Chapter 2

Lexicd Analysis

Chapter 2~ Lexica Andlysis 1

» The basic task of the lexicd analyzer isto
scan the source-code strings into small,
meaningful units, that is, into the tokens we
talked abou in Chapter 1.

Chapter 2 -- Lexical Analysis 2

= For example, given the statement

0 if distance >= rate*(end_time - start_time) then
distance := maxdist;

= Thelexical analyzer must be &le to isolate the
0 keywords {if, then}
O identifiers{ distance, rate, ...}
0 operators{*, -, :=
O relational operator { >=}
0 parenthesis
0 closing semicolon

Chapter 2~ Lexica Andlysis 3

= The Lexicd Analyzer may take cae of afew
other things as well, unless they are handled by
a preprocessor:
0 Removal of Comments
0 Case Conversion
0 Removal of White Space
O Interpretation o Compiler Diredives
0 Communication with the Symbad Table
0 Preparation d Output Listing

Chapter 2 -- Lexical Analysis 4

1. Tokens and Lexemes

= [n our example we had five identifiers. But for
parsing puposes al identifiers are the same.
On the other hand, it will clealy beimportant,
eventually, to be aleto dstinguish among
them.

= Similarly, for parsing purposes, one relational
operator isthe same & any other.

Chapter 2 -- Lexical Andysis 5

= We handle this digtinction as follows

0 Def: token -- The generic type passed to the
parser is the token

0 Def: lexeme -- The spedfic instance of the
generic type isthe lexeme.

= The Lexicd Analyzer must:

0 isolate tokens and take note of particular
lexemes.

0 when anid is foundit must confer with the
symbal table handler, and its actions depend
upon whether we ae dedaring or usinga
variable.

Chapter 2 - Lexicdl Andlysis 6

2. Buffering

In principle, the analyzer goes through the
source string a character at atime;

In pradice, it must be ale to accesssubstrings
of the source.

= Hencethe sourceis normally read into a buffer

The scanner needs two subscripts to note
placesin the buffer
0 lexeme start & current paosition

Chapter 2~ Lexica Andlysis 7

3. Finite State Automata

= The ompiler writer defines tokensin the
language by means of regular expressions.

= [nformally aregular expression is a mmpact
notation that indicates what charaders may go
together into lexemes belonging to that
particular token and how they go together.

= We will seeregular expressionsin 26

Chapter 2 -- Lexical Analysis 8

» Thelexical analyzer isbest implemented asa
finite state machine or afinite state aitomaton.

= Informally a Finite-State Automaton isa
system that has afinite set of states with rules
for making transitions between states.

= Thegoal now isto explain these two thingsin
detail and kridge the gap from the first to the
seaond.

Chapter 2~ Lexica Andlysis 9

3.1 State Diagrams and State Tables

» Def: State Diagram -- isadirected graph
where the verticesin the graph represent states,
and the edges indicate transitions between the
states.

Let’'s consider avending machine that sells
candy barsfor 25 cents, and it takes nickels,
dimes, and querters.

Chapter 2 -- Lexical Analysis 10

G
Figure 2.1

Chapter 2 -- Lexical Andysis 11

Def: State Table -- is atable with states down
the left side, inputs across the top, and
row/column values indicate the aurrent
state/input and what state to go to.

= Table-- pg.. 22
Current Inputs
state Nickel Dime Quarter Select
0 1 7 5 0
1 2 3 6 1
2 3 4 6 2
3 4 5 6 3 Next state
4 5 6 6 4
5 6 6 6 0*
6 6 6 6 o*
Chapter 2 - Lexical Analysis 12

3.2 Formal Definition

n Def: FSA -- A FSA, M consists of
0 afinite set of input symbols X (the input
alphabet)
0 afinite set of states Q
0 A starting state g, (which is an element of Q)

0 A st of acepting states F (asubset of Q)
(these ae sometimes cdled final states)

0 A state-transition functionN: (Q x %) -> Q
s M=(5Q,q,F, N)

= Example 1:
0 Given Madine Construct Table:

Figure 2.3

Chapter 2 -- Lexical Analysis 14

= Example 1 (cont.):
O State 1 is the Starting State. Thisis shown by
the arrow in the Machine, and the fact that it is
thefirst statein the table.

