect behavior over calendar time does
not demonstrate a trend of reliability growth, while the same
defects over cumulative website count has a clear concave shape
signifying reliability growth as shown in Figure 11. These
observations reconfirm the appropriateness of using the website
count as a proxy for cloud service usage in our framework.

Then, we extended the models we fitted to the data from

IJCA, Vol. 24, No. 2, June 2017 69

0

500000

1000000

1500000

2000000

2500000

Jul-15 Oct-15 Jan-16 May-16 Aug-16 Nov-16 Mar-17

Figure 8: Google Maps APIs usage for the second period

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

cu
m

u
la

ti
ve

 n
u

m
b

e
r

o
f

w
e

b
si

te
s

Figure 9: Cumulative website counts for both periods

the entire initial investigation period in Section 4.4 to the new
period as shown in Figure 12. The result in Table 6 shows
the fitted models, defect estimation, and slope. The estimated
defects at the end N(t)|t=T are 366.57, 257.37, and 387.77 using
GO, S-shaped, and MO models respectively, while the actual
defects is 364.8. Also, we used the slope of the models at
the last data point λ (t)|t=T to estimate the failure rate at that
point and compared it with the liner regression slope of the last
actual eight defects. It shows that reliability predictions based
on GO model conformed well to the actual data. MO model also
performed reasonably well.

In section 4.5, we discussed that the underestimation of the
models using partial data from the initial period is due to adding
new functions to the service in the last 25% part of that period.
We investigated further and discovered that Google Maps APIs
did not add any new functions during the new investigation
period. Consequently, this led to accurate reliability predictions
in the long term, without suffering the same underestimation
problem.

2014 2015 2016

0
1

0
0

2
0

0
3

0
0

Calendar Time

C
u

m
u

la
ti
ve

 W
e

ig
h
te

d
 D

e
fe

c
ts

Figure 10: Defect behavior over calendar time

******* ***************

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09

0
1
0

0
2
0

0
3
0

0

Cumulative websites count

C
u

m
u

la
ti
ve

 W
e

ig
h

te
d

 D
e

fe
c
ts

Figure 11: Defect behavior over website count

******* ***************

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09

0
1

0
0

2
0

0
3
0

0

Cumulative websites count

C
u

m
u

la
ti
ve

 W
e

ig
h

te
d

 D
e

fe
c
ts

++
++

++
++

++
++

+++
+++

+++
+++

+++
+++

+++
+++

+++
+++

++++
++++

++++
++++

++++
++++

++++
++++

+++++
+++++

+++++
+++++

+++++
++

*
−
+

 Acctual
 GO
 MO
 S−Shaped

Long term validation

Figure 12: Long term prediction

To summarize, the reliability modeling results provide a long
term validation of our approach. In particular, our method of
defect characterization can be adapted to work effectively after
the migration of issue report system for Google Maps APIs and
changes to the detailed data fields. Our proxy for cloud service
usage, the cumulative website count, can provide appropriate
usage measurement for reliability modeling. Finally, the

70 IJCA, Vol. 24, No. 2, June 2017

Table 6: Long term validation results

Models Fitted models N(t)|t=T λ (t)|t=T

GO µ(t) = 493.8(1− e−1.16E−09t) 366.57 1.479E-07

S-shaped µ(t) = 258.3(1− (1+6.6E−09t)e−6.6E−09t) 257.37 5.771E-09

MO µ(t) = 249.4ln(1.7E−09t +1) 387.77 5.880E-07

Actual 364.8 2.052E-07

close fit between the model predictions and the actual defect
observations provides evidence that our method will provide
accurate long term predictions.

6 Conclusions and Perspectives

Reliability assessment and prediction for cloud services is
a challenging problem. Clients and developers using these
services in their systems or applications have limited access
to data sources and appropriate measurements derived from
these data sources. In this paper we developed a framework
to measure cloud service reliability using alternative data
sources. This framework consists of three stages: defects
characterization, workload characterization, and reliability
modeling. Defects characterization uses issue system reports as
a defect data source to obtain weighted defects according to their
validity after screening, classifying, and consolidating these
reports. Workload characterization uses published statistical
reports to obtain clients count as a new proxy to estimate usage
time or workload and calculate the cumulative usage. Finally,
the reliability modeling stage uses SRGMs to assess and predict
cloud service reliability using the outcome of the previous
stages.

Google Maps APIs was used as a case study to demonstrate
the applicability and effectiveness of our new framework. The
result of this case study shows a high accuracy for reliability
assessment and prediction, which is an indication that weighted
defects and cumulative client counts are appropriated substitutes
for the unavailable data and related metrics for this environment.

Furthermore, we monitored the defect behavior over a longer
period comparable to the initial period of our case study. The
models fitted to the data from our initial case study were
extended to provide long term reliability prediction. This
prediction is compared to the actual data capturing the new
defects and new workload after similar screening and data
processing. We observed a close match between the prediction
and actual data to provide a long term validation of the
applicability and effectiveness of our approach.

To generalize our framework to measure other cloud services,
we need to examine the similarities and differences in data
availability and application environments before appropriate
data sources and related metrics can be obtained and calculated.
This framework and its followup improvements will offer a clear
vision to the developers about the reliability of the cloud service
before it is used or embedded in their applications. It also

should offer a new method for providers to predict the future
reliability of their services, which will help them take remedial
and proactive actions to improve their services and to reduce
cost.

Acknowledgment

This research was supported in part by NSF Grant #1126747,
NSF Net-Cetric I/URC.

References

[1] M. O. Alannsary and J. Tian, “Measurement and
Prediction of SaaS Reliability in the Cloud,” IEEE
International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pp. 123-130, August
2016.

[2] M. Baron, Probability and Statistics for Computer
Scientists, Second Edition. Chapman & Hall/CRC, 2nd
edition, 2013.

[3] A. Bokhary and J. Tian, “Measuring Cloud Service
Reliability by Weighted Defects over the Number of
Clients as a Proxy for Usage,” 32nd International
Conference on Computers and Their Applications
(CATA2017), pp. 63-70, 2017.

[4] A. L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software Reliability and
Other Performance Measures,” IEEE Transactions on
Reliability, R-28(3):206-211, 1979.

[5] M. Lyu, Handbook of Software Reliability Engineering,
McGraw-Hill, New York, 1995.

[6] P. Mell and T. Grance, The NIST Definition of
Cloud Computing, National Institute of Standards and
Technology, Gaithersburg, 2011.

[7] J. D. Musa, “A Theory of Software Reliability and
its Application,” IEEE Transactions on Software
Engineering, SE-1(3):312-327, 1975.

[8] J. D. Musa, A. Iannino, and K. Okumoto, Software
Reliability: Measurement, Prediction, Application,
McGraw-Hill, New York, 1987.

[9] E. Nelson, “Estimating Software Reliability from Test
Data,” Microelectronics Reliability, 17(1):67-73, 1978.

[10] J. Offutt, “Quality Attributes of Web Software
Applications,” IEEE Software, 19(2):25-32, 2002.

IJCA, Vol. 24, No. 2, June 2017 71

[11] Organización Internacional de Normalización, ISO-IEC
25010: 2011 Systems and Software Engineering-Systems
and Software Quality Requirements and Evaluation
(SQuaRE)-System and Software Quality Models. ISO,
2011.

[12] M. Silic, G. Delac, I. Krka, and S. Srbljic, “Scalable
and Accurate Prediction of Availability of Atomic Web
Services,” IEEE Transactions on Services Computing,
7(2):252-264, 2014.

[13] G. Svennerberg, Beginning Google Maps API 3, Paul
Manning, New York, 2010.

[14] J. Tian, “Reliability Measurement, Analysis, and
Improvement for Large Software Systems,” Advances in
Computers, Elsevier, 46:159–235, 1998.

[15] J. Tian, S. Rudraraju, and Zhao Li, “Evaluating Web
Software Reliability Based on Workload and Failure
Data Extracted from Server Logs,” IEEE Transactions on
Software Engineering, 30(11):754–769, 2004.

[16] S. Yamada, M. Ohba, and S. Osaki, “S-Shaped Reliability
Growth Modeling for Software Error Detection,” IEEE
Transactions on Reliability, R-32(5):475–484, 1983.

[17] Z. Zheng and M. R. Lyu, “Collaborative Reliability
Prediction of Service-oriented Systems,” 32nd
International Conference on Software Engineering,
ICSE’10, New York, NY, USA,1:35–44, 2010.

[18] Z. Zheng and M. R. Lyu, “Personalized Reliability
Prediction of Web Services” ACM Transactions on
Software Engineering and Methodology, 22(2):12:1–
12:25, 2013.

Abdullah Bokhary is a Ph.D.
Student in the Computer Science
and Engineering Department of the
Bobby B. Lyle School of Engineering
at Southern Methodist University. He
is also a faculty member at University
of Jeddah, Jeddah, Saudi Arabia. Mr.
Bokhary received a B.S. degree in

Computer Science from King Abdulaziz University, Jeddah,
Saudi Arabia 2001. He also earned a M.S. degree in Software
Engineering and a M.S. degree in Engineering Management
from Florida Institute of Technology in 2008. Mr. Bokhary
worked between 2002 and 2005 as the data center manager
in one of the divisions of the Hajj Ministry in Saudi Arabia.
Mr. Bokharys research interests in cloud service reliability and
usability.

Jeff (Jianhui) Tian received a B.S.
degree in Electrical Engineering from
Xi’an Jiaotong University in 1982, an
M.S. degree in Engineering Science
from Harvard University in 1986, and
a Ph.D. degree in Computer Science
from the University of Maryland in
1992. He worked for the IBM

Software Solutions Toronto Laboratory between 1992 and 1995
as a software quality and process analyst. Since 1995, he
has been with Southern Methodist University, Dallas, Texas,
now as Professor of Computer Science and Engineering.
Since 2012, he has also been a Shaanxi 100 Professor in
the School of Computer Science, Northwestern Polytechnical
University, Xi’an, China. His current research interests include
software quality, reliability, usability, testing, measurement, and
applications in commercial, net-centric, web-based, service and
cloud computing software and systems. He is a member of IEEE
and ACM.

72 IJCA, Vol. 24, No. 2, June 2017

Computing Covers from Matchings with Permutations

Ariel Fernández*

Geographic Information Systems (GIS), Buenos Aires, ARGENTINA

Ryszard Janicki†

McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, CANADA

Michael Soltys‡

California State University at Channel Islands, One University Drive, Camarillo, CA 93012, USA

Abstract

We present a matrix permutation algorithm for computing a
minimal vertex cover from a maximal matching in a bipartite
graph. Our algorithm is linear time and linear space, and
provides an interesting perspective on a well known problem.
Unlike most algorithms, it does not use the concept of
alternating paths, and it is formulated entirely in terms of
combinatorial operations on a binary matrix. The algorithm
relies on permutations of rows and columns of a 0-1 matrix
which encodes a bipartite graph together with its maximal
matching. This problem has many important applications
such as network switches which essentially compute maximal
matchings between their incoming and outgoing ports.

