
Cross-Platform Low Level Language (CPL3)
Language Reference

Brian Westphal • University of Nevada, Reno – 2003

Comments are denoted by a leading pound sign (#) and continue until the newline character is reached.

Programs are defined by a global variable declaration block followed by at least one function definition. The
main function must be called .func_main.

Global Variables are defined with the following syntax:
vars:(type1)var1,(type2)var2,…,(type3)var3;

Global Functions are defined with the following syntax:
.func_functionname
{

return:(type);
params:(type1)var1,(type2)var2,…,(type3)var3;
vars:(type1)var1,(type2)var2,…,(type3)var3;

statements
}

If a defined function does not return a value, then return:void; should be used (parentheses are not needed
as void is not considered to be a formal type). See User Functions for more information.

Local Functions are defined in the same way as global functions, except .func_ should be replaced with
.localfunc_.

Variable Types are nearly always enclosed in parentheses; the only exception is with the func_types:
directive. The following basic types are available: label, integer, floating-point, character, and various types of
pointers (the data of which is an address).

Labels are defined with a leading dot (.) followed by a name consisting of letters and/or underscore
characters. They are used only for function names and formal labels (labels cannot be stored as values
of variables). Much like with C/C++, labels are only accessible within their current block.

Integers are defined with the following syntax:
1. (subtypeibitdepth)numericvalue
2. (subtypeibitdepth)var

The subtype is optional and may be denoted by a ‘u’ or ‘s’ character (meaning unsigned or signed). The
bit-depth is also optional and may be denoted by an integer value of 8, 16, 32, or 64.

The bit-depth describes the size of the resulting integer variable.

Syntax Opt 1 If a value is specified (this cannot be done for a declaration) then an integer value should be
supplied. An integer value may contain a leading sign (+/-) followed by any number of decimal digits
(0-9). See Scientific Notation for more information.

Syntax Opt 2 A variable name can only be specified in declaration mode. See Variable Names for more
information.

(i32)1

Floating-Point Numbers are defined in the same way as integers except that the i should be replaced
with an f. Floating-point bit-depths may be either 32 or 64. It is important to note that most modern
architectures do not support unsigned floating-point numbers. A floating-point value may contain a
leading sign (+/-) followed by any number of decimal digits (0-9), followed by a dot (.), followed by
any number of decimal digits. See Scientific Notation and Variable Names for more information.

(f32)-3.1415927

Characters are defined similarly to integers and floating-point numbers:
1. (cbitdepth)hex
2. (c)’literal’

The bit-depth is optional for Syntax Option 1 and not allowed for Syntax Option 2 (Syntax Option 2
assumes a bit-depth of 8).

Syntax Opt 1 If a hex value is specified, it represents the ASCII (for 8-bit) or UNICODE (for 16-bit) value of
a character. Hex values are defined with at least one hexadecimal digit (0-F).

Syntax Opt 2 If a character literal is specified it is enclosed in single-quotes.

(c16)0020
(c)’X’

Pointers are available for integer, floating-point, and character types. A void pointer type is also
available. Pointers are defined by appending an asterisk to a type specification. The value of a pointer
is an address. A literal address may be defined using the following syntax:

(type*)aaddress
The address portion can be any mix of hexadecimal digits (0-9) and colons (:) used for readability.

(c8*)a0000:B800
(void*)a0000:A000

Arrays are defined much as they are in C/C++. Square brackets enclose the size of an array during declaration
and the index of an element during use. Unlike C/C++ however, only single dimensional arrays are allowed
and all sizes must be literal numeric values. All indices must be either literal numeric values or variables.

vars:(c)$string[1024];

MOV $string[$index] (c8)0000;

Strings are also defined similarly to the way they are defined in C/C++. Double-quotes enclose a string which
may contain the escape sequence \” used to denote a literal double-quote. Strings in CPL3 are valid only when
used as the second parameter of a MOV function. One should note that the space for strings is not automatically
allocated, except in temporary space, so in the following example the variable $string must have memory
allocated for it prior to the MOV function call.

MOV $string “Hello, World!”;

Scientific Notation may be used to define integer and floating-point literal values. Integer scientific notation
may include a leading sign (+/-) and always includes any number of decimal digits (0-9) followed by an E,
followed by an additional optional sign (+/-), followed by any number of decimal digits. This format represents

the typical form of scientific notation as is used in C/C++. Floating-point scientific notation is also similar in
this way.

(i32)10E6
(f32)1.0E-6

Variable Names are defined with leading dollar signs ($) followed by an underscore or letter, optionally
followed by any number of underscores, letters, or digits.

