
CS 460/660 3AC Generation

Intermediate Language Specification

The Instruction Set

The following table describes the available instructions, their formats, and their effects.
Any instruction not fully defined here will be discussed below.

General Format
INSTRUCTION SRC1 SRC2 DEST Effect

Arithmetic Operations
ADD op1 op2 op3 op3 := op1 + op2
SUB op1 op2 op3 op3 := op1 − op2
MULT op1 op2 op3 op3 := op1 ∗ op2
DIV op1 op2 op3 op3 := op1DIV op2
NEG op1 - op3 op3 := −op1

Logical Operations
NOT op1 - op3 if(op1 <> 0)op3 := 0 else op3 := 1

Relational Operations
EQ op1 op2 op3 op3 := op1 = op2
GT op1 op2 op3 op3 := op1 > op2
LT op1 op2 op3 op3 := op1 < op2
GE op1 op2 op3 op3 := op1 >= op2
LE op1 op2 op3 op3 := op1 <= op2
NE op1 op2 op3 op3 := op1 <> op2

Assignment
ASSIGN op1 op2 op3 op3 := op1

Control Forms
LABEL op1 - - The next statement is labeled with op1
BR - - op3 goto op3
BREQ op1 op2 op3 if(op1 = op2) goto op3
BRGT op1 op2 op3 if(op1 > op2) goto op3
BRLT op1 op2 op3 if(op1 < op2) goto op3
BRGE op1 op2 op3 if(op1 >= op2) goto op3
BRLE op1 op2 op3 if(op1 <= op2) goto op3
BRNE op1 op2 op3 if(op1 <> op2) goto op3
HALT - - - Immediately halt execution

Page 1 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

The Instruction Set (continued)

Procedure Call Operations
ARGS op1 - - The next call requires op1 arguments.
REFOUT op1 - - Pass op1 by reference.
VALOUT op1 - - Pass op2 by value.
CALL op1 - - Call the procedure named op1
PROCENTRY op1 op2 op3 Mark beginning of the procedure named op1
ENDPROC - - - Mark the end of the current procedure
RETURN - - - Return control to the caller

Additional Statements
BOUND op1 op2 op3 if(op3 < op1)or(op3 > op2) then HALT
ADDR op1 - op3 op3 := address of op1
GLOBAL op1 op2 - Declare op1 as a global of size op2
STRING op1 op2 - Associate string op1 with label op2
COMMENT op1 - - op1 is a comment

Operand Types

Operands in the intermediate language are type-value pairs. Depending on the type of
an operand, the value may be interpreted in various ways. Each operand in the instructions
above may have one of several different types. Please note that not every type is allowable
for a given operand of an instruction. See below for allowable operand types.

Type Meaning
LOCAL Local variable
GLOB Global variable
ITEMP Compiler temporary (for integers)
FTEMP Compiler temporary (for floats)
CONS Absolute constant
INDR Operand whose address is in a compiler temporary
LABEL Label attached to a statement
REFARG Reference argument
VALARG Value argument
STRING String literal
NONE Placeholder operand

LOCAL

The value field of a LOCAL operand is interpreted as an index into an imaginary 0-based
array of words for local variables. There is no need to declare individual local variables;
however, the number of words in the entire set of local variables must be declared in the
PROCENTRY instruction. See below for more information on procedure calling conventions.

Page 2 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

LOCAL operands may be used as both lvalues and rvalues and are preserved across pro-
cedure calls and branches.

Example: (local 3)

GLOB

The value field of a GLOB operand is interpreted as the unquoted name of a global vari-
able. All global variables must be declared at some point in the output with an appropriate
GLOBAL instruction.

GLOB operands may be used as both lvalues and rvalues and are preserved across pro-
cedure calls and branches.

Example: (glob foo)

TEMP and FTEMP

The value field of a TEMP operand is interpreted as an index into an imaginary 0-based
array of compiler temporaries. There is no need to declare compiler temporaries at any time.

TEMP operands may be used as both lvalues and rvalues. However, once a TEMP
operand is used as an rvalue its value is no longer preserved. It is an error to use the same
temporary as an lvalue more than once. TEMP operands are not preserved across procedure
calls and branches.