Key Words: Minimal vertex cover; bipartite graph; maximal
matching; König’s Mini-Max theorem.

1 Introduction

In this paper we provide a new different solution to an old
problem. The basic novelty is using matrix permutations (cf.
[5]) instead of traditional graph-based techniques.

Suppose that we are given a bipartite graph G = (V = V1 ∪
V2,E), i.e., a graph where V1∩V2 = /0 and E ⊆V1×V2. Let AG
be the adjacency matrix of G, of size |V1| × |V2|, and with 0-1
entries: (i, j) ∈ E iff (AG)i j = 1. A matching M is a subset of E
consisting of a “pairing” of the vertices of G in such a way that
no two edges of M meet at the same vertex. We can represent
a matching as a set of pairs of nodes of V , i.e., M ⊆ E, or as an
adjacency matrix. A matching M is maximal if |M| is as large as
possible, i.e., when |M| is maximum. We talk of bipartite graphs
and their adjacency matrix representations interchangeably.

A vertex cover of a graph G = (V,E) is a set of vertices C⊆V
such that each edge of the graph is incident to at least one vertex
of the set C, i.e. for each e = (v1,v2) ∈ E, {v1,v2}∩C 6= /0. A
vertex cover C is minimal if |C| is minimum.

It is well known that given a general graph, a maximal
matching can be computed with the classical Edmond’s blossom

*Computing and Software. Email: agfern@gmail.com
†Computing and Software, Email: janicki@mcmaster.ca
‡Computer Science, Email: michael.soltys@csuci.edu

algorithm ([10]) in O(|V |4) time, or the more complex
O(|V | 12 |E|) algorithm by Micali and Vazirani [25]. For
bipartite graphs, the easiest solution is to use the Ford-Fulkerson
algorithm for flows [11] (c.f. [6]), either directly, or its modified
version based on the concept of alternating paths, i.e., paths
that alternate between edges that are in the matching and edges
that are not in the matching (c.f. [1]), both run in O(|V ||E|)
time; or we can use the more efficient (especially for sparse
graphs) Hopcroft-Karp algorithm [16] which again runs in
O(|V | 12 |E|), or, for dense graphs, the algorithm of [2] which

runs in O
(
|V |1.5

√
|E|

log |V |

)
.

On the other hand, for general graphs, the problem of
computing minimal vertex covers is NP-hard; in fact, it was one
of Karp’s 21 original NP-complete problems [17].

In 1916, in two nearly identical papers — one in German [20],
the other in Hungarian [19] — König proved that every doubly
stochastic matrix with non-negative entries must have a non-
zero term in its determinant. In the same papers König also
proved that every regular bipartite graph has a perfect matching.
In the late 1950’s Dulmagead and Mendelsohn published papers
([8, 9]) in which they worked out a canonical decomposition
theory for bipartite graphs in terms of maximal matchings and
minimal vertex covers.

For bipartite graphs, due to König’s Mini-Max Theorem
[19, 20], minimal vertex covers can be derived from maximal
matchings in O(|V |+ |E|) time (c.f. [24, Lemma 3]). This
means that for all algorithms known so far, the time complexity
of computing a minimal vertex cover for bipartite graphs is the
same as time complexity of computing an appropriate maximal
matching. All widely known derivation methods use the idea of
alternating paths (or equivalent concepts) (c.f. [14, 28]).

In this paper we use a different approach. Instead
of traditional graph theory methods, we will use matrix
permutation based techniques. The matrix permutation based
techniques have recently become increasingly popular. They
have been used for a variety of graph related problems including
biology [3], trains scheduling in a railway traffic network [29]
and clustering [21]. The basic advantage of permutation based
methods is that, while ‘big-Oh’ complexity might be the same
or slightly bigger than when graph based methods are used,

ISCA Copyright© 2017

IJCA, Vol. 24, No. 2, June 2017 73

the computational overhead is usually much lower, and the
implementation simpler.

We start with a matrix version of König’s Mini-Max
Theorem, instead of its more popular graph theory version.
In fact we use graph theory terminology for readability only,
as they are not really needed to present and implement our
solution. All operations are simple matrix operations which can
be implemented very efficiently.

Our algorithm is linear in both time and space with respect
to the size of a binary matrix that represents a given bipartite
graph. No assumptions are made about the method for
computing maximal matchings.

We will also show a simple and very intuitive algorithm
for a minimal vertex cover that runs in time O(|V | 32 |E|), and
also illustrates well a fundamental difference between bipartite
graphs and general graphs.

The paper is organized as follows. In Section 2 we present
a problem formulation and König’s Mini-Max Theorems. The
basic concepts of our model are discussed in Section 3, while
our main algorithm is presented and analyzed in Section 4.
Another, more intuitive and natural, but slower, algorithm is
discussed in Section 5. The last section, Section 6 contains
conclusions.

This paper is a revised and extended version of the conference
paper [12].

2 Problem Formulation and König’s Mini-Max Theorems

Let MG = MA(G) be the output of running an algorithm
MA that computes a maximal matching for a given bipartite
graph G = (V1 ∪V2,E), i.e., MG is the adjacency matrix of a
maximal matching produced by the algorithm MA. MA could
be Hopcroft-Karp algorithm [16], or any other algorithm of this
type.

Let AG be an adjacency matrix that defines the graph G, and
let MG denote the adjacency matrix for a maximal matching
of G. Note that both AG and MG are of size |V1| × |V2|,
and thus at least four times smaller than a standard |V | × |V |
representation. In what follows we will assume bipartite graphs
to be represented by |V1|× |V2| adjacency matrices.

We find it useful to give two equivalent formulations of
König’s theorem. The first one is the standard formulation that
uses the language of graphs.

Theorem 1 (König’s Mini-Max version I). Given a bipartite
graph G, if ρG is the size of the maximal matching of G and ρ ′G
is the size of the minimal vertex cover of G, then ρG = ρ ′G.

The proof of Theorem 1 (c.f. [5]) furnishes the basic ideas
that will be used later in Section 3 to transform maximal
matchings into minimal covers.

Given an m×n 0-1 matrix A, let SA be a set of pairs of indices,
i.e.,

SA = {(i1, j1),(i2, j2), . . . ,(ik, jk)} ⊆ N×N,
where N denote natural numbers and Aip jp = 1 for every p∈ [k],
and all the ip’s, as well as all the jp’s, are distinct. In other

words, SA is a set of positions in the matrix A containing 1s, and
no two of those 1s are on the same row or the same column, i.e.,
no two of them are on the same line. Given A, the maximum
possible size of such a set SA is called the term rank of A ([5]).
Notice that if AG is the adjacency matrix of a bipartite graph G,
then the term rank equals the size of a maximal matching in G.

On the other hand, given a 0-1 matrix A of size m×n, a set C
of lines, i.e., a collection of rows and columns of A, is called a
cover if every 1 in A is in at least one row or column of C. Then,
given a bipartite graph G, the size of the minimal vertex cover
corresponds to the minimal cover of AG.

We now restate König’s theorem but using the language of
matrices.

Theorem 2 (König’s Mini-Max version II). Let A be a 0-1
matrix of size m× n. The minimum number of lines in A that
cover all of the 1s in A is equal to the maximum number of 1s in
A, no two of the 1s on the same line.

Since a bipartite graph G can be identified with its 0-1 matrix
representation AG of size |V1| × |V2|, we may write MAG =
MA(AG) instead of MG =MA(G).

Our goal is to design an algorithm, which we call PERALG,
that takes an input 〈AG,MAG〉 and produces a set of lines CAG

that form a minimal cover of AG. We want PERALG to compute
CAG in O(|AG|), where |AG| is the size of the matrix AG. We
assume that the algorithm MA is given.

3 Preliminaries to our Algorithm

Our permutation-based algorithm, PERALG, runs in time
O(|V1||V2|). Since |V1||V2| = |AG|, the size of the matrix
representing G, PERALG runs in linear time in the size of |AG|,
assuming a model of computation (such as RAM) where the
matrix entries can be accessed at cost O(1).

The main idea behind PERALG is that, given a maximal
matching M of a bipartite G, the minimal vertex cover C can
be constructed by taking, for each e ∈ M, one of e’s end point
nodes. Of course, not all 2|M| selections of end-points work, but
at least one selection of end-points works. We show the details
in Lemma 1.

We start with some terminology for denoting lines: given an
m× n matrix A, we can denote the lines as r1,r2, . . . ,rm and
c1,c2, . . . ,cn, and the r’s denote the rows and the c’s denote the
columns. It will also be advantageous to denote by lo

(i, j) a line
going through entry i, j, where o ∈ {0,1}, where i ∈ [m] and
j ∈ [n], and

o =

{
0 lo

(i, j) is vertical, i.e., l0
(i, j) = c j

1 lo
(i, j) is horizontal, i.e., l1

(i, j) = ri
.

A cover is a set of lines Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

},
with orientation o = o1o2 . . .ok, and i = i1, i2, . . . , ik, j =
j1, j2, . . . , jk, and it is such that any 1 in A is covered by (at
least) one of these lines; i.e., if there is a 1 in position (i, j) of

74 IJCA, Vol. 24, No. 2, June 2017

the matrix A, then there exists a p ∈ [k] such that lop
(ip, jp)

∈Co,i,j
A

and
[i = ip∧op = 0]∨ [j = jp∧op = 1].

If MA is a maximal matching, the Mini-Max theorem says
that there exist o,i,j of length k = |MA| such that Co,i,j

A is a
cover. Recall that MA represents a maximal matching as a 0-1
matrix, and that a 1 in position (i, j) means that (i, j) is an edge
in the matching (i.e., i ∈ V1 and j ∈ V2 are “paired”). But in
terms of “matrix combinatorics” this means that the 1s in MA
are positioned in such a way that no two 1s are on the same
line (vertical or horizontal). Thus, we know that Co,i,j

A must
have lines through all the 1s of MA; further, any such line cannot
cover more than a single 1. Since we know that the size of Co,i,j

A
is the size of MA, each 1 of MA claims exactly one line. Hence
i,j are directly determined by MA, but o needs to be computed.

The result below shows the relationship between maximal
matchings and minimal covers expressed using the notation
described above.

Lemma 1. Suppose that G = (V = V1 ∪V2,E) is a bipartite
graph, A its adjacency matrix, and MA a maximal matching.
Suppose

MA = {(i1, j1),(i2, j2), . . . ,(ik, jk)},

i.e., MA is a list of all the positions of MA with a 1 in them
(k = |MA|). Then, it must be the case that

Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

}

is a minimal cover for some o ∈ {0,1}k.