Statements may include the following if..else structures, while and do..while loops, built-in function calls, user
function calls, and directives.

if...else structures are defined with the following syntax:
if condition
{

…
}
else
{

…
}

The else portion is optional. The condition is made up of a variable or literal followed by a relational
operator, followed by another variable or literal. See Relational Operators for more information.

if $lhs < $rhs
{

RET $lhs;
}

while loops are defined with the following syntax:
wloop condition
{

…
}

The condition has the same format as with if...else structures.

wloop $index < (ui32)10
{

ADD $index $index (ui32)1;
}

do...while loops are defined similarly to while loops except that wloop is replaced with dwloop.

See Function Calls for more information on built-in function calls and User Functions for more
information on user function calls and directives.

Relational Operators include the following: <, <=, ==, >=, >, and != (as defined in C/C++).

Function Calls. CPL3 supports the following built-in function calls: ADD, SUB, MULT, DIV, REM, NEG, EQ,
GT, GE, LT, LE, NE, AND, NOT, NOR, OR, XOR, SHL, SHR, BAND, BOR, BXOR, RET, CALL, JMP, JEZ, MOV,
HALT, ALLOC, and DEALLOC.

ADD Adds two values together and stores the result in a specified location.
CPL3 ADD dest source source;
C++ dest = source + source;

SUB Subtracts one value from another and stores the result in a specified location.
CPL3 SUB dest source source;
C++ dest = source - source;

MULT Multiplies two values together and stores the result in a specified location.
CPL3 MULT dest source source;
C++ dest = source * source;

DIV Divides one value over another and stores the result in a specified location.
CPL3 DIV dest source source;
C++ dest = source / source;

MOD Calculates the integer remainder of dividing one value over another and stores the
result in a specified location.
CPL3 MOD dest source source;
C++ dest = source % source;

NEG Multiplies a value by negative one and stores the result in a specified location.
CPL3 NEG dest source;
C++ dest = -1 * source;

EQ Determines the equality of two values and stores the result in a specified location.
CPL3 EQ dest source source;
C++ dest = source == source;

GT Determines if the one value is greater than another and stores the result in a
specified location.
CPL3 GT dest source source;
C++ dest = source > source;

GE Determines if the one value is greater than or equal to another and stores the result
in a specified location.
CPL3 GE dest source source;
C++ dest = source >= source;

LT Determines if the one value is less than another and stores the result in a specified
location.
CPL3 LT dest source source;
C++ dest = source < source;

LE Determines if the one value is less than or equal to another and stores the result in a
specified location.
CPL3 LE dest source source;
C++ dest = source <= source;

NE Determines the inequality of two values and stores the result in a specified location.
CPL3 NE dest source source;
C++ dest = source != source;

AND Determines the result of the logical and operation on two values and stores the
result in a specified location.
CPL3 AND dest source source;
C++ dest = source && source;

NOT Determines the result of the logical not operation on a values and stores the result in
a specified location.
CPL3 NOT dest source;
C++ dest = !source;

NOR Determines the result of the logical nor (not-or) operation on two values and stores
the result in a specified location.
CPL3 NOR dest source source;

C++ dest = !(source || source);
OR Determines the result of the logical or operation on two values and stores the result

in a specified location.
CPL3 OR dest source source;
C++ dest = source || source;

XOR Determines the result of the logical xor (exclusive or) operation on two values and
stores the result in a specified location.
CPL3 XOR dest source source;
C++ dest = (source || source) && !(source && source);

SHL Shifts a value to the left by a specified number of bits and stores the result in a
specified location.
CPL3 SHL dest source source;
C++ dest = source << source;

SHR Shifts a value to the right by a specified number of bits and stores the result in a
specified location.
CPL3 SHR dest source source;
C++ dest = source >> source;

BAND Determines the result of the bitwise and operation on two values and stores the
result in a specified location.
CPL3 BAND dest source source;
C++ dest = source & source;

BOR Determines the result of the bitwise or operation on two values and stores the result
in a specified location.
CPL3 BOR dest source source;
C++ dest = source | source;

BXOR Determines the result of the bitwise xor (exclusive or) operation on two values and
stores the result in a specified location.
CPL3 BXOR dest source source;
C++ dest = source ^ source;

RET Returns a value from a function. See User Functions for more information.
CPL3 RET source;
C++ return source;

CALL Calls a specified user function. See User Functions for more information.
CPL3 CALL source;
C++ A standard function call.

