
Chapter 1 -- Introduction 1

Chapter 1

Introduction

Chapter 1 -- Introduction 2

■ Def: Compiler --

◆a program that translates a program
written in a language like Pascal, C,
PL/I, FORTRAN, or COBOL into
machine language.

Chapter 1 -- Introduction 3

1. Machine Language, Assembly
Language, High-level Languages
■ Machine Language -- the native language of

the computer on which the program is run.
◆ It consists of bit strings which are interpreted

by the mechanism inside the computer. These
strings looked like:

0001100000110101

◆ In the early days people programmed in this,
and wrote out these bit strings.

Chapter 1 -- Introduction 4

■ The first translators were assemblers.
◆ They translated from

LR 3,5

◆ to the bit string on the previous slide.

◆ It did this by looking up the mnemonic (LR in
this case) in a table and pulled out its
corresponding opcode, found the binary
representations of 3 and 5 and assembled them
into the instruction

◆ This representation is known as assembly
language

Chapter 1 -- Introduction 5

■ Languages like Pascal, C, PL/I, FORTRAN
and COBOL are known as high-level
languages.

◆ They have the property that a single statement
such as

X := Y + Z;

corresponds to more than one machine
language instruction.

Chapter 1 -- Introduction 6

■ The previous statement could be translated to:
L 3,Y
A 3,Z
ST 3,X

■ The main virtue of high-level languages is
productivity.
◆ It has been estimated that the average

programmer can produce 10 lines of debugged
code in a working day

◆ and that number is independent of the language.

Chapter 1 -- Introduction 7

2. Terminology

■ source language -- the high level language
that the compiler accepts as its input.

■ source code -- the source language program
that is fed to the compiler.

■ object language -- the particular machine
language that the compiler generates.

■ object code -- the output of the compiler

Chapter 1 -- Introduction 8

■ object file -- the file to which object code is
normally written to (in external storage).
This is sometimes called and object module

■ target machine -- the computer on which the
program is to be run.

■ cross-compiler -- a compiler that generates
code for a machine that is different from the
machine on which the compiler runs.

Chapter 1 -- Introduction 9

3. Compilers and Interpreters

■ A compiler translates; an interpreter executes.

■ the main advantage of interpreters is the
immediacy of the response.

■ the main disadvantage is the slow speed of
execution.

Chapter 1 -- Introduction 10

4. The Environment of the Compiler

■ The object file produced by the compiler is
normally not ready to run.

■ It is not practical for a compiler to have at
hand all the various methods for computing
things like square roots, logs, and other
functions

Chapter 1 -- Introduction 11

■ def: run-time library -- a collection of object
modules for computing basic functions.
◆ math functions.

◆ character and string i/o

■ Another step is needed…the linker
◆ all the required run-time library services are

identified and put with the user’s object with
the linker

◆ The linker normally generates an executable
program

Chapter 1 -- Introduction 12

Chapter 1 -- Introduction 13

■ Another step is a loader,
◆ Places the executable into memory and

executes it.

◆ if the system uses shared libraries, also does
linking on the fly.

■ The study of linkers and loaders is beyond the
scope of this class.

Chapter 1 -- Introduction 14

5. Phases of a Compiler

■ Lexical Analysis -- breaking up the source
code into meaningful units (tokens)
◆ This is covered in Chapter 2

■ Syntactic Analysis -- determines the structure
of the program and of all the individual
statements.
◆ This is covered in Chapters 3 and 4

Chapter 1 -- Introduction 15

■ Intermediate Code Generation -- An internal
representation of the program that reflects the
information uncovered by the parser. 3-address
code, or 4-tuples
◆ This is covered in Chapter 5

■ Optimization -- Code Enhancement
◆ This is covered in Chapter 6

Chapter 1 -- Introduction 16

■ Object Code Generation -- translate the
optimized intermediate code into the target
language.
◆ This is covered in Chapter 7

Chapter 1 -- Introduction 17

6. Passes, Front End, Back End

■ Pass -- A pass consists of reading a version of
the program from a file, and writing a new
version of it to an output file.
◆ A Pass normally comprises more than one

phase, but the number of passes and phases
varies.

◆ Single pass compilers tend to be fastest, but
there are reasons for more than one pass
(memory and language issues)

Chapter 1 -- Introduction 18

■ Front End -- the phases of the compiler that
are heavily dependent upon the source
language and have little or no concern with the
target machine.
◆ (Lexical Analysis, Parsing, Intermediate Code

Generation, and some Optimizations)

■ Back End -- those phases that are machine
dependent.
◆ (some Optimization, and Code Generation)

Chapter 1 -- Introduction 19

7. System Support

■ Symbol Table
◆ the central repository of information about the

names (identifiers) created by the programmer.

■ Error Handling
◆ this implements the compiler’s response to

errors in the code it is compili ng.

◆ The error handler must tell the user as much
about the error as possible.

Chapter 1 -- Introduction 20

8. Writing a Compiler

■ When you start with a brand new piece of
hardware, you write a compiler in assembler
◆ At first you have no choice.

■ Once an adequate high level language is
available, there are more attractive options
available
◆ li ke writing the compiler for the language you

want in the language you have.

Chapter 1 -- Introduction 21

■ Boot Strapping -- writing a minimal compiler,
then writing the full compiler in that minimal
language.
◆ Write a minimal C compiler in assembler.

◆ Write a C compiler in minimal C.

■ Tools for helping with compiler writing
◆ LEX (flex)

◆ YACC (bison)

Chapter 1 -- Introduction 22

9. Retargetable Compiler

■ One way is to take advantage of the break
between the front end and the back end
◆ Front end for the language

◆ Back end for the machine

■ Examples:
◆ P-code -- UCSD P-system

◆ GNU Compilers (gcc, g++, g77, …)

Chapter 1 -- Introduction 23

10. Summary

■ We have seen a quick overall picture of what a
compiler does, what goes into it, and how it is
organized. Details on all these will appear in
subsequent chapters.

■ Probably the one sure way to learn about
compilers in depth is to write one. So, …

