
Chapter 2

Lexical Analysis

Chapter 2 -- Lexical Analysis 2

■ The basic task of the lexical analyzer is to
scan the source-code strings into small,
meaningful units, that is, into the tokens we
talked about in Chapter 1.

Chapter 2 -- Lexical Analysis 3

■ For example, given the statement
◆ if distance >= rate*(end_time - start_time) then

distance := maxdist;

■ The lexical analyzer must be able to isolate the
◆ keywords { if, then}

◆ identifiers { distance, rate, …}

◆ operators { * , -, :=}

◆ relational operator { >=}

◆ parenthesis

◆ closing semicolon

Chapter 2 -- Lexical Analysis 4

■ The Lexical Analyzer may take care of a few
other things as well, unless they are handled by
a preprocessor:
◆ Removal of Comments

◆ Case Conversion

◆ Removal of White Space

◆ Interpretation of Compiler Directives

◆ Communication with the Symbol Table

◆ Preparation of Output Listing

Chapter 2 -- Lexical Analysis 5

1. Tokens and Lexemes

■ In our example we had five identifiers. But for
parsing purposes all identifiers are the same.
On the other hand, it will clearly be important,
eventually, to be able to distinguish among
them.

■ Similarly, for parsing purposes, one relational
operator is the same as any other.

Chapter 2 -- Lexical Analysis 6

■ We handle this distinction as follows
◆ Def: token -- The generic type passed to the

parser is the token

◆ Def: lexeme -- The specific instance of the
generic type is the lexeme.

■ The Lexical Analyzer must:
◆ isolate tokens and take note of particular

lexemes.

◆ when an id is found it must confer with the
symbol table handler, and its actions depend
upon whether we are declaring or using a
variable.

Chapter 2 -- Lexical Analysis 7

2. Buffering

■ In principle, the analyzer goes through the
source string a character at a time;

■ In practice, it must be able to access substrings
of the source.

■ Hence the source is normally read into a buffer

■ The scanner needs two subscripts to note
places in the buffer
◆ lexeme start & current position

Chapter 2 -- Lexical Analysis 8

3. Finite State Automata

■ The compiler writer defines tokens in the
language by means of regular expressions.

■ Informally a regular expression is a compact
notation that indicates what characters may go
together into lexemes belonging to that
particular token and how they go together.

■ We will see regular expressions in 2.6

Chapter 2 -- Lexical Analysis 9

■ The lexical analyzer is best implemented as a
finite state machine or a finite state automaton.

■ Informally a Finite-State Automaton is a
system that has a finite set of states with rules
for making transitions between states.

■ The goal now is to explain these two things in
detail and bridge the gap from the first to the
second.

Chapter 2 -- Lexical Analysis 10

3.1 State Diagrams and State Tables

■ Def: State Diagram -- is a directed graph
where the vertices in the graph represent states,
and the edges indicate transitions between the
states.

■ Let’s consider a vending machine that sells
candy bars for 25 cents, and it takes nickels,
dimes, and quarters.

Chapter 2 -- Lexical Analysis 11

■ Figure 2.1 -- pg.. 21

Chapter 2 -- Lexical Analysis 12

■ Def: State Table -- is a table with states down
the left side, inputs across the top, and
row/column values indicate the current
state/input and what state to go to.

■ Table -- pg.. 22

Chapter 2 -- Lexical Analysis 13

3.2 Formal Definition

■ Def: FSA -- A FSA, M consists of
◆ a finite set of input symbols Σ (the input

alphabet)

◆ a finite set of states Q

◆ A starting state q0 (which is an element of Q)

◆ A set of accepting states F (a subset of Q)
(these are sometimes called final states)

◆ A state-transition function N: (Q x Σ) -> Q

■ M = (Σ, Q, q0 F, N)

Chapter 2 -- Lexical Analysis 14

■ Example 1:
◆ Given Machine Construct Table:

Chapter 2 -- Lexical Analysis 15

Chapter 2 -- Lexical Analysis 16

■ Example 1 (cont.):
◆ State 1 is the Starting State. This is shown by

the arrow in the Machine, and the fact that it is
the first state in the table.