JMP Jumps to a specified label.
CPL3 JMP label;
C++ goto label;

JEZ Jumps to a specified label if the specified value is zero.
CPL3 JEZ label source;
C++ if (source == 0) goto label;

MOV Copies one value into a specified location.
CPL3 MOV dest source;
C++ dest = source;

HALT Exits the program with a zero status.
CPL3 HALT;
C++ exit (0); //requires stdlib.h

ALLOC Allocates a block of memory and returns the address.
CPL3 ALLOC dest source source;
C++ dest = calloc (source, source); //requires stdlib.h

DEALLOC Deallocates a block of memory.
CPL3 DEALLOC source;

C++ free (source); //requires stdlib.h

User Functions are defined as mentioned in Functions, however there are a few specific items to mention when
defining and calling user functions:

1. Nested functions are permitted.
2. Recursion is also permitted.
3. Before calling a function, the parameters must be setup (even if no parameters will be used).

Setting up parameters can be done using the func_types: directive. The syntax for this directive is
as follows:

func_types:((returntype):type1,type2,…,type3);
This will setup an appropriate number of parameter variables named $1, $2, …, $3 as well as a return
value named $return. If the function does not return a value then void should be used as the return
type (without being enclosed in parentheses). If the function does not take parameters, the parameter
type list should be marked as void. These variables are valid until one statement (or the end of the
block) after the function call. That is, if the return value of the function must be stored, it should be
stored immediately after calling the function.

func_types:((i32):i32);
MOV $1 (i32)5;
CALL .func_factorial;
MOV $tmp $return;

Additional Features include a size of operator, address of (&) operator, and dereference (>) operator. Following
are examples of use for each:

MOV $tmp sizeof(i);
MOV $tmpaddr &$tmp;
MOV $tmp >$tmpaddr;

The following covers several examples of CPL3 code (infused with C++ code for reference).

Factorial:
vars:;

#int factorial (int number)
.func_factorial
{

return:(i);
params:(i)$number;
vars:(i)$temp;

#if (number <= 1) return 1;
if $number <= (i)1
{

RET (i)1;
}

#return number * factorial (number – 1);
SUB $temp $number (i)1;
func_types:((i):i);
MOV $1 $temp;
CALL .func_factorial;

MULT $temp $number $return;
RET $temp;

}

#int main ()
.func_main
{

return:(i);
params:;
vars:;

#return factorial (5);
func_types:((i):i);
MOV $1 (i)5;
CALL .func_factorial;
RET $return;

}

Factorial with Local Functions:
vars:;

#int main ()
.func_main
{

return:(i);
params:;
vars:;

#int factorial (int number)
.localfunc_factorial
{

return:(i);
params:(i)$number;
vars:(i)$temp;

#if (number <= 1) return 1;
if $number <= (i)1
{

RET (i)1;
}

#return number * factorial (number – 1);
SUB $temp $number (i)1;
func_types:((i):i);
MOV $1 $temp;
CALL .func_factorial;
MULT $temp $number $return;
RET $temp;

}

#return factorial (5);
func_types:((i):i);
MOV $1 (i)5;
CALL .func_factorial;

RET $return;
}

Insertion Sort (function only):
vars:;

#void sort (int* data, int* sorted, int length)
#int max = -1;
#int maxindex;
.func_insertionsort
{

return:void;
params:(i*)$data,(i*)$sorted,(i)$length;
vars:(i)$index,(i)$subindex,(i)$max,(i)$maxindex,(i*)$tempOf

fset;

#for (int index = 0; index < length; index++)
MOV $index (i)0;
wloop $index < $length
{

#int max = -1;
MOV $max (i)-1;

#for (int subindex = 0; subindex < length; subindex++)
MOV $subindex (i)0;
wloop $subindex < $length
{

#if (data[subindex] > max)
ADD $tempOffset $data $subindex;
if >$tempOffset > $max
{

#max = data[subindex];
MOV $max >$tempOffset;
#maxindex = subindex;
MOV $maxindex $subindex;

}

ADD $subindex $subindex (i)1;
}

#sorted[index] = max;
ADD $tempOffset $sorted $index;
MOV >$tempOffset $max;
#data[maxindex] = -1;
ADD $tempOffset $data $maxindex;
MOV >$tempOffset (i)-1;

ADD $index $index (i)1;
}

}

Annotations
04/13/2003 – Pointer chains can now be used. Following is an example:

.func_main
{

return:(i);
params:(i)$argv,(c**)$argv;
vars:;

...
}