Proof. We know that for all p ∈ [k], A(ip jp) = 1, and so our
cover must contain, for every p ∈ [k], either rip or c jp . By the
Mini-Max theorem, there is a cover of size k, and so, by the
pigeonhole principle, we can say something stronger: our cover
must consist, for every p∈ [k], of either rip or c jp . But that is the
same as saying that our cover must consist, for every p ∈ [k], of
lop
(ip, jp)

, for op = 0 or op = 1. The lemma follows from that.

Given permutations π : [m] −→ [m] and τ : [n] −→ [n], let
Pπ and Qτ be the corresponding permutation matrices. The
matrices Pπ and Qτ are obtained from the identity matrix by
exchanging the rows according to π and τ , respectively. Then:
(Pπ MAQτ)i j = (MA)π−1(i)τ−1(j).

Given an m× n matrix A, and given a maximal matching
MA, which we represent as MA = {(i1, j1),(i2, j2), . . . ,(ik, jk)},
where i1 < i2 < · · ·< ik, then the pair of permutations:

π

i1 7→ 1
i2 7→ 2

...
ik 7→ k

τ

j1 7→ 1
j2 7→ 2

...
jk 7→ k

are order preserving permutations according to rows (for MA).
Note that the indices that are not specified are left fixed by π,τ .

(a) Graph G

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
1 1 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0

(b) A = AG

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(c) MA = MAG

1 0 0 1 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 1 1 0 0
0 0 1 0 0 0
0 0 1 0 0 0

(d) Pπ AGQτ

Figure 1: An example of calculating Pπ AQτ

That is, Pπ MAQτ place the 1s on the main diagonal, in the
original order of the rows of MA. Notice also that:

Pπ AQτ =

[
T A1
A2 0(m−k)×(n−k)

]

=

1
1 ∗

∗
. . . A1

1

A2 0

(1)

That is, the 1s in MA are permuted to be on the diagonal of
the upper-left k× k quadrant; call this quadrant T . The first
thing to observe is that the lower-right (m−k)×(n−k) quadrant
consists entirely of zeros. This assertion is a consequence of the
Min-Max theorem: all the lines in Co,i,j

A pass through a 1 in T ;
none of these lines can possibly touch this lower-right quadrant,
so it must be full of zeros.

For example, suppose that we have a graph G as in Figure 1;
let us examine the values of MA and Pπ AQτ .

In this case, π is the identity permutation, and τ fixes 1,
moves 2 to 4, 3 to 2, 4 to 3, and fixes 5 and 6. The lines in
red in Figure 1(a) indicate a maximal matching; the red ones
in Figure 1(d) indicate the corresponding lines, now placed on
diagonal. Note that the 2×2 lower-right submatrix is zero as it
should.

The next Lemma relates the covering of the original A to the
covering of permuted A, i.e., Pπ AQτ .

IJCA, Vol. 24, No. 2, June 2017 75

Lemma 2. Suppose that π,τ are order preserving
permutations according to rows. Then, if

Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

}

is a covering of A, then

Co,π(i),τ(j)
Pπ AQτ

= {lo1
(π(i1),τ(j1))

, lo2
(π(i2),τ(j2))

, . . . , lok
(π(ik),τ(jk))

}

is a covering of Pπ AQτ .

Proof. Suppose that Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

} is
indeed a covering of A. Consider any entry (p,q) of Pπ AQτ ,
i.e., (Pπ AQτ)pq = Aπ−1(p)τ−1(q). If Aπ−1(p)τ−1(q) = 1, then either

rπ−1(p) ∈ Co,i,j
A or cτ−1(q) ∈ Co,i,j

A . This last statement means
that there exists an a ∈ [k] such that at least one of the following
two statements is true:

• loa
(ia, ja)

∈Co,i,j
A where ia = π−1(p)∧oa = 1, or

• loa
(ia, ja)

∈Co,i,j
A where ja = τ−1(q)∧oa = 0,

which in turn means that at least one of the following is true

• loa
(π(ia),τ(ja))

∈Co,π(i),τ(j)
Pπ AQτ

where π(ia) = π(π−1(p))∧oa = 1, or

• loa
(π(ia),τ(ja))

∈Co,π(i),τ(j)
Pπ AQτ

where τ(ja) = τ(τ−1(q))∧oa = 0,

and as π,τ are permutations, they are bijections, and so
π(π−1(p)) = p and τ(τ−1(q)) = q, and so restating once again
we obtain:

• l1
(p,τ(ja))

∈Co,π(i),τ(j)
Pπ AQτ

, or

• l0
(π(ia),q)

∈Co,π(i),τ(j)
Pπ AQτ

.

In either case, this means that there is a line covering entry (p,q)
of Pπ AQτ if that entry is a 1. Hence, Co,π(i),τ(j)

Pπ AQτ
is indeed a

covering for Pπ AQτ .

The purpose of Lemma 2 is to show that given AG, we can
reorder its rows and columns at will — which corresponds to
a relabelling of V1 and V2 — and the resulting matrix has a
maximal matching and minimal vertex cover of the same size.
Furthermore, we can easily compute the maximal matching and
vertex cover for the resulting matrix from the original one.
Note that we assumed in Lemma 2 that the permutations are
order preserving permutations (according to rows), and hence
the orientation vector o is not affected. If the permutations
are not order preserving, then we can still recompute the
maximal matching and minimal vertex cover, but we must
apply the corresponding permutation to the orientations. This
is summarized in Corollary 1 below.

Corollary 1. Suppose that π,τ are order preserving
permutations according to rows, and that the diagonal 1s have
been reordered by µ . Then, if Co,i,j

A is a covering of A, then

Cµ(o),π(i),τ(j)
Rµ Pπ AQτ Rµ

=

{l
oµ(1)
(µ(π(i1)),µ(τ(j1)))

, l
oµ(2)
(µ(π(i2)),µ(τ(j2)))

, . . . , l
oµ(k)
(µ(π(ik)),µ(τ(jk)))

},
(2)

is a covering of Rµ Pπ AQτ Rµ .

4 Our Algorithm

On input 〈A,MA〉, where MA is a maximal matching for A,
PERALG computes a minimal cover Co,i,j

A . More precisely, as
was shown in Lemma 1, given MA we know a priori that:

Co,i,j
A = {lo1

(i1, j1)
, lo2
(i2, j2)

, . . . , lok
(ik, jk)

},

is a minimal covering for some o, where the (ip, jp) are the non-
zero entries of MA. Hence, all that we need to compute in our
algorithm is the orientation vector o= o1o2 . . .ok.

The analogy in the graph theoretic setting is the following:
given a bipartite graph G and a maximal matching M the
minimal vertex cover can be selected from M. This selection
takes place by choosing for each edge e ∈ M, one of its
end-points; a particular choice of end-points corresponds to a
particular orientation. We now present PERALG for computing
the orientations.

PERALG:
Input: A,MA, m× n 0-1 matrices, where MA is a maximal

matching for A:

Step 1 If k = |MA|= min{m,n}, then

• {r1,r2, . . . ,rm} is a cover if m≤ n; i.e., return o= 1m

and exit
• {c1,c2, . . . ,cn} is a cover if m > n; i.e., return o= 0n

and exit

Step 2 Else, k = |MA| < min{m,n}, compute order preserving
permutations π,τ that diagonalize MA, so (recall the
equation (1))

Pπ AQτ =

[
T A1
A2 0(m−k)×(n−k)

]
Step 2a If A1 = 0∨A2 = 0:

• If A1 = 0 then return o= 0k and exit
• If A2 = 0 then return o= 1k and exit

Step 2b Else, A1 6= 0∧A2 6= 0. Group the 1s on the diagonal of
T into two sets, the black and the green, of sizes k1 and k2,
respectively, with k = k1 + k2. A black 1 in position (i, i)
has the property that both row i of A1 and column i of A2
consist of zeros. The green 1s do not have this property.
For each green 1 in position (j, j):

• If there is a 1 in row j of A1, then we let o j = 1.
• Else, we let o j = 0.

This part is illustrated in Figure 2.
Let T ′ be T where the 1s under the lines covering the

green 1s have been zeroed out (see Figure 3). In order to
compute the orientations of the black 1s, repeat recursively
Step 2a on T ′.

Output orientations o

76 IJCA, Vol. 24, No. 2, June 2017

0

1

1

1

1

1

1

1

1

1

0

0

0

0

00

0

0

Figure 2: Step 2b

1

1

1

1

Figure 3: Repeat Step 2 with T ′, which is the upper-left
quadrant, emphasized with a thicker border, with the
“green square” zeroed out, as well as the entries under
the red lines, arising from the cover of the “green
square,” zeroed out

Note that the situation, as represented in Figure 2, is
simplified for the sake of clarity: the black 1s and the green 1s
are depicted as two separate groups, but in general they are
interspersed. We could block them together to be as in Figure 2,
but that would require in general a permutation that is not
order preserving; this could still be done by Corollary 1, but
it introduces a technical overhead, as the orientations would
no longer match (but we can always recover the original
orientations by inverting the permutation).

Also note that in Step 2b, under the assumption A1 6= 0∧A2 6=
0, we know that k2 > 0, so we know that not all 1s in the upper-
left quadrant are black; but it may well be the case that none
are black, i.e., all the 1s are green, which would correspond to
k = k2.

Conceptually, the algorithm is rather simple. The technical
complication is the permutations. We are computing the
orientation of a covering for a permuted version of A; then, we
must “extract” the correct orientation for the original version of
A. This is what introduces a certain technical overhead. On
the other hand, these permutations help to maintain a simple

data structure (reconfigurations of the |V1|× |V2| matrix) that is
essential for the computation.

We will now show that the algorithm PERALG really
computes an appropriate vertex cover.

Lemma 3. Algorithm PERALG is correct. That is, given A
and MA as input, it computes o so that Co,i,j

A is a vertex cover
(of size |MA|).

Proof. By placing 1s on the diagonal of T , we ensure that
each such 1 requires at least one line to be covered. By Lemma 1
we can conclude that exactly one line per 1 on the diagonal of T
is sufficient to ensure a cover.

In Step 2b, if there is a 1 in row j of A1, then we let o j = 1, and
otherwise we let o j = 0. We know that this works because each 1
in T claims exactly one line in the cover. So it follows that it is
not possible for both row j of A1 to have a 1, and column j of
the A2 to have a 1, since that would require two lines through
(j, j).

Further, the square that encloses the green 1s must be
successfully covered by the above scheme: we have no choice
as to the orientation of the lines covering the green 1s, and by
the Min-Max theorem a successful covering exists, and thus
the covering imposed by the green portions of A1 and A2 must
necessarily work for the square enclosing the green 1s.

