Chapter 3

Syntadic Analysis|

= The Syntactic Analyzer, or Parser, isthe heat
of thefront end o the compiler.

» The parser's main task isto analyzethe
structure of the program and its component
statements.

= Our principleresource in Parser Design isthe
theory of Formal Languages.

= Wewill use and study context free grammars
(They cannot handle definition before use, but
we @n get around this other ways)

Chapter 3 - Syntactic Analysis |

1. Grammars

= Informal Definition -- afinite set of rules for
generating an infinite set of sentences.

n Def: Generative Grammar: this type of
grammar builds a sentence in a series of steps,
refining each step, to go from an abstract to a
concrete sentence.

Chapter 3 - Syntactic Andysis |

m Def: Parse Tree atreethat representsthe
analysig/structure of a sentence (following the
refinement steps used by a generative grammar
to buld it.

(sentence)
(noun phrase) (verb phrase)

(article) noun) (verb) (noup phrase)

(article) (noun)

the dog gnawed the _ bone
Figure 3.1
Chapter 3 - Syntactic Analysis | 4
» Def: Productions/Re-Write Rules: rules that

explain how to refine the steps of a generative
grammar.

m Def: Terminals: the a¢ual wordsin the
language.

» Def: Non-Terminas: Symbals not in the
language, but part of the refinement process

Chapter 3 Syntactic Andysis | 5

1.1 Syntax and Semantics

= Syntax dealswith the way a sentenceis put
together.

= Semantics deals with what the sentence means.

= There ae sentences that are grammatically
corred that do not make ay sense.

Chapter 3 -~ Syntactic Analysis | 6

= There ae thingsthat make sense that are not
grammatically correct.

= The compiler will check for syntadical
corredness, yet it isthe programmers
responsibility (usually during debugging) to
make sure it makes sense.

Chapter 3 Syntactic Andysis |

1.2 Grammars. Formal Definition

= G=(T,N,SR)
0T =set of Terminas
0 N =set of Non-Terminals
0 S= Start Symbad (element of N)
0 R = Set of Rewrite Rules (o -> 3)

Chapter 3 Syntactic Andysis |

= In your rewrite rules, if a isasingle non-
terminal the language is Context-Free

= BNF stands for Backus-Naur Form

0 = isused in placeof ->
0 in extended BNF { } isequivaent to ()*

Chapter 3 -~ Syntactic Analysis |

1.3 Parse Trees and Derivations

= al =>a2 -- string al is changed to string a2 via
1rewriterule.
= 0 ="=>f--0 ar morere-writerules

sentential forms -- the strings appeaing in
various derivation steps

L(G) ={ w|S=c"=>w}

Chapter 3 Syntactic Andysis | 10

1.4 Rightmost and L eftmost
Derivations

= Which non-terminal do you rewrite-expand
when there is more than one to choose from.

0 If you always select the rightmost NonTerminal
to expand, it is a Rightmost Derivation.

n Leftmost and Rightmost derivations are
unique.

Chapter 3 Syntactic Andysis | 11

» Def: any sentential form occurringin a
leftmost { rightmost} derivationis termed aleft

{right} sentential form.

= Some parsers construct leftmost derivations
and athersrightmost, so it isimportant to
understand the difference.

Chapter 3 -~ Syntactic Analysis | 12

= Given (pg 72) G = (T, N, S,R)
oT={i,+-*%/()}

oN={E}

0S=E

oR={
nE->E+E E->E-E
nE->E*E E->E/E
0E->(E) E->i}

m consider: (i+i)/(i-i)

Chapter 3 Syntactic Andysis |

Figure 3.4(c)

Chapter 3 Syntactic Andysis |

1.5 Ambiguows Grammars

= Given(pg 72) Gc =(T, N, S R)
oT={i,+-*%/()}

oN={E}

0S=E

oR={
nE->E+E E->E-E
tE->E*E E->E/E
0E->(E) E->i}

m consider:i+i*i

Chapter 3 -~ Syntactic Analysis |

E E
E * E E + E
=~ L
l\? ar E|7 i i ZI‘T * l|5'
(a) i i (b) i i
Figure 3.5
Chapter 3-- Syntactic Analysis | 16

= agrammar in which it is possible to parse even
one sentence in two or more different waysis
ambiguous

= A language for which no unambiguous
grammar existsis said to be inherently
ambiguous

Chapter 3 Syntactic Andysis | 17

» The previous exampleis "fixed" by
operator-precedencerules,

= Or re-write the grammar
DE->E+T|E-T|T
oT->T*F|T/F|F
oF->(E)]i

m Try: i+H*i

Chapter 3 -~ Syntactic Analysis | 18

|

E =r T
0y |T * FI‘
L i
e
i 1

Figure 3.6

Chapter 3 - Syntactic Analysis | 19

1.6 The Chomsky Hierarchy
(from the outside in)

= Type O grammars
0YyAd->yBd
0 these are cdl ed phrase structured, or
unrestricted grammars.