Example: (temp 42)

CONS and FCONS

The value field of a CONS operand is interpreted as an actual integer value. Please note
that named program constants defined via the CONST keyword are not permissible in this
context. CONS operands may be used an unlimited number of times in any appropriate
context.

CONS operands may be used as rvalues but never as lvalues. Preservation of CONS
operands across procedure calls and branches is inherently undefined.

Example: (cons -57732)

Page 3 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

INDR

The value field of an INDR operand is interpreted as the index of a compiler temporary
holding the address of the operand itself. Using a temporary in an INDR context as an
rvalue causes the value in the compiler temporary to be lost. Using a temporary in an INDR
context as an lvalue does NOT cause the value in the compiler temporary to be destroyed.

INDR operands may be used as both lvalues and rvalues. In all other ways, INDR
operands are subject to the same restrictions as TEMP operands.

Example: (indr 51)

LABEL

The value field of a LABEL operand is interpreted as the unsigned integral index into
an imaginary 0-based array of labels. It is legal to skip indices in this imaginary array while
declaring and using labels. For example, it is permissible for labels with indices 0 and 2 to
be used in the program, but for no reference to a label with index 1 to appear.

LABEL operands are neither lvalues nor rvalues and are valid only in a small number of
contexts. The absolute location of LABEL operands is guaranteed to be consistent across
all procedure calls and branches.

Example: (label 21)

REFARG

The value field of a REFARG operand is interpreted as an index into an imaginary 0-
based array of all arguments to the current procedure.

REFARG operands may be used as both lvalues and rvalues. Use of a REFARG as an
lvalue causes the stored value to be propagated to the calling procedure. REFARG operands
are preserved across procedure calls and branches.

Example: (refarg 1)

VALARG

The value field of a VALARG operand is interpreted as an index into an imaginary 0-
based array of all arguments to the current procedure.

VALARG operands may be used as both lvalues and rvalues. Use of a VALARG as an
lvalue causes no observable effects in the calling procedure. VALARG operands are preserved

Page 4 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

across procedure calls and branches.

Example: (valarg 3)

STRING

The value field of a STRING operand is interpreted as a double-quoted (”) string and
the number of characters between the opening and closing ” characters must not exceed 63.

STRING operands may not be used as values of any kind. Preservation of STRING
operands across procedure calls and branches is inherently undefined.

Example: (string ”This is a string.”)

NONE

The value field of a NONE operand is ignored but must not be empty.

Use of a NONE operand as a value of any kind will cause undefined results.

Example: (none none)

Valid Operand Types

Each instruction has restrictions on which type(s) each of its operands may have. For
purposes of brevity, we define the following classes of operand types:

ADDRESSABLE : LOCAL | GLOB | INDR | REFARG | VALARG

LVALUE : ADDRESSABLE | TEMP

RVALUE : LVALUE | CONS

and the following classes of instructions:

BINARY : ADD | SUB | MULT | DIV | EQ | GT | LT | GE | LE | NE

UNARY : NEG | NOT | ASSIGN

CONDITIONAL : BREQ | BRGT | BRLT | BRGE | BRLE | BRNE

NOARG : HALT | ENDPROC | RETURN

Page 5 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

Instruction op1 op2 op3
BINARY RVALUE RVALUE LVALUE
UNARY RVALUE NONE LVALUE
LABEL LABEL NONE NONE
BR NONE NONE LABEL
CONDITIONAL RVALUE RVALUE LABEL
NOARG NONE NONE NONE
ARGS CONS NONE NONE
REFOUT ADDRESSABLE NONE NONE
VALOUT RVALUE, LABEL NONE NONE
CALL GLOB NONE NONE
PROCENTRY GLOB CONS CONS
BOUND RVALUE RVALUE RVALUE
ADDR ADDRESSABLE NONE LVALUE
GLOBAL GLOB CONS NONE
STRING STRING LABEL NONE
COMMENT STRING NONE NONE

