Chapter 2

Lexicd Analysis

m Thebasic task of the lexicd analyzer isto
scan the source-code strings into small,
meaningful units, that is, into the tokens we
talked about in Chapter 1.

Chapter 2 - Lexical Andysis 2

= For example, given the statement

0 if distance >= rate*(end_time - start_time) then
distance := maxdist;

= Thelexical analyzer must be &le to isolate the
0 keywords {if, then}
0 identifiers{ distance, rate, ...}
0 operators{*, -, :=}
0 relational operator {>=}
0 parenthesis
0 closing semicolon

Chapter 2 - Lexical Andysis 3

= TheLexicd Analyzer may take cae of afew
other things as well, unless they are handled by
apreprocessor:
0 Removal of Comments
0 Case Conversion
0 Removal of White Space
O Interpretation Compiler Diredives
0 Communication with the Symbal Table
0 Preparation d Output Listing

Chapter 2~ Lexica Andlysis 4

1. Tokens and Lexemes

= In ou example we had five identifiers. But for
parsing puposes al identifiers are the same.
On the other hand, it will clealy be important,
eventually, to be aleto dstinguish among
them.

= Similarly, for parsing purposes, one relational
operator isthe same & any other.

Chapter 2~ Lexica Andlysis 5

= We handle this distinction as follows
0 Def: token -- The generic type passed to the
parser is the token
0 Def: lexeme -- The spedfic instance of the
generic type isthe lexeme.

» TheLexicad Analyzer must:

0 isolate tokens and take note of particular
lexemes.

0 when an id is foundit must confer with the
symbal table handler, and its actions depend
upon whether we ae dedaring or usinga
variable.

Chapter 2 -- Lexical Andysis 6

2. Buffering

In principle, the analyzer goes through the
source string a character at atime;

In pradice, it must be ale to accesssubstrings
of the source.

= Hencethe sourceis normally read into a buffer

The scanner needs two subscripts to note
placesin the buffer
0 lexeme start & current paosition

Chapter 2~ Lexica Andlysis 7

3. Finite State Automata

= The compiler writer defines tokensin the
language by means of regular expressions.

= Informally aregular expression is a mmpact
notation that indicates what charaders may go
together into lexemes belonging to that
particular token and how they go together.

= Wewill seeregular expressionsin 2.6

Chapter 2~ Lexica Andlysis 8

= Thelexical analyzer isbest implemented asa
finite state machine or afinite state aitomaton.

= Informally a Finite-State Automaton isa
system that has afinite set of states with rules
for making transitions between states.

= Thegoal now isto explain these two thingsin
detail and tridge the gap from the first to the
seaond.

Chapter 2 -- Lexical Andysis 9

3.1 State Diagrams and State Tables

= Def: State Diagram -- isadirected graph
where the verticesin the graph represent states,
and the edges indicate transitions between the
states.

= Let'sconsider avending machine that sells
candy barsfor 25 cents, and it takes nickels,
dimes, and querters.

Chapter 2~ Lexica Andlysis 10

s
Figure 2.1

Chapter 2~ Lexica Andlysis 11

n Def: State Table -- is atable with states down
the | eft side, inputs across the top, and
row/column values indicate the aurrent
state/input and what state to go to.

= Table-- pg.. 22
Current Inputs
state Nickel Dime Quarter Select
0 1 2 5 0
1 2 3 6 1
2 3 4 6 2
3 4 5 6 3 Next state
4 5 6 6 4
5 6 6 6 0*
6 6 6 6 o*

Chapter 2 -- Lexical Andysis 12

3.2 Formal Definition

n Def: FSA -- A FSA, M consists of
0 afinite set of input symbols X (the input
alphabet)
0 afinite set of states Q
0 A starting state g, (which is an element of Q)

0 A st of acepting states F (asubset of Q)
(these ae sometimes cdled final states)

0 A state-transition functionN: (Q x %) -> Q
s M=(5Q,q,F, N)

Chapter 2~ Lexica Andlysis

= Example 1
0 Given Madine Construct Table:

Figure 2.3

Chapter 2~ Lexica Andlysis

Current | Inputs
state a b ¢
1 2 1 -3
2 4 2
3 3040
4 ko3 9

Chapter 2 -- Lexical Andysis

= Example 1 (cont.):
0 State 1 is the Starting State. Thisis shown by
the arrow in the Machine, and the fact that it is
the first statein the table.