◆ States 3 and 4 are the accepting states. This is
shown by the double circles in the machine, and
the fact that they are underlined in the table.

Chapter 2 -- Lexical Analysis 17

■ Example 2:
◆ Given Table, Construct Machine:

Chapter 2 -- Lexical Analysis 18

Chapter 2 -- Lexical Analysis 19

■ Example 2 (cont.):
◆ This machine shows that it is entirely possible

to have unreachable states in an automaton.

◆ These states can be removed without affecting
the automaton.

Chapter 2 -- Lexical Analysis 20

3.3 Acceptance

■ We use FSA's for recognizing tokens

■ A character string is recognized (or accepted)
by FSA M if, when the last character has been
read, M is in one of the accepting states.
◆ If we pass through an accepting state, but end in

a non-accepting state, the string is NOT
accepted.

Chapter 2 -- Lexical Analysis 21

■ Def: language -- A language is any set of
strings.

■ Def: a language over an alphabet Σ is any set
of strings made up only of the characters from
Σ

■ Def: L(M) -- the language accepted by M is the
set of all strings over Σ that are accepted by M

Chapter 2 -- Lexical Analysis 22

■ if we have an FSA for every token, then the
language accepted by that FSA is the set of all
lexemes embraced by that token.

■ Def: equivalent --
M1 == M2 iff L(M1) = L(M2).

Chapter 2 -- Lexical Analysis 23

■ A FSA can be easily programmed if the state
table is stored in memory as a two-dimensional
array.

table : array[1..nstates,1..ninputs] of byte;

■ Given an input string w, the code would look
something like this:
state := 1;
for i:=1 to length(w) do

begin
col:= char_to_col(w[i]);
state:= table[state, col]
end;

Chapter 2 -- Lexical Analysis 24

4. Nondeterministic Finite-State
Automata
■ So far, the behavior of our FSAs has always

been predictable. But there is another type of
FSA in which the state transitions are not
predictable.

■ In these machines, the state transition function
is of the form:

N: Q x (Σ U {ε}) -> P(Q)
◆ Note: some authors use a Greek lambda, λ or Λ

Chapter 2 -- Lexical Analysis 25

■ This means two things:
◆ There can be transitions without input.

(That is why the ε is in the domain)

◆ Input can transition to a number of states.
(That is the significance of the power set in the
codomain)

■ Since this makes the behavior unpredictable,
we call it a nondeterministic FSA
◆ So now we have DFAs and NFAs (or NDFAs)

■ a string is accepted if there is at least 1 path
from the start state to an accepting state.

Chapter 2 -- Lexical Analysis 26

■ Example: Given Machine
Trace the input = baabab

Chapter 2 -- Lexical Analysis 27

Chapter 2 -- Lexical Analysis 28

4.1 ε-Transitions

■ a spontaneous transition without input.

■ Example: Trace input aaba

Chapter 2 -- Lexical Analysis 29

Chapter 2 -- Lexical Analysis 30

4.2 Equivalence

■ For every non-deterministic machine M we can
construct an equivalent deterministic machine
M'

■ Therefore, why study N-FSA?
◆ 1.Theory.

◆ 2.Tokens -> Reg.Expr. -> N-FSA -> D-FSA

Chapter 2 -- Lexical Analysis 31

5. The Subset Construction

■ Constructing an equivalent DFA from a given
NFA hinges on the fact that transitions
between state sets are deterministic even if the
transitions between states are not.

■ Acceptance states of the subset machine are
those subsets that contain at least 1 accepting
state.

Chapter 2 -- Lexical Analysis 32

■ Generic brute force construction is impractical.
◆ As the number of states in M increases, the

number of states in M' increases drastically
(n vs. 2n). If we have a NFA with 20 states
|P(Q)| is something over a milli on.

◆ This also leads to the creation of many
unreachable states. (which can be omitted)

■ The trick is to only create subset states as you
need them.