In the following lemma, we show how to compute order
preserving π,τ in Step 2. It is clear that it can be done in linear
space, that is, in space O(|A|). Except for the computation of
order preserving π,τ once in Step 2, the recursive computation
of the orientations is done inside A, with constantly many
registers indexing A (space O(log(|A|))) and hence also in space
O(|A|). Thus, PERALG requires linear space.

Lemma 4. Algorithm PERALG runs in time |A|= m×n.

Proof. We show first the details of computing order
preserving π,τ in Step 2. We initialize r = 1 and q = 1, and we
also initialize two integer arrays i, j of size n. For every p ∈ [n],
if row p of MA is not zero, we let i[q] = p, and let q = q+1. On
the other hand, if row p of MA is zero, we let j[r] = p, and let
r = r+1.

We construct π from the two arrays i and j which encode the
following mapping:

i[1] 7→ 1;
i[2] 7→ 2;
...
i[k] 7→ k;
j[1] 7→ k+1;
j[2] 7→ k+2;
...
j[n− k] 7→ n

(3)

IJCA, Vol. 24, No. 2, June 2017 77

From π we construct P, where P has 1s in positions:

(1, i[1]),(2, i[2]), . . . ,(k, i[k]),
(k+1, j[1]),(k+2, j[2]), . . . ,(n, j[n− k]),

(4)

and zeros everywhere else. The permutation matrix Q is
constructed in a similar manner from τ . This can be clearly
done in time and space proportional to |MA|, i.e., in linear time
and space.

Once we obtain Pπ AQτ , we work, recursively, with this
matrix, starting at each level of the recursion in Step 2a, in order
to compute the orientations of the black 1s. As was mentioned
above, if there are no green 1s, then the procedure terminates
(outputting all horizontal or vertical orientations, according to
which one of A1 or A2 is all zero). Thus, if k2 = 0, we are done.

Otherwise, k2 > 0, and the number of black 1s decreases by
at least 1. Thus this loop, in the worst case, can repeat at most
k = |MA| ≤ min{m,n} many times. Note therefore that if there
are many green 1s, the procedure has fewer recursive calls; if
there are few green 1s, the procedure has more recursive calls.

We make this argument a little bit more precise; let R(n)
be the maximum number of steps, in the worst-case, that
our procedure takes on a matrix of size n (let n denote here
max{m,n}). Let a “step” be a single “atomic operation” which
for us is one of the following two: check what is the value in
position (i, j) of some matrix, and change the value in position
(i, j) of some matrix to 0 or 1.

Suppose that k is the number of black 1’s, and n− k is the
number of green 1’s. Then, we can see that the worst-case
analysis yields the following bound on the number of atomic
steps:

R(n+1) = max
1<k<n

{k(n+1− k)+R(k)}. (5)

First note that there must be at least one black 1, for
otherwise, there are no more steps. There must also be at least
two green 1’s; if there were only one green 1, then either A1 or
A2 would be all zero, which would also terminate the algorithm.
Finally, no green 1’s would imply termination as well. Hence
the maximum is computed over 1 < k < n for size n+1.

Note that in the recursive equation (5), k represents the
number of black 1’s, and so the corresponding sizes of A1 and
A2 are given by k×(n+1−k) and (n+1−k)×k, and hence the
term k(n+1− k) — we are ignoring constants in (5); it should
really be 2k(n+ 1− k), but this does not change the order of
R(n). The recursive step is repeated on the black 1’s, and hence
we add R(k) in (5).

We now show by induction that R(n) ≤ n2, where R is
initialized with R(0) = R(1) = 1. For k < n+ 1, by inductive
assumption R(k)< k2, and so by (5):

R(n+1)≤ max
1<k<n

{k(n+1− k)+ k2}= max
1<k<n

{kn+ k}

≤ n2 +n≤ n2 +2n+1 = (n+1)2.

Finally, we show how PERALG keeps track of the orientations
o in each step of the recursive procedure. As was pointed out in

the note following the presentation of PERALG, the situation, as
represented in Figure 2, is simplified for the sake of clarity: the
black 1s and the green 1s are depicted as two separate groups,
but in general they are interspersed. This means that some
orientations are computed in a given step, and some are not:
o = o1o2 . . .ok, where oi1oi2 . . .oik1

correspond to the black 1s
and are not yet computed, and o j1o j2 . . .o jk2

correspond to the
green 1s, and have just been computed. Note that the oip ’s and
o jq ’s are interspersed in o, and k = k1+k2. But it is easy to keep
track of this, because the order is preserved throughout: let o be
a string of 0s, 1s, and unset values. The unset values always
appear in the same order as the black 1s on the diagonal to be
dealt with in the next step.

From Lemma 3 and Lemma 4 we get the main result of the
paper.

Theorem 3. Given a bipartite graph G = (V = V1 ∪V2,E),
and a maximal matching MG, PERALG runs in time and space
O(|AG|) to compute a minimal cover CG. That is, PERALG runs
in linear time and space to compute a minimal cover from a
maximal matching.

The time complexity of graph based algorithm for computing
a minimal cover from a maximal matching for a bipartite graph
G = (V,E) is O(|V |+ |E|) (c.f. [24]) and clearly O(|V |+ |E|) =
O(|AG|), however, when it comes to real time complexity,
|AG| ≤ 4(|V | + |E|), and the overhead of our algorithm is
minimal.

If the time complexity of MA(G) is O(fMA(G)) and |E|2 ≤
O(fMA(G)) (all known algorithms satisfy this and most likely
always will), then the overall time complexity of finding a
minimal vertex cover in a given bipartite graph G using our
method is O(fMA(G)).

As was mentioned in the introduction, it is well known
that given a general graph, a maximal matching can be
computed with the classical Edmond’s blossom algorithm ([10])
in O(|V |4) time, or the more complex O(|V | 12 |E|) algorithm
by Micali and Vazirani [25]. As our transformation is linear,
O(|V |2), it can be performed at a lesser cost than any algorithm
currently on the market.

5 Another Simple Algorithm for Bipartite Graphs

As we have indicated in the Introduction, there are many
polynomial time algorithms for finding maximal matching for
both general and bipartite graphs. For example, a popular
Hopcroft-Karp algorithm computes a maximal matching for a
given bipartite graph in time O(|V | 12 |E|), where G = (V,E) and
V = V1 ∪V2. By König’s Mini-Max theorem, we know that a
bipartite graph G has a maximal matching of size k if and only
if it has a minimal vertex cover of size k. Putting these elements
together, we obtain a simple and natural algorithm NATALG,
presented in Figure 4 for computing minimal vertex covers in a
bipartite graph.

78 IJCA, Vol. 24, No. 2, June 2017

NATALG:
Input G = (V =V1∪V2,E)
C← /0
k← |MA(G)| (= size of minimal vertex cover of G)
For every node u ∈V =V1∪V2 do:

If u ∈Vi, then
Let G′ = (V ′,E ′) be derived from G by:

adding two new nodes u′1,u
′
2 to V3−i to obtain V ′

adding two new edges (u,u′1),(u,u
′
2) to obtain E ′

k′← |MA(G′ = (V ′,E ′))|
If k = k′, then

add u to C
delete from G all edges incident to u
delete all singleton nodes
k← k−1

Output C

’

V V1 2

u

u

u

1

2

’

Figure 4: On input G = (V = V1 ∪V2,E), NATALG repeatedly
invokes an algorithm computing |MA(G)| for a
bipartite graph G, (for example the Hopcroft-Karp
algorithm

Lemma 5. The algorithm NATALG, presented in Figure 4,
computes a minimal vertex cover in time O(fMA(G)|V |), where
the time complexity of |MA(G)| is O(fMA(G)).

Proof. If we add two new edges (u,u′1) and (u,u′2) to G —
and obtain G′ — the “cheapest” way to cover those two new
edges is with their common vertex u. That is, by adding the
edges (u,u′1),(u,u

′
2), we force u to be part of a minimal cover

of the resulting graph. If there was a cover of G that included
u, then the same cover works for G′; essentially, we cover the
two new edges “for free.” This corresponds to the case k = k′,
where we know that u was part of a cover, and so we add it to
C, and we delete from G the edges incident to u. If, on the other
hand, k < k′, then no minimal cover of G contained u, and thus
we needed to add u to the cover of G′ in order to take care of the
two new edges; in this case we do not put u in C.

In either case, we delete the gadget, and repeat the procedure
on the next unexamined node in V = V1 ∪ V2. For added
efficiency, if k = k′ then we delete all singleton nodes. We run
the MA algorithm in each round, giving the stated running time
bound of O(|V | 12 |E||V |). Note that it is immaterial in which
order we examine the nodes of G; any ordering works.

If Hoproft-Karp algorithm is used to compute |MA(G)| in
NATALG, the time complexity is O(|V | 32 |E|).

Note that the reduction described in Lemma 5 would not work
over general graphs (i.e., not necessarily bipartite). First, for the
obvious technical reason that requires u′1,u

′
2 to be added to “the

other vertex set,” i.e., to V3−i if u ∈Vi, where i = 1,2. But, more
importantly, say that instead of the Hopcroft-Karp algorithm
we invoke Edmond’s algorithm that works over general graphs.
Could we then modify somehow the algorithm in Figure 4 to
make it work over general graphs? The answer is: “not in
polytime, unless P=NP”. The reduction given by the algorithm
in Figure 4 relies deeply on the graph being bipartite.

6 Conclusion

PERALG is a matrix permutation based algorithm that runs in
time O(|V1||V2|) to transform a maximal matching of a bipartite
graph into a minimal vertex cover. In particular, PERALG runs
in linear time and space (as its input is a binary matrix of size
|V1| × |V2|), and using the properties in the famous König’s
Mini-Max theorem, it performs basic counting of zeros and ones
to compute a minimal cover. Our algorithm is very simple, and
does not employ the usual graph theoretic properties that are the
foundation of classical algorithms in this area.

Our algorithm is one of many applications of König’s Mini-
Max theorem, which has also several equivalent formulations
(cf. [18]): as Menger’s Theorem [23], counting disjoint paths; as
Hall’s Theorem [15], giving necessary and sufficient conditions
for the existence of a “system of distinct representatives” of
a collection of sets; as Dilworth’s Theorem [7], counting the
number of disjoint chains in a poset. It has recently been
shown in [13] that these different formulations are not only
equivalent, but additionally this equivalence can be proven in
weak fragments of arithmetic [27].

A survey of classical Mini-Max results can be found in [22].
There are many applications of the type of algorithms

discussed in this paper. For example, [4] is a paper in a
long tradition of studying switching routers, which effectively
compute solutions (or approximate solutions) to the problem of
matching incoming ports to outgoing ports.

Acknowledgment

This research was partially supported by NSERC Discovery
Grant of Canada. Main parts of this work were done during the
time that the first author was a Ph.D. student in the Department
of Computing and Software, McMaster University, and the third
author held a position in the same. We are grateful to the
referees for a careful reading of this paper, and for suggesting
thoughtful improvements.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms. Addison-Wesley, 1983.