O It takes a Turing Madhine to recogrize these
types of langueges.

Chapter 3 Syntactic Andysis | 20

= Type 1l gammars
0YAd -> YB3
Bl=¢
0 therefore the sentential form never gets shorter.

0 Context Sensitive Grammars.

0 Remgnized by asimpler Turing machine
[linea bounded automata (Iba)]

Chapter 3 -~ Syntactic Analysis | 21

= Type 2 grammars:
o0A->(

0 Context Free Grammars

0 it takes a stack automaton to recognize CFG's
(FSA with temporary storage)

0 Nondeterministic Stadk Automaton cannot be
mapped to aDSA, but all the languages we will
look at will be DSA's

Chapter 3 Syntactic Andysis | 22

= Type 3 grammars
0 The Right Hand Side may be
o asingleterminal
o asingle non-terminal followed by asingle terminal.

0 Regular Grammars

0 Remgnized by FSA's

Chapter 3 Syntactic Andysis | 23

1.7 Some Context-Free and Non-
Context-Free Languages

= Example 1:
0S->SS
oo1E
o 10

0 Thisis Context Free

Chapter 3 -~ Syntactic Analysis | 24

= Example 2:
0 a'b"e”

» thisisNOT Context Free

Chapter 3 Syntactic Andysis |

= Example 3:
0S->aSBC
0S->abC
0CB->BC
0bB ->bb
obC->bc
ocC->cc

= ThisisaContext Sensitive Grammar

Chapter 3 Syntactic Andysis |

= L,={wew|win (T-c)*} isNOT aContext
Free Grammar.

Chapter 3 -~ Syntactic Analysis |

1.8 More abou the Chomsky

Hierarchy
= Thereisa doserelationship between the
productions in a CFG and the arresponding

computations to be carried ou by the program
being parsed.

= Thisisthe basis of Syntax-directed trandation
which we use to generate intermediate ade.

Chapter 3 Syntactic Andysis | 28

2. Top-Down parsers

= Thetop-down parser must start at the root of
the tree and determine, from the token stream,
how to grow the parse tree that resultsin the
observed tokens.

= Thisapproach runsinto several problems,
which we will now dea with.

Chapter 3 Syntactic Andysis | 29

2.1 Left Recursion

= Productions of the form (A->Aq) are left
rearsive.

= No Top-Down parser can handle left recursive
grammars.

= Therefore we must re-write the grammar and
eliminate both dred and indired left
reaursion.

Chapter 3 -~ Syntactic Analysis | 30

= How to eliminate Left Recursion (direct)

o Given:
oA ->Aaq, |Ag, |Agg] ...
0A->818,|5,] ...

O Introduce A

0A->8 A'|5,A|8,A]...

DA ->e|a, A'la, A |az A’ ..
0 Example:

0S->Salb

o Becomes

0S->bS

0S->¢|aS

Chapter 3 Syntactic Andysis | 31

= How toremove ALL Left Reaursion.
0 1.Sort the nonterminals

0 2.for each nonterminal
oif B->AB
oand A->y, |V, Vsl ...
othenB->y,B VB |YyB]...

0 3.After al done, remove immediate | eft
reaursion.

Chapter 3 Syntactic Andysis | 32

= Example:
0S->aA |b|cS
DA->Sd|e

becomes

0S->aA |b|cS
ODA->aAd|bd|cd|e

= note: the Sin A(3) -> but it is NOT left
reaursion

Chapter 3 -~ Syntactic Analysis | 33

2.2 Badktracking

= Oneway to carry out atop-down parseis
simply to have the parser try al applicable
productions exhaustively until it findsatree

= Thisis sometimes cdled the brute force
method.

» [tissimilar to depth-first search of agraph

= Tokens may have to be put back on the input
stream

Chapter 3 Syntactic Andysis | 34

= Given agrammar:
0S->ee|bAc|bAe
OA->d|cA

= A Backtracking algorithm will not work
properly with this grammar.

= Example: input string is bcde
0 When you see ab you select S-> bAc
0 Thisiswrongsince the last letter ise not ¢

Chapter 3 Syntactic Andysis | 35

= The solution is Left Factorization.
0 Def: Left Fadorization: -- create anew non-
terminal for auniqueright part of aleft
fadorable production.