0 States 3 and 4are the acceting states. Thisis
shown by the dowble drclesin the machine, and
the fact that they are underlined in the table.

Chapter 2 -- Lexical Analysis 16

. Current | Inputs
state a b ¢
1 2 23
2 4. 2
3 3 40
= 4 T3 22
m = Example 2:
= 0 Given Table, Construct Machine:
Current | Inputs
state e b ¢
1 2 1.3
2 4. 2
3 3 4 2
R 4 132
g 5 94 5

Chapter 2 -- Lexical Andysis 17

Figure 2.4

Chapter 2 - Lexical Andlysis 18

= Example 2 (cont.):

0 This macdhine shows that it is entirely possible
to have unreadable states in an automaton.

0 These states can be removed withou affecting
the automaton.

Chapter 2~ Lexica Andlysis 19

3.3 Acceptance
= Weuse FSA'sfor recognizing tokens

» A character string isrecognized (or accepted)
by FSA M if, when the last character has been
read, M isin one of the accepting states.

0 If we pass throughan aacepting state, but end in
anonaaepting state, the string isNOT
aacepted.

Chapter 2 -- Lexical Analysis 20

» Def: language -- A languege is any set of
strings.

= Def: alanguage over an alphabet 2 isany set
of strings made up only of the characters from

>

» Def: L(M) -- thelanguage accepted by M isthe
set of all strings over X that are accepted by M

Chapter 2~ Lexica Andlysis 21

= if we have an FSA for every token, then the
language a@epted by that FSA is the set of all
lexemes embraced by that token.

= Def: equivaent --
M1==M2iff L(M1) = L(M2).

Chapter 2 -- Lexical Analysis 22

= A FSA can be easily programmed if the state
tableis stored in memory as a two-dimensional
array.
table : array[1..nstates,1..ninputs] of byte;

= Given aninput string w, the ade would look
something like this:
state := 1;
for i:=1 to length(w) do
begin
col:= char_to_col(w[i]);
state:= table[state, col]
end;

Chapter 2 -- Lexical Andysis 23

4. Nondeterministic Finite-State
Automata

= So far, the behavior of our FSAs has always
been predictable. But there is another type of
FSA in which the state transitions are not
predictable.

= |n these machines, the state transition function
is of theform:
N: Q x (Z U {g}) -> P(Q)

0 Note: some authors use a Greek lambda, A or A

Chapter 2 - Lexicdl Andlysis 24

= This means two things:

0 There can be transiti ons without input.
(That iswhy the € isin the domain)

O Input can transition to a number of states.
(That isthe significance of the power set in the
codomain)

= Since this makes the behavior unpredictable,
we @l it anondeterministic FSA

0 So now we have DFAs and NFAs (or NDFASs)

m adtringisaccepted if thereisat least 1 path
from the start state to an accepting state.

Chapter 2~ Lexica Andlysis 25

= Example: Given Machine
Trace the input = bagbab

Chapter 2 -- Lexical Analysis 26

Chapter 2~ Lexica Andlysis 27

4.1 e-Transitions

= aspontaneous transition without input.
= Example: Trace input aaba

Figure 2.12

Chapter 2 -- Lexical Analysis 28

Figure 2.13

Chapter 2 -- Lexical Andysis 29

4.2 Equivaence

= For every non-deterministic machine M we can
construct an equivalent deterministic machine
M

= Therefore, why study N-FSA?

0 1.Theory.
0 2.Tokens -> Reg.Expr. -> N-FSA -> D-FSA

Chapter 2 - Lexicdl Andlysis 30

5. The Subset Construction

= Constructing an equivalent DFA from a given
NFA hinges on the fact that transitions
between state sets are deterministic even if the
transitions between states are not.

= Acceptance states of the subset machine ae
those subsets that contain at least 1 accepting
State.

Chapter 2~ Lexica Andlysis 31

= Generic brute force @nstruction isimpradica.
0 Asthe number of statesin M increases, the
number of statesin M' increases drasticdly
(nvs. 2. If we have a NFA with 20 states
|P(Q)| is something over amilli on.

0 This also leas to the creaion of many
unreachable states. (which can be omitted)

= Thetrick isto only create subset states asyou
need them.