IJCA, Vol. 24, No. 2, June 2017 79

[2] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing
a Maximum Cardinality Matching in a Bipartite Graph

in Time O
(

n1.5
√

m
logn

)
. Information Processing Letters,

37:92–99, 1991.
[3] A. T. Alexiou, M. M. Psiha, and P. M. Vlamos.

Combinatorial Permutation Based Algorithm for
Representation of Closed RNA Secondary Structures.
Bioinformation, 7(2):91–95, 2011.

[4] Banerjee, Satyajit and Datta Chowdhury, Atish and
Sinha, Koushik and Ghosh, Subhas Kumar. Contention-
Free Many-to-Many Communication Scheduling for
High Performance Clusters. In Natarajan, Raja and
Ojo, Adegboyega, Distributed Computing and Internet
Technology: 7th International Conference, ICDCIT 2011,
Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 6536:150–161, 2011.

[5] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix
Theory. Cambridge University Press, 1991.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, third edition. McGraw-Hill
Book Company, 2009.

[7] R. P. Dilworth. A Decomposition Theorem for Partially
Ordered Sets. Annals of Mathematics, 51(1):161–166,
1950.

[8] A. L. Dulmage and N. S. Mendelsohn. Coverings of
Bipartite Graphs. Canadian Journal of Mathematics,
10:517–534, 1958.

[9] A. L. Dulmage and N. S. Mendelsohn. Some
Generalizations of the Problem of Distinct representatives.
Canadian Journal of Mathematics, 10:230–241, 1958.

[10] J. Edmonds. Paths, Trees, and Flowers. Canadian Journal
of Mathematics, 17:449–467, 1965.

[11] L. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, 1962.

[12] A. G. Fernández, R. Janicki and M. Soltys, A Permutation-
Based Algorithm for Computing Covers from Matchings.
Proc. of CATA17 (32nd International Conference on
Computers and Their Applications), Honolulu, Hawaii,
USA, pp. 27–32, March 20–22, 2017.

[13] A. G. Fernández and M. Soltys. Feasible Combinatorial
Matrix Theory. Krishnendu Chatterjee and Jirı́ Sgall,
editors, Mathematical Foundations of Computer Science
2013, Lecture Notes in Computer Science Springer,
8087:777–788, 2013.

[14] F. Gavril. Testing for Equality between Maximum
Matching and Minimum Node Covering. Information
Processing Letters, 6(6):199–202, 1977.

[15] P. Hall. On Representation of Subsets. Journal of London
Mathematical Society, 10:26–30, 1935.

[16] J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs. SIAM Journal
on Computing, 2(4):225–231, December 1973.

[17] R. M. Karp. Reducibility Among Combinatorial Problems.

R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations. Plenum Press, pp. 85–103, 1972.

[18] J. Kleinberg, É. Tardos. Algorithm Design. Pearson, 2006.
[19] D. König. Gráfok és alkalmazásuk a determinánsok

és a halmazok elméletére. Matematikai és
Természettudományi Értesı́tö, 34:104–119, 1916.

[20] D. König. Über Graphen und ihre Anwendung auf
Determinantentheorie und Mengenlehre. Mathematische
Annalen, 77(4):453–465, 1916.

[21] I. Llatas, A. J. Quiroz, and J. M. Renóm, A Fast
Permutation-based Algorithm for Block Clustering. Test,
9(2):397–418, 1997.

[22] L. Lovász and M. D. Plummer. Matching Theory. Annals
of Discrete Mathematics, North-Holland, 1986.

[23] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta
Mathematica, 19:96–115, 1927.

[24] S. Mishra, V. Raman, S. Saurabh, S. Sikdar, and C. R.
Subramnian. The Complexity of König Subgraph Problems
and Above-Guarantee Vertex Cover. Algorithmica,
61(4):857–881, 2008.

[25] S. Micali and V. V. Vazirani. An O(
√
|V | · |E|) Algorithm

for Finding Maximum Matching in General Graphs. 21st
IEEE Symp. Foundations of Computer Science, pp. 17–
27, October 1980.

[26] A. Schrijver. Min-Max Relations for Directed Graphs.
Bonn Workshop on Combinatorial Optimization, Ann.
Discrete Math., North Holland, 16:261–280, 1982.

[27] M. Soltys, S. Cook. The Proof Complexity of Linear
Algebra. Annals of Pure and Applied Logic, 130(1-3),
207–275, 2004.

[28] J. A. Storer. An Introduction to Data Structures and
Algorithms. Progress in Computer Science and Applied
Logic Series. Springer, 2001.

[29] T. J. J. Van den Boom, N. Weiss, W. Leune, R. M.
P. Goverde, and B. De Schutter, A Permutation-based
Algorithm to Optimally Reschedule Trains in a Railway
Traffic Network. Proc. of the 18th World Congress The
International Federation of Automatic Control, pp. 9537–
9542, Milano, Italy, 2011.

80 IJCA, Vol. 24, No. 2, June 2017

Ariel Fernández holds a Ph.D. (2013)
from McMaster University. His primary
area of research is Proof Complexity and
Algorithms, especially inspired by the
subject of Combinatorial Matrix Theory,
which combines Linear Algebra, Graph
Theory, and Combinatorics, and has a
rich algorithmic content. Recently he has

become interested in Quantum Computing, and especially in
the study of quantum concepts in Proof Complexity. Starting
in 2013 he is working on Geographic Information Systems
(GIS systems), and is currently the director of a maps
making company called “Filcar SRL” located in Buenos Aires,
Argentina.

Ryszard Janicki is a professor
at McMaster University in the
Department of Computing and
Software. He received the M.Sc.
degree in Applied Mathematics
from the Warsaw University of
Technology, Poland in 1975, and the
Ph.D. and Habilitation in Computer

Science from the Polish Academy of Sciences, Warsaw, Poland
in 1977 and 1981 respectively. He taught computer science
and mathematics at the Warsaw University of Technology,
Poland in 1975-1984, Aalborg University, Denmark in 1984-86,
before joining McMaster in 1986. He was a Visiting Scholar
at University of Newcastle upon Tyne, U.K., in 1982 and a
Visiting Professor at Bordeaux University, France, in 1994-
95. He published more than 200 papers and co-authored a
monograph. His research interests include concurrency theory,
fundamentals of software engineering, ranking theory, abstract
approximation, mereology and relational methods in computer
science.

Michael Soltys is a faculty at
California State University Channel
Islands in the Department of
Computer Science, where he is
a full professor and chair of the
department. He is also the director
of IT Cybersecurity at Executek
International. His research is in logic
and algorithms, and he is especially
interested in proofs of correctness.
He is also working in the area of

String Algorithms which involves combinatorial methods on
finite words, and in Combinatorial Matrix Theory, which
combines linear algebra, graph theory, and combinatorics,
and has a rich algorithmic content. Recently he has become
interested in Ranking Algorithms, and especially in the elegant
Pairwise Comparisons Method. He is a member of the Centre
for Combinatorics on Words and Applications (CCWA). For
more information visit soltys.cs.csuci.edu.

IJCA, Vol. 24, No. 2, June 2017 81

A Software Development Environment for a Multi-chip
Convolutional Network Accelerator

Tetsui Ohkubo, Mankit Sit, Hideharu Amano∗

Keio University, 223-8522, JAPAN

Ryo Takata, Ryuichi Sakamoto, Masaaki Kondo†

The University of Tokyo, 113-8656, JAPAN

Abstract

A building block convolutional neural network accelerator
consists of a host and multiple accelerator chips which can scale
the performance by changing the number of stacked chips. In
order to program the host and the accelerators, an integrated
programming development environment called NAMACHA
is proposed. It includes compilers for convolutional neural
network accelerators and a system level simulator including
inter-chip communication latency. On the simulator, the total
application runs 4390x faster than that of the logic level
simulation with 1.27% difference of clock cycle counts. The
simulation results of implementing AlexNet, SIMD instructions
provided in the accelerator improved the performance by 70%
on average. It demonstrates that NAMACHA can be used for
architectural exploration as well as development of practical
software.

Key Words: Convolutional neural network; software
develelopment kit; emulator.

1 Introduction

Image recognition with Convolutional Neural Networks
(CNN) has been introduced in embedded systems for car
electronics and robotics as well as data centers. SNACC[1]1 is a
compact CNN accelerator targeted for embedded applications.
It consists of four SIMD processors that individually support a
dedicated instruction stream for CNN operations and provide
36 independently accessible tables for storing feature map,
weight and temporal data. Moreover, SNACC provides
ThruChip Interface (TCI)[9] for flexible chip stacking. By
using TCI, multiple SNACC chips can be connected with each
other through an escalator network formed by stacking the
chips and also with an additional host processor for system
coordination. Various trade-offs between performance and

∗Faculty of Science and Technology, Email: snacc@am.ics.keio.ac.jp
†Graduate School of Information and Technology
1A comprehensive paper of SNACC will be published with real system

evaluations.

cost/power consumption can be chosen by changing the number
of stacking chips. Such systems are called a building-block
computation system[11]. A building-block computing system
with SNACC chips is called the SNACC-Cube. It focuses on an
image recognition for embedded systems. That is, the learning
phase is assumed to be done in a cloud by a high performance
system with multiple GPUs, and weights of the CNN have
been preset. Compared with other ASIC examples[3][4][5][7],
SNACC-Cube is energy efficient, flexible and scalable. It
is developed with a low power Silicon-on-Thin BOX(SOTB)
process[13] which works with an extremely low supply voltage.
By making the use of wireless inductive TCI, the system size
can be extended just by increasing the number of stacked chips.

One of the most important concerns about the building-
block computation system including SNACC-Cube is its
programming development environment, since the data transfer
between the host and the chips must be taken into account
when designing applications for this kind of system. In
addition, it is crucial to accurately measure the communication
latency between the chips because inter-chip communication
can occupy a significant portion of the application execution
time. Although Register transfer level (RTL) simulation based
on hardware description language precisely simulates every
single cycle of the hardware register state transitions, it is too
slow and difficult to be used for most software developers.

To cope with the problem, we propose an integrated
programming development environment NAMACHA. It
includes a host programming environment, SNACC compiler,
and a system level simulator. The programmer can develop
programs for both host and SNACC using the evaluation results
from a high-speed yet accurate system level simulation. The
analysis results can be also used for improving the system
architecture.

The rest of the paper is organized as follows. Section 2
introduces inductive coupling ThruChip Interface and building
block computation systems with 3D chip stacking. Section 3
describes the brief introduction of SNACC, chip implementation
and target multi-chip system SNACC-Cube. Then we introduce

ISCA Copyright© 2017

82 IJCA, Vol. 24, No. 2, June 2017

NAMACHA in Section 4. Section 5 evaluates the performance
and accuracy of the system level simulator. The implementation
of AlexNet with NAMACHA is also presented. Section 6
mentions about related work and Section 7 concludes the paper.