= Left Fador the grammar given previoudly.
0S->ee|bAQ
oQ->cle
DA ->d|cA

Chapter 3 -~ Syntactic Analysis | 36

3. Recursive-Descent Parsing

= Thereisone function for each non-terminal
these functions try each production and call
other functions for non-terminals.

=» Thestadk isinvisible for CFG's

= The problem is-- anew grammar requires new

code.
i Chapter 3 -- Syntactic Analysis| 37
| = ese

= Example: » i token is () then
0S->bAlc . writeln ('S--> ¢
oA->dd|e . dse

= Code: . begin

= functionS: bodean; " error ('S);

= begin . S:=fase

s S:=true . end

= if token_is('b) then = end;{ S}

n if A then

. writeln('S--> bA")

] else

. S:=fase

i Chapter 3 -- Syntactic Analysis| 38

= function A: boolean = dse

= begin " A =fase

= A:=trug = end

= if token_is (‘d') then = ese

= begin n if token_is('€') then

s if Sthen " writeln (A --> €)

= iftoken is(d)then = €lse
. writeln(A -->dSd); = begin

= dse = eror (A);
- begin . A =fase
. error (AY; = end

. A :=fase = end{A}

end Chapter 3 -- Syntactic Analysis | 39

= Input String: bdcd

Chapter 3 - Syntactic Analysis| 40
= /S\ /S\
b A token_is A
. e -
d S d token_is S, token_is
| (d) / \ (d)
c q .
@ B R s
Figure 3.13
i Chapter 3 -~ Syntactic Analysis | 2

4. Predictive Parsers

= Thegoal of apredictive parser isto know
which characters on the input string trigger
which productionsin building the parse tree.

= Backtracking can be avoided if the parser had
the ability to look ahead in the grammar so as
to anticipate what terminal s are derivable (by
leftmost derivations) from each of the various
nonterminals on the RHS.

Chapter 3 -~ Syntactic Analysis | 42

m First (CX)
(you construct first() of RHS's)
0 1.if a beginswith aterminal X,
o then first(a) = x.
02ifa="=>¢,
o then first(a) includese.
0 3.First(e) = {¢}.
0 4.f a beginswith anonterminal A,
o then first(a) includes first(A) - {€}

Chapter 3 Syntactic Andysis | 43

= Follow(a)
0 1if A isthe start symbadl,
o then put the end marker $ into follow(A).

0 2.for each production with A ontheright hand
side

Q->xAy

o Lif y begins with aterminal g,
« gisinfollow(A).
0 2.elsefollow(A) includes first(y)-.
03ify =g oryisnulable(y ==>¢)
« then add follow(Q) to follow(A).

i Chapter 3 - Syntactic Analysis| 44
= Grammar:
DE->TQ
0Q->+TQ|-TQ|epslon
oT->FR
OR->*FR|/FR|epsilon
oF->(E)]|I

= Construction of First and Follow Sets:

Chapter 3 -~ Syntactic Analysis | 45

First(E) = First(T) = First(F) ={i,(}
First(Q) = {+,-.€}

First(R) = {*/,e}

Follow(E) ={$,)}

Follow(Q) = Follow(E) = {$,)}
Follow(T) = First(Q) - € + Follow(E)
{+1+0%

= Follow(R) = Follow(T)

» Follow(F) = First(R) - € + Follow(T)
{*v/} + {+v'1)1$}

Chapter 3 Syntactic Andysis | 46

= LL(1) Grammars

O In a predictive parser, Foll ow tell s us when to
use the gpsilon productions.

0 Def: LL(1) -- Left to Right Scan of the tokens,
Leftmost derivation, 1 token lookahead.

Chapter 3 Syntactic Andysis | a7

= For agrammar to be LL(1), we require that for
every pair of productions A -> aphalbeta
0 1 .First(alpha)-epsil on and First(beta)-epsilon
must be digoint.
0 2.if aphais nullable, then First(beta) and
Follow(A) must be disjoint.

o if rule Lisviolated, we may nat know which
right hand side to chocse

o if rule 2 isviolated, we may nat know when to
choose Beta or epsilon.

Chapter 3 -~ Syntactic Analysis | 48

4.1 A Predictive Recursive-Descent
Parser
= The book builds a predictive recursive-descent
parser for
DE->E+T|T
oT->T*F|F
oF->(E)|l

= First step is-- Remove Left Reaursion

Chapter 3 Syntactic Andysis | 49

4.2 Table-Driven Predictive Parsers

» Grammar
ODE->E+TI|E-T|T
oT->T*F|T/F|F
oF->(E)]|I

= Step 1 Eliminate Left Recursion.