Lexical Format of Instructions

Instructions, as indicated above, consist of an operation followed by zero to three operands.
Operations and operand types are not case-sensitive. Operand values are case-sensitive and
case-preserving if the operand is of type GLOB or STRING. The instructions may be pre-
sented to the back-end in any of the following formats:

operation op1:op1 op2:op2 op3:op3

operation op1 op1 op2 op2 op3 op3

operation op1, op1 op2, op2 op3, op3

operation (op1, op1) (op2, op2) (op3, op3)

operation (op1 op1) (op2 op2) (op3 op3)

(operation (op1 op1) (op2 op2) (op3 op3))

It is likely that other formats are also acceptable. Please note that if an instruction requires
fewer than three operands, and the required operands are left-justified (for example, op1 and
op2 are required but op3 is not), then only the required operands need be included. If the
operands required are not left-justified, then one or more NONE operands must be used as
placeholders.

Page 6 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

Detailed Discussion of Selected Instructions

Some instructions are not easily described in a single line. This section presents full
descriptions of the GLOBAL, and STRING instructions, and a detailed discussion of the
procedure calling conventions.

The STRING and GLOBAL Instructions

These two instructions are special declarations. Simply put, you must place one such
declaration at some place in your instruction stream for each string and global you use,
respectively. These declarations need not be placed before a use of the indicated variable;
the back-end will reorder them as necessary. The STRING instruction is used to associate
a string with a label. The label is an ordinary integer label like all others you use in your
instruction stream. The purpose of the STRING instruction is to allow you to pass strings to
procedures, such as WriteString. When you do so, however, you must pass the label rather
than the string itself. You should not worry about producing duplicate STRING instructions;
the back-end will cause duplicates to be eliminated. The purpose of the GLOBAL instruction
is similar; it defines the size of the global variable (for example, an array may require 30
storage units). If you do not indicate a size, the default is 1 word (integer). If you use a
global variable without placing a GLOBAL instruction corresponding to it in the instruction
stream, or if you declare the same GLOBAL twice, the generated assembly code may be
incorrect.

Procedure Calling Conventions

Procedure calls require coordination between different pieces of code in several areas
of the compiler. Therefore, the intermediate language’s calling conventions are explicitly
stated here. Failure to adhere to these calling conventions may cause erroneous or undefined
behaviour by the back-end. Note that there is no requirement here for the front-end to know
the sizes of data objects, except as a multiple of the word size or INTEGER type. This
allows output from the front-end to be used by one or more different back-ends without
modification. If you choose to implement data types of sizes which are not integer multiples
of the machine’s native word size, you will have to modify the back-end and possibly provide
additional instructions.

∙ The Caller
The caller must do three things:

1. Issue an ARGS instruction. This operation tells the back-end how many word-
sized arguments will be passed.

2. Issue one VALOUT or REFOUT instruction for each argument being passed.
Note that the following are equivalent:

REFOUT (op1)

Page 7 of 8 Please go on to the next page. . .

CS 460/660 3AC Generation

ADDR (op1) (none none) (temp i)

VALOUT (temp i)

Nevertheless, you must ALWAYS use REFOUT to pass arguments by reference.

3. Issue a CALL instruction with the procedure name as op1.

As a special case, you may pass labels, but only by value and only when they refer to
string literals.

∙ The Callee
The callee need only mark its beginning and end, as follows:

– The beginning should be a PROCENTRY instruction with the following operands:

∗ op1: The name of the procedure

∗ op2: The number of word-size parameters it takes

∗ op3: The number of word-sized locals.

– The end should be an ENDPROC, which takes no arguments.

∙ Boilerplate calling code:

PROCENTRY (glob FooFunc) (cons 2) (cons 3)

... code for FooFunc ...

ENDPROC

... code for main ...

ARGS (cons 2)

VALOUT (temp 6)

REFOUT (glob variable)

CALL (glob FooFunc)

... code for main ...

Note that the back-end will consider all procedures to be in the global scope. Therefore,
if procedures are nested in thus in different scopes, they must not have the same name.

Page 8 of 8 End of Handout