2 Building Block Computing Systems

2.1 The First Example Cube-1

Building block computing systems are heterogeneous
systems consisting of multiple chips connected by TCI. TCI
is an electrically contactless 3D stacking technology, enabling
wireless communication between various types of chips in a
3D-IC. Several wires to supply power and a system clock are
needed for each chip except the host chip stacked on the top
of the stack which requires I/O wires. Cube-1[11] is the first
prototype consisting of a host microprocessor called Geyser[17]
and at most three coarse-grained reconfigurable accelerator
chips called CMA[12] . The tasks of image processing can be
off-loaded to multiple CMA chips in the pipelined streaming
manner. Now we are developing other accelerator chips and
SNACC described here is one example.

2.2 Inductive Coupling Channels (TCI)

TCI[9] is a key technology of the building block computing
systems. Square coils implemented with arbitrary metal layers
are used as data transceivers, no special fabrication technology
is needed. Data are transferred through magnetic field between
two chips by overlapping a transmitter coil over a receiver coil
that are placed in different chips, as shown in Figure 1. A
pair of driver and inductor for sending data is called the TX
channel, while a pair of receiver and inductor for receiving data
is called the RX channel. An inductive coupling channel is
usually formed by a coil for system clock and a coil for data
transfer. A high-frequency clock (1 - 8 GHz) is generated by a
ring oscillator, and the serialized data are transferred following
the high-frequency clock directly through the driver.

Figure 1: TCI with transmitter and receiver [15]

Although TCI requires a certain amount of logic to form a
link between two chips, it has the following benefits.

• 8 Gbps of data at maximum can be transferred with low
energy dissipation (0.14 pJ / bit) and low bit-error rate
(BER< 10−12) [15].

• Multiple chips can be stacked if the physical environment
is allowed.

• Since pre-stacking testing of chip is possible, known-good-
dies can be selected for stacking after the chip fabrication.

• Since TCI is electrically contact-less, electro-static-
discharge (ESD) protection device is unnecessary.

• Since the coil uses the metal layers of conventional CMOS
process, no extra process is needed. Although a coil
has a large footprint, common digital circuits can be
implemented inside the coil.

For simplifying the usage of TCI, we have developed IPs
(Intellectual Property) on Renesas 65nm SOTB process and
Rhom 0.18µm supported by VDEC Japan. TCI IP is consisting
of coils, transmitter, receiver and SERDES (Serializer/De-
serializer). The receiver coil and transmitter coil are duplex
winding. That is, a channel of the IP is half-duplex. The
direction can be switched within a few clock intervals. From the
users’ perspective, the IP can be treated as a simple 35-bit uni-
directional registered channel. Flow-control for bi-directional
communication, and a three-port router design are included in
the IP.

3 The Target System

3.1 SNACC

3.1.1 Overview of SNACC SNACC is a CNN accelerator
chip used as a building block of the proposed computing system.
It consists of four SIMD processors, each of which provides
support of dedicated instruction set for CNN acceleration and
large local memory.

The block diagram of SNACC chip with local memory
modules is shown in Figure 2.

SNACC implements a MIPS-like instruction set architecture
to simplify the hardware. The instruction width is 16-bit, and
there are 16 general purpose registers. R-type (register-register)
and I-type (register immediate) instructions are provided, but
unlike MIPS, only two operands are specified. Also, the
instruction set does not support subroutine call, so the program
size for each neural network layer is relatively small.

The most important instructions for CNN acceleration are
two SIMD instructions called mad (multiply add). and madlp
(multiply add with loop). The SIMD arithmetic unit is shown
in Figure 3 which can handle four 16-bit data or eight 8-bit
fixed point arithmetic data. Each multiplier recieves two inputs
respectively from two 64-bit registers and the products are all
summed together. The max unit outputs the largest value among
all the inputs. The outputs from the adder and the max unit
are multiplexed to register r13. Furthermore, the function unit,

IJCA, Vol. 24, No. 2, June 2017 83

Figure 2: The overview of SNACC with local memory modules

which is implemented by a lookup table, is applied to the sum
and stored into register r11. A madlp instruction executes
multiply and add operations iteratively for a given number of
times. In order to control the dedicated instructions, eight 8-bit
control registers and two 32-bit SIMD registers are provided.
By these instructions, SNACC offers efficiency and flexibility to
CNN execution and their efficiency is evaluated by NAMACHA
in Section 5.

The chip has relatively large local memory to effectively
exploit data intensive nature of the task. These memory modules
can be used for both dedicated and general purposes in local and
shared manners. For each core, there is a local look-up table
memory and a weight data memory that can be used along with
SIMD instructions. There are total 36 independently accessible
tables. Compared to other accelerators, the SNACC architecture
imposes fewer restrictions over the implemementation of neural
network as a relatively general instruction set is used. Therefore,
there is no fundamental limitation in the SNACC architecture
that prevents future implementation of other neural network
architecutre likes recurrent neural network, while CNN is
currently the primary focus.

SNACC also provides ThruChip Interface (TCI)[9] for
flexible chip stacking. SNACC’s local memory is relatively
large but still not enough to preserve all the weight data used
for practical large CNNs. In the future plan, we are going to
place external large DRAM at the bottom of the SNACC-Cube
through TCI. In that case, SNACC’s SRAM local memory can
be considered as a programmable cache.

X

X

X

X

+

64b reg.

16

16

16

16

64b reg.

16

16

1616

Max.
Unit

Func.
Unit

LUT

r11

r13

Figure 3: The multiply-add module in SNACC

3.1.2 The SNACC Chip SNACC chip was fabricated by
silicon on thin buried oxide (SOTB)[13][14], a novel fully
depleted silicon-on-insulator (SOI) developed by the low-power
electronics association and project (LEAP) for a low-voltage
power-supply operation. The transistors in SOTB are formed
on a thin buried oxide layer. The detrimental short channel
effect (SCE) is surpressed by using an ultra-thin fully depleted
SOI (FD-SOI) layer and a buried oxide (BOX) layer. Since
impurity doping (a halo implant) into the channel is not
necessary, variations in the threshold voltage due to random
dopant fluctuations (RDFs) can be reduced. A multi-threshold
voltage design is easily made available by doping an impurity
into the substrate directly under the thin BOX layer. Thus, we
can extensively control the range of body (back-gate) bias and
optimize performance and power consumption after fabrication.

The specifications for the SNACC chip are listed in
Table 1, and the proposed software development environment
NAMACHA is designed according to it. Figure 4 shows a
photograph of the SNACC chip. The left side of the chip is
TCI for inter-chip communication, and four SNACC cores are
placed on the right side.

3.2 SNACC-Cube

SNACC-Cube is a building block computing system using
SNACC chips. As shown in Figure 5, it consists of a host micro-
processor Geyser[17] and up to three SNACC chips stacked
under the host. The number of SNACC is varied from one
to three. Geyser is a MIPS R3000 compatible processor with

84 IJCA, Vol. 24, No. 2, June 2017

Table 1: Specifications for SNACC.

Op. Cond. Supply voltage 0.55V
Body biasing 0.0V

Chip Process LEAP 65nm SOTB 7-metal
Size 5mm × 5mm
I/O 208pins

Tools Design Verilog HDL
Synthesis Synopsys Design Compiler

H-2013.03-SP2
P&R Synopsys IC Compiler

G-2012.06-ICC-SP5

Figure 4: Photograph of CNACC chip.

TX RXRouter

 NI

Geyser

TX RXRouter

 NI

SNACC

TXRX

TX RXRouter

 NI

SNACC

TXRX

TX RXRouter

 NI

SNACC

TXRX

Figure 5: The structure of SNACC-Cube

separated instruction cache and data cache both with 4KB 2-way
set associative mapping. Shared TLB with 16-entry is provided
and the Linux operating system is available as well as other
simpler embedded OS.

They are interconnected with TCI IP and an escalator network
is formed as shown in Figure 6. A router with three IO
ports is provided in the IP, and a full-duplex bi-directional
interconnection is formed between the neighboring stacked
chip. By using the opposite direction link, the sending router
can detect the buffer status in the receiving router. The routing
is controlled just by showing between up direction and down
direction, so this simple linear network is called an escalator
network.

The input port of each router has eight virtual channels.
Since the escalator network is deadlock free without multiple
virtual channels, they can be used by the system or application

Figure 6: Escalator network in SNACC-Cube

software.
All memory modules of SNACC are mapped into two

segments of R3000. When kseg1 is accessed, a single write or
read request is issued to SNACC chips. When Geyser accesses
kseg0 on which the cache is available, the block transfer using
cache block write-back and replace-in is triggered. In order
to avoid redundant cache accesses, operations which directly
trigger write-back and replace-in are provided.

BA40_0000

9A40_0000

40_0000

80_0000

C0_0000

ACC0

ACC1

ACC2

kuseg

kseg0

kseg1

kseg2

Figure 7: The memory map of SNACC-Cube

SNACC can send the interrupt request to Geyser. Also, the
network interface in SNACC provides a DMA-controller, and
the data transfer between SNACC chips is triggered just by the
request from the Geyser. Figure 8 shows the typical execution
of streaming tasks. Note that considerable amount of time is
consumed by the data and command packet transfer.

4 NAMACHA Development Kit

NAMACHA is a development kit for CNN implementation
running on SNACC-Cube. The goal of NAMACHA is to
make programmers of SNACC-Cube able to port existing CNNs
without concerning too much about the details of SNACC’s
architecture. To port existing networks, some degree of re-
implementation is unavoidable. It is due to the architectural
difference of the instruction set architecture between SNACC
and general purpose CPU/GPU. For instance, SNACC has
configurable look-up table hardware and performs calculations
on fixed point arithmetic while general purpose CPU/GPUs

IJCA, Vol. 24, No. 2, June 2017 85

GCSOTB2 ACC0 ACC1 ACC2

Write DATA

DATA

DATA

DATA

Exec

Exec

Exec

End

DMA start

Read Req.

End

End

Write DATA

Exec

End

DMA start
DATA

Exec

End

DMA start

Figure 8: Streaming execution on SNACC-Cube

do not have such dedicated hardware and provide extensive
support on floating point arithmetic. In order to fully utilize the
SNACC cores, low-level primitive such as the implementation
of convolution layer and ReLU layer[6] must be done by a
human programmer.

The NAMACHA development kit is composed of the
following five main components: NAMACHA compiler,
NAMACHA System Level Simulator, SNACC Runner,
Emulating Runner and SNACC I/O library. NAMACHA
compiler provides configurable CNN primitives that are well
optimized by human programmers and an assembler to generate
SNACC instruction according to the configuration. The general
workflow of NAMACHA is first to write the configuration of
CNN in C++, than compile it using NAMACHA compiler.
Afterward, it is possible to identify performance bottleneck
using NAMACHA System Level Simulator, and fix them
by tuning network hyper parameters or even changing the
underlying implementation of the primitives in NAMACHA
Compiler. Now, NAMACHA development kit is full text base
which can connect tool chain easily.