Chapter 2 -- Lexical Analysis 33

■ Example:
◆ Given: NFA

◆ Build DFA out of NFA (Table & Graph pg. 34)

Chapter 2 -- Lexical Analysis 34

Chapter 2 -- Lexical Analysis 35

6. Regular Expressions

■ Lexical Analysis and Syntactic Analysis are
typically run off of tables. These tables are
large and laborious to build. Therefore, we use
a program to build the tables.

■ But there are two major problems:
◆ How do we represent a token for the table

generating program?

◆ How does the program convert this into the
corresponding FSA?

Chapter 2 -- Lexical Analysis 36

■ Tokens are described using regular
expressions.

■ Informally a regular expression of an alphabet
Σ is a combination of characters from Σ and
certain operators indicating concatenation,
selection, or repetition.
◆ b* -- 0 or more b's (Kleene Star)

◆ b+ -- 1 or more b's

◆ | -- a|b -- choice

Chapter 2 -- Lexical Analysis 37

■ Def: Regular Expression:
◆ any character in Σ is an RE

◆ ε is an RE

◆ if R and S are RE's so are
RS, R|S, R*, R+, S*, S+.

■ Only expressions formed by these rules are
regular.

■ L(RS) = {vw| v in L(R), w in L(S)}.
-- concatenation.

Chapter 2 -- Lexical Analysis 38

■ REs can be used to describe only a limited
variety of languages, but they are powerful
enough to be used to define tokens.

■ One limitation -- many languages put length
limitations on their tokens, RE's have no
means of enforcing such limitations.

Chapter 2 -- Lexical Analysis 39

7. Regular Expressions and Finite-
State Machines

■ This machine recognizes ε

Chapter 2 -- Lexical Analysis 40

■ This machine will recognize a character a in Σ

Chapter 2 -- Lexical Analysis 41

■ To recognize RS connect the machines as
shown

Chapter 2 -- Lexical Analysis 42

■ To recognize R|S, connect the machines this
way.

Chapter 2 -- Lexical Analysis 43

■ R*

◆ Begin with R+

◆ Now add the zero or more to go from R+ to R*

Chapter 2 -- Lexical Analysis 44

8. The Pumping Lemma

■ Given a machine with n states

■ and a string w in L(M) has length n

■ w must go through n+1 states, therefore
something is repeated (call it y)

■ therefore w = xyz and y can be looped.

■ so xy*z is also part of the language.

Chapter 2 -- Lexical Analysis 45

■ The goal of the pumping lemma is to show that
there are some languages that are not regular.

■ For Example:
◆ LR = { wcwR | w in (0,1)*}

◆ LP -- matching parens
✦ this is handled in syntax analysis.

Chapter 2 -- Lexical Analysis 46

9. Application to Lexical Analysis

■ Now you are ready to put it all together:
◆ Given 2 tokens' regular expression

✦ X = aa*(b|c)

✦ Y = (b|c)c*

◆ Construct the NDFA

◆ Construct the DFA

Chapter 2 -- Lexical Analysis 47

Chapter 2 -- Lexical Analysis 48

9.1 Recognizing Tokens

■ The scanner must ignore white space (except
to note the end of a token)
◆ Add white space transition from Start state to

Start state.

■ When you enter an accept state, announce it
◆ (therefore you cannot pass through accept

states)

◆ The string may be the entire program.

Chapter 2 -- Lexical Analysis 49

■ One accept state for each token, so we know
what we found.

■ Identifier/Keyword differences
◆ Accept everything as an identifier, and then

look up keywords in table. Or pre-load the
Symbol Table with Keywords.

■ When you read an identifier, you read the next
character in order to tell i t was the end. You
need to back up (put it back on the input
stream).

Chapter 2 -- Lexical Analysis 50

■ Comments
◆ Recognize the beginning of comment, and then

ignore everything until the end of comment.

◆ What if there are multiple types of comments?

■ Character Strings
◆ single or double quotes?

Chapter 2 -- Lexical Analysis 51

10. Summary

■ Lesk & Schmidt -- "LEX - a lexical analyzer
generator" in Unix Programmers Manual
Vol. 2

■ Mason & Brown -- Lex & Yacc -- O'Reil ly &
Associates.