Chapter 3 Syntactic Andysis | 50

= Grammar without left recursion

DE->TQ
0Q->+TQ|-TQ|epsilon
oT->FR
OR->*FR|/FR|epsilon
oF->(E)]|I

= |tiseasier to show you thetable, and how it is
used first, and to show how thetableis
constructed afterward.

Chapter 3 -~ Syntactic Analysis | 51

= Table

i 3 = * / () 8
E] TQ 7Q
Q +7Q | -TQ € €
T| FR FR
R € € +«FR | /[FR € €
/7 i (E)
Chapter 3 - Syntactic Andlysis| 52

= Driver Algorithm:
0 Push $ orto the stack
0 Put asimilar end marker on the end of the
string.
0 Push the start symbol onto the stack.

Chapter 3 Syntactic Andysis | 53

0 While (stack nat empty do)
0 Let x =top of stadk and a = incoming token.
olf xisinT (aterminal)
o if x ==athen pop x and goto next input token
else aror
o else (nonterminal)
if Table[x,a]
pop X
push Table[x,a] onto stadk in reverse order
else aror

m |tisasuccessul parseif the stack is empty and
theinputisused up

Chapter 3 -~ Syntactic Analysis | 54

s Example 1: (i+i)*i (pg 108)

il = e 2 / «)
El TQ e
Q +7Q | -TQ €
T| FR FR
R € € +FR | /[FR €
F i (E)
Chapter 3 Syntactic Andysis | 55
SE (i + i)«iS E—TQ E=TQ
$QT (i + i)«i$:
$QT (i + 1)+i8 T FR = FRQ
SQRF. (i + 0)+i$ F— (E) = (E)RQ
SQR)E((i + i)+
SQR)E 1+1) 1§ E—-TQ = (TQ)RQ
SQR)QT i+i)+if T—FR = (FRQ)RQ
SQR)QRF i+i)«i$ F—i = (iRQ)RQ
SQRIQRI 1+1)xi8 [pop and go to next token]
SQR)QR +i)=i$ R—e = (IQRQ
Chapter 3 Syntactic Andysis | 56
SQR)Q + i)xif Q- +7TQ = (I+TQ)RQ
SQR)QT+ +i)xi$ [pop and go to next token]
SQR)QT i)+iS T — FR = (i+FRQ)RQ
SQR)QRF i)+i$ Foi = (i+iRQ)RQ
SQR)QRi i)xi$ [pop and go to next token]
SQR)QR)=i$ R—e = (I+Q)RQ
SQR)Q)i Q—e = (+)RQ
SQR))=i$ [pop and go to next token]
SQR St R —+FR = (i+i)+FRQ
SQRFx *i$ [pop and go to next token]
SQRF i$ F —i = (i+i)+iRQ
$QRi $ [pop and go to next token]
SQR $ Roe = (i+)+iQ
$Q $ Q—e = (i+i)xi
b} $ [pop and go to next token]
Chapter 3 -~ Syntactic Analysis | 57

= Example 2: (i*) (pg 109)

~ (e ar = * / () $
BT TQ

Q +7Q | -TQ c €

T[FR FR

R € € +FR | /[FR € €

F i (E)

Chapter 3 - Syntactic Analysis| 58

Stack Input Production Derivation

SE (i%)8 E-TQ E=TQ

$QT (i=)$ T FR = FRQ

SQRF (ix)$ F — (B) = (E)RQ

SQR)E((ix)$ [pop and go to next token]

SQR)E ix)$ E—TQ = (IQ)RQ

SQR)QT i*)$ T - FR = (FRQ)RQ

SQR)QRF)8 e = (iRQ)RQ

SQR)QRI ix)$ [pop and go to next token]

SQR)QR 8 R— «FR = (i+FRQ)RQ

SQR)QRF*)8 [pop and go to next token]

SQR)QRF)8 x » *Error: no table entry for [F,)].

Chapter 3 - Syntactic Analysis| 59

4.3 Constructing the Predictive
Parser Table

= Go through al the productions.
X ->Bisyour typica production.
0 1.For al terminasain First(B), except €,
Table[X,a] = B.
02lf B=¢, orif gisinfirst(p) then For ALL ain
Follow(X), Table[X,a] =¢.
= S0, Construct First and Follow for all Left and
right hand sides.

Chapter 3 -~ Syntactic Analysis | 60

4.4 Conflicts

= A conflict occursif there ismore than 1 entry
in atable slot. This can sometimes be fixed by
Left Fadoring, ...

= If agrammar isLL (1) there will not be
multiple entries.

Chapter 3 Syntactic Andysis | 61

5. Summary

= Left Recursion

Left Fadorization

First (A)

Follow (A)

» Predictive Parsers (table driven)

Chapter 3 Syntactic Andysis | 62