SNACC Runner and SNACC I/O Library are implemented
in C while System Level Simulator, Emulating Runner and
Compiler are implemented in C++.

4.1 NAMACHA Compiler

The NAMACHA Compiler consists of the assembler for the
SNACC instruction set and the compiler that generates CNN
assembly from given configuration of CNN layers.

SNACC assembly is implemented in the form of C++
function instead of usual plain text format for ease of use of

RegGuard c h a n n e l s l o o p c o u n t e r (
asm , o u t p u t s h a p e () [0]) ;

Labe l c h a n n e l s s t a r t =
asm −>NewLabelAndMark () ;

{
RegGuard d a t a x s p t r (asm , d a t a p t r) ;

RegGuard x s l o o p c o u n t e r (
asm , o u t p u t s h a p e () [1]) ;

Labe l x s s t a r t = asm −>NewLabelAndMark () ;
{

. . .
}
d a t a x s p t r += s t r i d e * i n p u t y s * 2 ;

x s l o o p c o u n t e r −= 1 ;
asm −>BranchNotZero (

x s l o o p c o u n t e r , x s s t a r t) ;
}
c h a n n e l s l o o p c o u n t e r −= 1 ;
asm −>BranchNotZero (

c h a n n e l s l o o p c o u n t e r , c h a n n e l s s t a r t) ;

Figure 9: Example using SNACC assembler

the compiler, so the compiler generates SNACC instructions by
executing the functions representing SNACC assembly. The
assembler uses RAII C++ idiom to allocate registers, while
general purpose compilers typically use more complex register
allocation algorithms, which allows robust and readable yet
fine tunable programming environment. Figure 9 shows a
code example of SNACC assembly . (The code fragment is
taken from convolution layer implementation.) RegGuard class
allocates a register when declared, and frees it when the scope is
finished. The class also overloads operators such as += to allow
natural representation of arithmetic operations in the assembly.

Abstract C++ class Layer, shown in Figure 10, is a template
for the implementation of different CNN layers. Each layer
takes layer parameters in the constructor and generates SNACC
assembly according to the given parameters. Generate() method
creates SNACC assembly to the given assembler class which
is responsible for SNACC instruction generation. If lut used()
returns true, LutFunction() will convert floating point function
value to fixed point value using the look-up table.

Multiple layer classes are arranged to form a particular
architecture of neural network. A layer configuration is set up
using C++ vector. The layer configuration of AlexNet[8] in
NAMACHA Compiler is shown in the Figure 11.

Therefore, programming in SNACC assembly is similar
to conventional C++ programming, lowering the barrier
for SNACC development. It is planned in the future to
support conversion of Caffe or TensorFlow configuration to
NAMACHA Compiler’s configuration representation.

86 IJCA, Vol. 24, No. 2, June 2017

c l a s s Layer {
p u b l i c :

v i r t u a l vo id G e n e r a t e () = 0 ;
v i r t u a l do ub l e L u t F u n c t i o n (do ub l e x) = 0 ;
v i r t u a l vo id Gene ra t eRbuf (

v e c t o r <u i n t 8 t > * r b u f) = 0 ;
v i r t u a l boo l l u t u s e d () c o n s t = 0 ;
v i r t u a l vo id s e t a s s e m b l e r (Assembler *

a s s e m b l e r) = 0 ;
} ;

Figure 10: Abstract Layer class

v e c t o r <p a i r <s t r i n g , v e c t o r <Layer*>>> l a y e r s =
{

{” conv1 ” , {
new Conv (/ * k e r n e l s = * / c o n v 1 k e r n e l s ,

/ * b i a s = * / c o n v 1 b i a s ,
/ * s t r i d e = * / 4) ,

new Relu () }} ,
{” norm1 ” , {

new Lrn (/ * l o c a l s i z e = * / 5 ,
/ * a l p h a = * / 0 . 0 0 0 1 ,
/ * b e t a = * / 0 . 7 5 ,
/ * k = * / 1 . 0) }} ,

{” poo l1 ” , {
new MaxPool (/ * k e r n e l s i z e = * / 3 ,

/ * s t r i d e = * / 2) }} ,
. . .
{” f c 8 ” , {

new I n n e r P r o d u c t (
/ * k e r n e l s = * / f c 8 k e r n e l s ,
/ * b i a s = * / f c 8 b i a s) }} ,

{” prob ” , {
new Sof tmaxStage1 () ,
new Sof tmaxStage2 () }}

} ;

Figure 11: AlexNet configuration in SNACC Compiler

4.2 NAMACHA System Level Simulator

The NAMACHA System Level Simulator simulates the entire
SNACC-Cube system on a workstation. The system level
simulation can be used for finding performance bottlenecks
when programming SNACC-Cube, as well as debugging and
profiling NAMACHA compiler.

In order to simulate the entire system, two kinds of
interpreters are required for Geyser core and accelerator cores
simulations due to their different instruction set architectures.
To emulate the Geyser chip, we used VMIPS, a GPL licensed
MIPS R3000 emulator. For our accelerator core, we built our
own interpreter.

The simulator can run in the single core mode and the system
level mode. The single core mode simulates only the single core

SNACC environment while the system level mode simulates
entire SNACC-Cube.

To make the NAMACHA System Level Simulator, a few
memory mapped devices are added to the Geyser host simulated
by VMIPS. Physically, the SNACC cores are connected to
Geyser through TCI channels, but as mentioned above, each
local memory of the SNACC chip, as well as the SNACC’s
control register, is memory mapped to the Geyser’s global
memory space. Moreover, the simulator generates RS232C
compatible output, which allows SNACC Runner running on
Geyser, which will be discussed later, to generate debug outputs.

As explained earlier, accurate measurement of Geyser host
execution cycles, accelerator execution cycles, and TCI transfer
overhead is critical to precisely evaluate the target software
efficiency. The following are the analysis of the possible sources
of inaccuracy for these measurements.

Geyser Host Cycle Counting. There are several sources of
inaccuracy for cycle counting on Geyser MIPS host. Geyser
employs traditional five stage in-order pipeline. Simply
counting executed instruction number fails to accurately count
stalls in the pipeline. Also, Geyser’s cache flush mechanism is
not accurately implemented in the system level simulator. As a
result, it can be another source of cycle count inaccuracy.

SNACC Cycle Counting. Current accelerator design does
not implement pipelining but it can be considered as four stage
multi-cycle microprocessor. Some SIMD instructions have
complex control flow, which may not finish within four cycles,
but they are still not difficult to simulate in terms of cycle
counting. The hardest part to simulate is counting cycles when
taking the arbitration of shared memory into account. SNACC
employs the relatively simple mechanism of arbitration for its
shared memory, which gives each of the four cores a chance to
access the shared memory every four cycles. However, when
those SIMD instructions with complex control flow access the
shared memory, the resulting timing of arbitration becomes
completely unpredictable. Therefore, this may constitute a
significant portion of cycle counting inaccuracy for SNACC
core simulation.

TCI Communication Latency Modeling. As Cube uses
packet routing mechanism to communicate through TCI, there
is no guarantee over the total latency observed in the real
hardware. Leaving the complex and precise modeling of
that latency to future work, current implementation of the
NAMACHA System Level Simulator took a simpler approach
by stalling a constant number of cycles for reading and writing
respective memory region. The constant number is a reasonable
number given by the knowledge of TCI router implementation
and significantly larger than writing to the Geyser’s main
memory. It assumes one-byte transfer through the TCI takes
25 cycles and each router takes an additional 50% margin.

4.3 Emulating Runner

NAMACHA also provides Emulating Runner written in C++.
The purpose of Emulating Runner is to offer an integrated

IJCA, Vol. 24, No. 2, June 2017 87

test environment for SNACC using the SNACC single core
simulator. Emulating Runner supplies input data to run SNACC
single core simulator and then copies emitted output as the next
layer’s input. The Runner is able to compare the output to that
of a general purpose deep learning framework such as Caffe to
debug the generated SNACC instructions of the implemented
CNN architecture.

4.4 SNACC Runner

NAMACHA Compiler generates SNACC instructions, but
the control from the Geyser host to the SNACC cores is
also necessary. SNACC Runner on the host core sends
SNACC program from the host to each layer and orchestrates
the data transfers between the chips. Current NAMACHA
implementation assumes there is enough large local memory,
therefore what the SNACC Runner does is simply copying input
data to SNACC local memory and transferring output data back
to the host for every layer when SNACC execution is completed.
But in the future, when larger DRAM is attached at the bottom
of the SNACC-Cube and smaller local memory is used as a
programmable cache, the control flow will become complex and
how the SNACC Runner performs the task effectively will be
important to the entire system performance.

4.5 SNACC I/O Library

As mentioned above, SNACC is controlled by the Geyser host
core through memory-mapped I/O. SNACC I/O library gives
simple abstraction over this memory mapped I/O. The library is
used by the SNACC Runner. The enrichment of the abstraction
library is planned.

4.6 GCC Cross Compiler Toolchain for Geyser

The Geyser host core implements general MIPS R3000
instruction set. For the host software development, a cross
compiler of GNU Compiler Collection running on x86 Linux
is used. The output image can be supplied to both register
transfer level simulation and system level simulation without
any change.

5 Evaluation

5.1 NAMACHA Simulator

The RTL of the system is implemented in Verilog, and the
simulation is done on Cadence’s NC-Sim 10.20-s131. The
NAMACHA System level simulator is C++ program compiled
with GCC Version 6.2.1 and -O2 option. Both simulators ran
on CentOS 6.5 machine with its CPU Intel Xeon E5-2667. The
code used for the simulator evaluation is hand-assembled small
four layer CNN.

The simulation results of NAMACHA System Level
simulator and the Verilog-HDL RTL simulation are shown
in Table 2. NAMACHA System Level time includes the

simulation of SNACC Runner mentioned above. The value of
the simulation time difference in a single core is unreliable as
the time consumed is too small, but at the system level, it is
clear that the use of a system level simulator gives significant
performance improvement, thus giving far shorter round time of
the software development.

The unnatural difference of the entire system simulation
time between RTL and NAMACHA is actually reasonable
as the RTL simulator offers far more information about the
hardware signals during simulation. The RTL simulator is
rather a tool for hardware development of processor and
accelerator, but not for the development of embedded software
that runs on these hardware systems. The NAMACHA System
Level Simulator cannot be used for debugging the accelerator
hardware. Considering the information granularity given by the
RTL simulator, it is running an acceptable speed.