Chapter 2 -- Lexical Analysis 32

= Example:
0 Given: NFA

Chapter 2~ Lexica Andlysis 33

Figure 2.15

Chapter 2 -- Lexical Analysis 34

6. Regular Expressons

» Lexical Analysisand Syntadic Analysisare
typicdly run off of tables. These tables are
large and laborious to build. Therefore, we use
aprogram to buld the tables.

= But there ae two major problems:

0 How do we represent a token for the table
generating program?

0 How does the program convert this into the
corresponding FSA?

Chapter 2 -- Lexical Andysis 35

= Tokens are described using regular
expressions.

= Informally aregular expression o an a phabet
> isa combination of charaders from Z and
certain operators indicating concatenation,
selection, or repetition.
0 b" -- 0 or more b's (Kleene Star)
0 b*-- 1 or more b's
0| -- ab -- choice

Chapter 2 - Lexicdl Andlysis 36

= Def: Regular Expression:
0 any character in 2 isan RE

oeisanRE

Dif RandSare RE'sso are
RS, RIS, R, R", S, S*.

= Only expressions formed by these rules are
regular.

= L(RS) = {vw| vin L(R), win L(S)}.
-- concatenation.

Chapter 2~ Lexica Andlysis 37

= REscan be used to describe only alimited
variety of languages, but they are powerful
enough to be used to define tokens.

= One limitation -- many languages put length
limitations on their tokens, RE's have no
means of enforcing such limitations.

Chapter 2 -- Lexical Analysis 38

7. Regular Expressons and Finite-
State Machines

= This machinerecognizese

O € @

Figure 2.17(a)

Chapter 2~ Lexica Andlysis 39

= Thismachine will recognize a taracter ain

oﬂ- @

Figure 2.17(b)

Chapter 2 -- Lexical Analysis 40

= To recognize RS conned the machines as
shown

S —
—+D Me @
Mg —(O—= Mg

Figure 2.17(c)

Chapter 2 -- Lexical Andysis 41

= Toreoognize R|S, conned the machines this
way.

O Mg G

D Ms Q
Figure 2.17(d)

Chapter 2 - Lexicdl Andlysis 42

s R
0 Begin with R* {)
O Mp O—<

Figure 2.17(e)

0 Now add the zero or moreto go from R* to R

Figure 2.17(f)

Chapter 2~ Lexica Andlysis 43

8. The Pumping Lemma

= Given amachine with nstates

= and astring win L(M) haslength n

= W must go through n+1 states, therefore
somethingis repeated (call it y)

» therefore w = xyz and y can be looped.

m S0 Xy'zisalso part of the language.

Chapter 2 -- Lexical Analysis 44

= The goal of the pumping lemmais to show that
there ae some languages that are not regular.

= For Example:
OLg={wewR|win(0,1)"}
0 Lp -- matching parens
o thisis handled in syntax analysis.

Chapter 2~ Lexica Andlysis 45

9. Applicationto Lexical Anaysis

= Now you are realy to put it all together:
0 Given 2tokens' regular expression
o X = a&(blc)
oY = (blc)c*
0 Construct the NDFA
0 Construct the DFA

Chapter 2 -- Lexical Analysis 46

Figure 2.20

Chapter 2 -- Lexical Andysis 47

9.1 Remgnizing Tokens

= The scanner must ignore white space (except
to naethe end o atoken)

0 Add white spacetransition from Start state to
Start state.

= When you enter an accept state, announceit

O (therefore you cannot pass through accept
states)

0 The string may be the entire program.

Chapter 2 - Lexicdl Andlysis 48

= One acept state for ead token, so we know
what we found.

= |dentifier/Keyword dfferences
0 Accept everything as an identifier, and then
look up keywordsin table. Or pre-load the
Symbal Table with Keywords.

= When youread an identifier, you read the next
charader in order to tell it wasthe end. You
need to back up (put it badk on the input
stream).

Chapter 2~ Lexica Andlysis 49

= Comments

0 Remgnizethe beginning d comment, and then

ignore everything wuntil the end of comment.
0 What if there are multi ple types of comments?

» Character Strings
o single or doubde quaes?

Chapter 2 -- Lexical Analysis

50

10. Summary

= Lesk & Schmidt -- "LEX - alexicd analyzer
generator" in Unix Programmers Manual
Vol. 2

= Mason & Brown -- Lex & Yacc-- O'Reilly &
Associates.

Chapter 2~ Lexica Andlysis 51

