Chapter 1

Introduction

Chapter 1 - Introdtction

m Def: Compiler --

Oaprogram that trandlates a program
written in alanguage like Pascal, C,
PL/I, FORTRAN, or COBOL into
machine language.

Chapter 1 Introduction 2

1. Machine Language, Assembly
Language, High-level Languages
= Machine Language -- the native language of

the computer on which the program is run.

O It consists of bit strings which are interpreted
by the mechanism inside the computer. These
strings looked like:

000110000110101

0 Inthe ealy days people programmed in this,

and wrote out these bit strings.

Chapter 1 - Introdtetion

» Thefirg translators were assemblers.

0 They trandated from

LR 35

O to the bit string onthe previous slide.

O It did this by looking up the mnemonic (LR in
thiscase) in atableand puled out its
corresponding opcode, fourd the binary
representations of 3 and 5and assembled them
into the instruction

0 This representation is known as assembly
language

Chapter 1 Introduction 4

= Languages like Pascal, C, PL/I, FORTRAN
and COBOL are known as high-level
languages.

0 They have the property that a single statement
such as
X:=Y +2Z,

corresponds to more than ore machine
language instruction.

Chapter 1-- Introdution

= The previous gatement could be translated to:

L 3Y
A 3Z
ST 3X

= Themain virtue of high-level languagesis
productivity.
O It has been estimated that the average
programmer can produce 10 lines of debugged
code in aworking day

0 and that number is independent of the language.

Chapter 1 -- Introduction 6

2. Terminology

sour ce language -- the high level language
that the compiler accepts asitsinput.

sour ce code -- the source language program
that isfed to the compiler.

obj ect language -- the particular machine
language that the compiler generates.

obj ect code -- the output of the compiler

Chapter 1 - Introdtction 7

= object file -- the file to which odbject codeis
normally written to (in external storage).
Thisis sometimes cdled and object module

= target machine -- the cmputer on which the
program isto be run.

= cross-compiler -- a compiler that generates
code for amachine that is different from the
machine onwhich the cmpiler runs.

Chapter 1 Introduction 8

3. Compil ers and Interpreters
= A compiler trandates; an interpreter executes.

= the main advantage of interpretersisthe
immediacy of the response.

= the main disadvantage is the slow speed of
exeaution.

Chapter 1 - Introdtetion 9

4. The Environment of the Compiler

= Theobjed file produced by the compiler is
normally nat ready to run.

= |tisnot practica for a compiler to have &
hand all the various methods for computing
things like square roats, logs, and other
functions

» def: run-timelibrary -- a wlledion o objed
modules for computing besic functions.
0 math functions.
0 charader and string i/o

= Another step isneeded...the linker

0 al the required run-time library services are
identified and pu with the user’ s object with
the linker

0 The linker normally generates an exeautable
program

Chapter 1 - Introdtction 11

i Chapter 1 - Introdction 10
Source i ol Object | | .1 || Executable
code code code

Run-time User’s
libr object
- modules
Figure 1.1

Chapter 1 -- Introduction 12

= Another step isaloader,

0 Places the executable into memory and
executesiit.

0 if the system uses shared libraries, also does
linking onthefly.

= The study of linkers and loadersis beyond the
scope of thisclass.

Chapter 1 -- Introdiction 13

5. Phases of a Compil er

= Lexical Analysis-- breaking up the source
code into meaningful units (tokens)
0 Thisis covered in Chapter 2

= Syntactic Analysis-- determines the structure
of the program and o all the individual
statements.

0 Thisis covered in Chapters 3 and 4

Chapter 1 - Introdiction 14

= Intermediate Code Generation -- An internal
representation of the program that refleds the
information uncovered by the parser. 3-address
code, or 4-tuples
0 Thisis covered in Chapter 5

= Optimization -- Code Enhancement
0 Thisis covered in Chapter 6

Chapter 1 -- Introdiction 15

= Object Code Generation -- trandate the
optimized intermediate code into the target
language.
0 Thisis covered in Chapter 7

Chapter 1 - Introdiction 16

6. Passes, Front End, Back End

» Pass-- A passconsists of readingaversion d
the program from afile, and writing a new
version of it to an autput file.

0 A Pass normally comprises more than ore
phase, but the number of passes and phases
varies.

0 Single pass compil ers tend to be fastest, but
there are reasons for more than ore pass
(memory and language issues)

Chapter 1 - Introdtction 17

= Front End -- the phases of the compiler that
are heavily dependent upon the source
language and have little or no concern with the
target machine.
0 (Lexical Analysis, Parsing, Intermediate Code
Generation, and some Optimizations)

= Back End -- those phases that are machine

dependent.
0 (some Optimization, and Code Generation)

Chapter 1 -- Introduction 18

7. System Suppart

= Symbal Table

0 the central repository of information about the
names (identifiers) creaed bythe programmer.

= Error Handling
0 thisimplements the cmpiler’ sresponse to
errorsin the mde it is compili ng.
0 The error handler must tell the user as much
about the error as possible.

Chapter 1 -- Introdiction 19

8. Writing a Compil er

= When you start with abrand new piece of
hardware, youwrite a @mpiler in assembler

0 At first you have no choice

= Once an adequate high level languageis
available, there ae more dtractive options
available
0 like writing the compiler for the language you
want in the language you have.

Chapter 1 - Introdiction 20

= Boot Strapping -- writing a minimal compiler,
then writing the full compiler in that minimal
language.
0 Write aminimal C compiler in assembler.
0 Write aC compiler in minimal C.

= Toolsfor helping with compiler writing

0 LEX (flex)
0 YACC (bison)

Chapter 1 -- Introdiction 21

9. Retargetable Compil er

= Oneway isto take alvantage of the break
between the front end and the badk end

0 Front end for the language
0 Badk end for the machine

= Examples:
0 P-code -- UCSD P-system
0 GNU Compilers(gce, g+, 77, ...)

Chapter 1 - Introdiction 22

10. Summary

= We have seen aquick overall picture of what a
compiler does, what goesinto it, and how it is
organized. Detailson all these will appear in
subsequent chapters.

= Probably the one sure way to learn about
compilersin depth isto write one. So, ...

Chapter 1 - Introdtction 23