Table 2: NAMACHA Simulator vs. Verilog HDL simulation

Simulation Time Cycles Counted
NAMACHA System Level 0.04s 375253

(4390x faster) (1.27% error)
NAMACHA Single Core 0.01s 31793

(188x faster) (7.85% error)
RTL Entire System 175.60s 380097
RTL Single Core 1.88s 34501

5.2 AlexNet on NAMACHA Simulator

AlexNet[8] was implemented on NAMACHA simulator,
and the clock cycle counts of a single core were evaluated.
The results of each layer are shown in Table 3. It shows
that the convolutional layers in the later stage occupies
a large part of computation time. While convolution
layers are computationally intensive, inner product layers are
communication intensive, thus the acceleration in SNACC
should be only applied to the convolution layers.

By using the NAMACHA simulator, the contribution of
SIMD instructions (mad/madlp) shown in Section 3 was
analyzed. Figure 12 shows the performance with and without
SIMD instructions respectively for all layers in AlexNet.
The performance improvement by SIMD instructions can
be observed in all layers. Especially, fc6-8 corresponding
to all-reduce operation can be much reduced. It appears
that NAMACHA is useful as a tool for improving SNACC
architecture.

6 Related Work

General purpose Deep Learning framework e.g. TensorFlow
typically offers CPU and GPU implementation. However,
accelerators using FPGA and ASIC are advantageous in terms
of power consumption and sometimes in total performance.

88 IJCA, Vol. 24, No. 2, June 2017

Table 3: Cycle counts for each layer of AlexNet
layer sub-layer cycle counts ratio
conv1 conv 673052316 6.4%

relu 10454492
norm1 lrn 138596152 1.3%
pool1 max pool 9583548 0.1%
conv2 pad 2423464 10.3%

conv 1087449148
relu 6718556

norm2 lrn 91633788 0.9%
pool2 max pool 5973056 0.1%
conv3 pad 1584172 23.1%

conv 2461776440
relu 2336344

conv4 pad 2376236 34.6%
conv 3691166268
relu 2336344

conv5 pad 2376236 23.1%
conv 2460777528
relu 1557592

pool5 max pool 1299520 0.0%
fc6 inner product 9662556 0.1%

relu 147544
fc7 inner product 4419672 0.0%

relu 147544
fc8 inner product 1079092 0.0%

Figure 12: The performance improvement with mad/madlp
instructions

An example of accelerator using FPGA is Zhang et al.,
2015[16]. Recently, there are ASIC examples including
DianNao[3], DaDianNao[4], Eyeriss[5] and EIE[7]. DianNao
and DaDianNao are SIMD accelerators, and DaDiaNao
provides a large eDRAM in the chip. Eyeriss uses a two
dimensional many core architecture which can reuse the

convolution layer. It also provides run-length compression
mechanism to reduce the traffic between the outside DRAM.
EIE focuses on the sparse structure of CNN and tries to reduce
the total amount of data without degrading the recogition
accuracy. Cognitive chip[10] also takes the completely different
approach as they are trying to emulate biological neurons.

Unfortunately, no software system like NAMACHA has
been reported for such ASIC CNN accelerators. The main
reason comes from a high degree of flexibility of SNACC-
Cube. The number of connected chips can be freely changed
in SNACC-Cube, thus the system configuration including
overhead of the network is changed. The programmers must
develop their program considering the system configuration,
thus the integrated software system including accurate simulator
is needed. In other ASIC CNN accelerators, the system
configuration and target CNN system are mostly fixed and
the programmer just develops code specialized for the target
systems.

7 Conclusions and Future Work

In this article, we propose an integrated program development
environment NAMACHA for a building-block computation
system SNACC. The NAMACHA System Level Simulator
supports development by offering 4390x faster yet 1.27%
accurate simulation environment. The NAMACHA Compiler
enables easier porting of existing CNNs. The simulation results
of implementing AlexNet, SIMD instructions provided in the
accelerator improved the performance by 70% on average. It
demonstrates that the NAMACHA can be used for architectural
exploration as well as development of practical software.

We have planned to improve SNACC-Cube as well as
NAMACHA environment. We are going to attach large external
DRAM to the bottom of the system. On the compiler side,
implementation of Caffe/TensorFlow configuration converter,
and also the support of RNN and other DNN variants are
planned. For the simulator, precise latency modeling of
communication through TCI is left to future work. For this
time we selected VMIPS for simplicity, but we can consider
Just-In-Time emulators such as QEmu[2] when the interpreter
performance becomes a bottleneck as the software gets larger.
Finally, the development of GUI for showing the result of
simulator is also our future work.

Acknowledgments

This work is partially supported by JSPS KAKENHI S grant
number 25220002.

IJCA, Vol. 24, No. 2, June 2017 89

References

[1] “A Study on Building-Block Computing Systems using
Inductive Coupling Interconnect”. URL {http://www.
am.ics.keio.ac.jp/kaken_s/}.

[2] F. Bellard. “QEMU , A Fast and Portable Dynamic
Translator”. USENIX Annual Technical Conference.
Proceedings of the 2005 Conference on, pp. 41–46, 2005.

[3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen,
and O. Temam. “DianNao: A Small-Footprint
High-Throughput Accelerator for Ubiquitous Machine-
Learning”. Proceedings of the 19th international
conference on Architectural support for programming
languages and operating systems, pp. 269–284, 2014.

[4] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam. “DaDianNao: A
Machine-Learning Supercomputer”. Proceedings of the
Annual International Symposium on Microarchitecture,
MICRO, pp. 609–622, 2015.

[5] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze. “An
Energy Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks ”. Proceedings of
the IEEE International Solid-State Circutirs Conference
(ISSCC), pp. 262–263, 2016.

[6] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse
Rectifier Neural Networks”. Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, 15:315–323, 2011.

[7] S. Han, X. Lin, H. Mao, J. Pu, A. Pedram, M. Horowitz,
and W. Dally. “EIE: Efficient Inference Engine on
Compressed Deep Nerutal Network”. Proceedings of the
43rd International Symposium on Computer Architecture
(ISCA), pp. 243–254, 2016.

[8] A. Krizhevsky, I. Sutskever, and H. Geoffrey E.
“ImageNet Classification with Deep Convolutional Neural
Networks”. Advances in Neural Information Processing
Systems 25 (NIPS2012), pp. 1–9, 2012.

[9] T. Kuroda. “ThruChip Interface (TCI) for 3D Networks
On Chip”. 2011 IEEE/IFIP 19th International Conference
on VLSI and System-on-Chip, pp. 238–241, Oct 2011.

[10] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar,
and D. S. Modha. “A Digital Neurosynaptic Core Using
Embedded Crossbar Memory with 45pJ per spike in

45nm”. Proceedings of the Custom Integrated Circuits
Conference, pp. 1–4, 2011.

[11] N. Miura, Y. Koizumi, Y. Take, H. Matsutani, T. Kuroda,
H. Amano, R. Sakamoto, M. Namiki, K. Usami,
M. Kondo, and H. Nakamura. “A Scalable 3D
Heterogeneous Multicore with an Inductive ThruChip
Interface”. IEEE Micro, 33(6):6–15, 2013.

[12] N. Ozaki, Y. Yoshihiro, Y. Saito, D. Ikebuchi, M. Kimura,
H. Amano, H. Nakamura, K. Usami, M. Namiki, and
M. Kondo. “Cool Mega-Array: A Highly Energy
Efficient Reconfigurable Accelerator”. 2011 International
Conference on Field-Programmable Technology, pp. 1–8,
2011.

[13] R. Tsuchiya and M. Horiuchi and S. Kimura and M.
Yamaoka and T. Kawahara and S. Maegawa and T. Ipposhi
and Y. Ohji and H. Matsuoka . “Ultralow-power LSI
Technology with Silicon on Thin Buried Oxide (SOTB)
CMOSFET”. Solid State Circuits Technologies, Jacobus
W. Swart (Ed.), InTech, pp. 146–156, 2010.

[14] R. Tsuchiya and M. Horiuchi and S. Kimura and M.
Yamaoka and T. Kawahara and S. Maegawa and T. Ipposhi
and Y. Ohji and H. Matsuoka. “Silicon on thin BOX
: A New Paradigm of the CMOSFET for Low-Power
and High-Performance Application Featuring Wide-Range
Back-Bias Control”. Tech. Dig. Int, Electron Devices
Meet., pp. 631–634, 2004.

[15] Y. Take, H. Matsutani, D. Sasaki, M. Koibuchi, T. Kuroda,
and H. Amano. “3D NoC with Inductive-Coupling
Links for Building-Block SiPs”. IEEE Transactions on
Computers, 63(3):748–763, 2014.

[16] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong.
“Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks”. Proceedings of the
2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’15, pp. 161–170,
2015.

[17] L. Zhao, D. Ikebuchi, Y. Saito, M. Kamata, N. Seki,
Y. Kojima, H. Amano, S. Koyama, T. Hashida,
Y. Umahashi, D. Masuda, K. Usami, K. Kimura,
M. Namiki, S. Takeda, H. Nakamura, and M. Kondo.
“Geyser-2: the Second Prototype CPU with Fine-grained
Run-time Power Gating”. Proceedings of the Asia and
South Pacific Design Automation Conference, ASP-DAC,
pp. 87–88, 2011.

90 IJCA, Vol. 24, No. 2, June 2017

Tesui Okubo graduated from the
Department of Information and
Computer Science, Keio University at
2017. He currently works at Google.

Mankit Sit is a master student at
Keio University. He received a BEng
degree from the Chinese University of
Hong Kong in 2016.

Hideharu Amano is a Professor at
the Department of Information and
Computer Science, Keio University.
He received a Ph.D degree from
the Department of Electronic
Engineering, Keio University, Japan
in 1986. His research interests include
the area of parallel architectures and
reconfigurable systems.

Ryo Takata is a master student at the
University of Tokyo.

Ryuichi Sakamoto is a postgraduate
researcher at the University of Tokyo.
He received MS and PhD degree from
Tokyo University of Agriculture and
Technology.

Masaaki Kondo is an Associate
Professor at the Graduate School of
Information Systems at the University
of Electro-Communications in
Tokyo. His research interests
include computer architectures,
high-performance computing, and
dependable computing. Kondo has
a PhD in electrical engineering from

the University of Tokyo.

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr., Fred.Harris@cse.unr.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11

inch pages.
2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word
format should be submitted to the Editor-in-Chief.

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should
be included:

 Paper text (required).
 Bios (required for each author). Integrate at the end of the paper.
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).
 Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, $100 of publication charges will be waived if requested.

January 2014

ISCA
 IN

TERN
A

TIO
N

A
L JO

U
RN

A
L O

F CO
M

PU
TERS A

N
D

 TH
EIR A

PPLICA
TIO

N
S

V
ol. 24, N

o. 2, June
2017