0 States 3 and 4are the acceting states. Thisis
shown by the dowble drclesin the machine, and
the fact that they are underlined in the table.

Chapter 2~ Lexica Andlysis 16

= Example 2:
0 Given Table, Construct Machine:

Current | Inputs
state b

O o0 DD =
Ol = W b DN
W N =
T DN = WO

Chapter 2~ Lexica Andlysis 17

Figure 2.4

Chapter 2 -- Lexical Andysis 18

= Example 2 (cont.):

0 This macdhine shows that it is entirely possible
to have unreadable states in an automaton.

0 These states can be removed withou affecting
the automaton.

Chapter 2~ Lexica Andlysis 19

3.3 Acceptance
= Weuse FSA'sfor recognizing tokens

= A character string is recognized (or accepted)
by FSA M if, when the |ast character has been
read, M isin one of the accepting states.
0 If we pass throughan aacepting state, but end in
anonraaepting state, the string isNOT
aaepted.

Chapter 2~ Lexica Andlysis 20

= Def: |anguage -- A language is any set of
strings.

= Def: alanguage over an alphabet 2 is any set
of strings made up only of the characters from

b2

» Def: L(M) -- the language accepted by M isthe
set of all strings over Z that are accepted by M

Chapter 2 -- Lexical Andysis 21

n if we have an FSA for every token, then the
language acepted by that FSA isthe set of all
lexemes embraced by that token.

= Def: equivaent --
M1==M2iff L(M1) =L(M2).

Chapter 2~ Lexica Andlysis 22

= A FSA can be easily programmed if the state
tableis stored in memory as a two-dimensional
array.
table : array[1l..nstates,1..ninputs] of byte;

= Given an input stringw, the code would look
something like this:
state := 1,
for i:=1 to length(w) do
begin
col:= char_to_col(w[i]);
state:= table[state, col]
end;

Chapter 2~ Lexica Andlysis 23

4. Nondeterministic Finite-State
Automata

» SO far, the behavior of our FSAs has always
been predictable. But there is another type of
FSA in which the state transitions are not
predictable.

= |n these machines, the state transition function
is of the form:
N: Qx (ZU{e}) > P(Q)

0 Note: some authors use a Greek lambda, A or A

Chapter 2 -- Lexical Andysis 24

= This means two things:

0 There can be transiti ons without input.
(That iswhy the € isin the domain)

O Input can transition to a number of states.
(That isthe significance of the power set in the
codomain)

= Since this makes the behavior unpredictable,
we @l it anondeterministic FSA

0 So now we have DFAs and NFAs (or NDFASs)

m adtringisaccepted if thereisat least 1 path
from the start state to an accepting state.

Chapter 2~ Lexica Andlysis 25

= Example: Given Machine
Trace the input = bagbab

a,b

Chapter 2~ Lexica Andlysis 26

Figure 2.10

Chapter 2 -- Lexical Andysis 27

4.1 e-Transitions

= aspontaneous transition without input.
= Example: Trace input aaba

Figure 2.12

Chapter 2~ Lexica Andlysis 28

Figure 2.13

Chapter 2~ Lexica Andlysis 29

4.2 Equivalence

= For every non-deterministic machine M we can
construct an equivalent deterministic machine
M

» Therefore, why study N-FSA?

0 1.Theory.
0 2.Tokens -> Reg.Expr. -> N-FSA -> D-FSA

Chapter 2 -- Lexical Andysis 30

5. The Subset Construction

= Constructing an equivalent DFA from a given
NFA hinges on the fact that transitions
between state sets are deterministic even if the
transitions between states are not.

= Acceptance states of the subset machine ae
those subsets that contain at least 1 accepting
State.

Chapter 2~ Lexica Andlysis 31

= Generic brute force mnstruction isimpradicd.
0 Asthe number of statesin M increases, the
number of statesin M' increases drasticdly
(nvs. 2. If we have aNFA with 20 states
|P(Q)| is something over amilli on.

0 This also leals to the credion of many
unreachabl e states. (which can be omitted)

m Thetrick isto only create subset states as you
need them.

Chapter 2~ Lexica Andlysis 32

= Example:

0 Given: NFA
a,b

Figure 2.8

0 Build DFA out of NFA (Table & Graph pg 34)

Chapter 2 -- Lexical Andysis 33

Figure 2.15

Chapter 2~ Lexica Andlysis 34

6. Regular Expressons

= Lexical Analysisand Syntadic Analysisare
typicaly run off of tables. These tables are
large and laborious to buld. Therefore, we use
aprogram to buld the tables.
= But there ae two major problems:
0 How do we represent atoken for the table
generating program?
0 How does the program convert this into the
corresponding FSA?

Chapter 2~ Lexica Andlysis 35

= Tokens are described using regular
expressions.

= Informally aregular expression o an alphabet
> isa combination of charadersfrom X and
certain operators indicating concatenation,
selection, or repetition.
0 b" -- 0 or more b's (Kleene Star)
0 b*-- 1 or more b's
0| -- ab-- choice

Chapter 2 -- Lexical Andysis 36

= Def: Regular Expression:
0 any character in 2 isan RE

oeisanRE

Dif RandSare RE'sso are
RS, RIS, R, R", S, S*.

= Only expressions formed by these rules are
regular.

= L(RS) = {vw| vin L(R), win L(S)}.
-- concatenation.

Chapter 2~ Lexica Andlysis 37

= REscan be used to describe only alimited
variety of languages, but they are powerful
enough to be used to define tokens.

= One limitation -- many languages put length

limitations on their tokens, RE's have no
means of enforcing such limitations.

Chapter 2~ Lexica Andlysis 38

7. Regular Expressons and Finite-
State Machines

= Thismachine recognizese

e h®
Ay

Figure 2.17(a)

Chapter 2 -- Lexical Andysis 39

= This machine will recognize a haracter ain

Oﬂ- @

Figure 2.17(b)

Chapter 2~ Lexica Andlysis 40

= To recognize RS conned the machines as
shown

R)
-0 M Me @
r —(O—= Mg

Figure 2.17(c)

Chapter 2~ Lexica Andlysis a1

= Torewognize R[S, conned the machines this
way.

0 Mg G

D Ms QG
Figure 2.17(d)

Chapter 2 -- Lexical Andysis 42

s R

0 Begin with R* {)
O Mp O—<

Figure 2.17(e)

0 Now add the zero or moreto go from R* to R

Figure 2.17(f)

Chapter 2~ Lexica Andlysis 43

8. The Pumping Lemma

Given amachine with nstates

and astring win L(M) haslength n

w must go through n+ 1 states, therefore
somethingis repeated (cal it y)
therefore w = xyz and y can be looped.
so xy'zis also part of the language.

Chapter 2 - Lexical Analysis 44

The goal of the pumpinglemmaisto show that
there ae some languages that are not regular.

For Example:
0Lg={wewR|win(0,1)"}
0 Lp -- matching parens

o thisis handled in syntax analysis.

Chapter 2 -- Lexical Andysis 45

9. Applicationto Lexical Analysis

= Now you arerealy to put it al together:

0 Given 2tokens regular expression
o X = a&(blc)
oY = (blc)c*

0 Construct the NDFA

0 Construct the DFA

Chapter 2~ Lexica Andlysis

Figure 2.20

Chapter 2~ Lexica Andlysis

9.1 Remgnizing Tokens

= The scanner must ignore white space (except
to nae the end o atoken)

0 Add white spacetransition from Start state to
Start state.

= When you enter an accept state, announceit

0 (therefore you cannot pass through accept
states)

0 The string may be the entire program.

Chapter 2 -- Lexical Andysis

= One acept state for ead token, so we know
what we found.

= |dentifier/Keyword dfferences
0 Accept everything as an identifier, and then
look up keywordsin table. Or pre-load the
Symbal Table with Keywords.

= When youread an identifier, you read the next
charader in order to tell it wasthe end. You
need to back up (put it badk on the input
stream).

Chapter 2~ Lexica Andlysis 49

= Comments

0 Remgnizethe beginning d comment, and then
ignore everything wntil the end of comment.

0 What if there are multi ple types of comments?

» Character Strings
0 single or doube quaes?

Chapter 2~ Lexica Andlysis 50

10. Summary

m Lesk & Schmidt -- "LEX - alexicd analyzer
generator” in Unix Programmers Manual
Vol. 2

= Mason & Brown -- Lex & Yacc-- O'Rellly &
Associates.

Chapter 2 -- Lexical Andysis 51

