
Chapter 3

Syntactic Analysis I

Chapter 3 -- Syntactic Analysis I 2

■ The Syntactic Analyzer, or Parser, is the heart
of the front end of the compiler.

■ The parser's main task is to analyze the
structure of the program and its component
statements.

■ Our principle resource in Parser Design is the
theory of Formal Languages.

■ We will use and study context free grammars
(They cannot handle definition before use, but
we can get around this other ways)

Chapter 3 -- Syntactic Analysis I 3

1. Grammars

■ Informal Definition -- a finite set of rules for
generating an infinite set of sentences.

■ Def: Generative Grammar: this type of
grammar builds a sentence in a series of steps,
refining each step, to go from an abstract to a
concrete sentence.

Chapter 3 -- Syntactic Analysis I 4

■ Def: Parse Tree: a tree that represents the
analysis/structure of a sentence (following the
refinement steps used by a generative grammar
to build it.

Chapter 3 -- Syntactic Analysis I 5

■ Def: Productions/Re-Write Rules: rules that
explain how to refine the steps of a generative
grammar.

■ Def: Terminals: the actual words in the
language.

■ Def: Non-Terminals: Symbols not in the
language, but part of the refinement process.

Chapter 3 -- Syntactic Analysis I 6

1.1 Syntax and Semantics

■ Syntax deals with the way a sentence is put
together.

■ Semantics deals with what the sentence means.

■ There are sentences that are grammatically
correct that do not make any sense.

Chapter 3 -- Syntactic Analysis I 7

■ There are things that make sense that are not
grammatically correct.

■ The compiler will check for syntactical
correctness, yet it is the programmers
responsibility (usually during debugging) to
make sure it makes sense.

Chapter 3 -- Syntactic Analysis I 8

1.2 Grammars: Formal Definition

■ G = (T,N,S,R)
◆ T = set of Terminals

◆ N = set of Non-Terminals

◆ S = Start Symbol (element of N)

◆ R = Set of Rewrite Rules (α -> β)

Chapter 3 -- Syntactic Analysis I 9

■ In your rewrite rules, if α is a single non-
terminal the language is Context-Free.

■ BNF stands for Backus-Naur Form
◆ ::= is used in place of ->

◆ in extended BNF { } is equivalent to ()*

Chapter 3 -- Syntactic Analysis I 10

1.3 Parse Trees and Derivations

■ a1 => a2 -- string a1 is changed to string a2 via
1 rewrite rule.

■ α =*=> β -- 0 or more re-write rules

■ sentential forms -- the strings appearing in
various derivation steps

■ L(G) = { w | S =G
*=> w}

Chapter 3 -- Syntactic Analysis I 11

1.4 Rightmost and Leftmost
Derivations
■ Which non-terminal do you rewrite-expand

when there is more than one to choose from.
◆ If you always select the rightmost NonTerminal

to expand, it is a Rightmost Derivation.

■ Leftmost and Rightmost derivations are
unique.

Chapter 3 -- Syntactic Analysis I 12

■ Def: any sentential form occurring in a
leftmost { rightmost} derivation is termed a left
{ right} sentential form.

■ Some parsers construct leftmost derivations
and others rightmost, so it is important to
understand the difference.

Chapter 3 -- Syntactic Analysis I 13

■ Given (pg 72) GE = (T, N, S, R)
◆ T = { i, +, -, *, /, (,)} ,

◆ N = { E}

◆ S = E

◆ R = {
✦ E -> E + E E -> E - E

✦ E -> E * E E -> E / E

✦ E -> (E) E -> i }

■ consider: (i+i)/(i-i)

Chapter 3 -- Syntactic Analysis I 14

Chapter 3 -- Syntactic Analysis I 15

1.5 Ambiguous Grammars

■ Given (pg 72) GE = (T, N, S, R)
◆ T = { i, +, -, *, /, (,)} ,

◆ N = { E}

◆ S = E

◆ R = {
✦ E -> E + E E -> E - E

✦ E -> E * E E -> E / E

✦ E -> (E) E -> i }

■ consider: i + i * i
Chapter 3 -- Syntactic Analysis I 16

Chapter 3 -- Syntactic Analysis I 17

■ a grammar in which it is possible to parse even
one sentence in two or more different ways is
ambiguous

■ A language for which no unambiguous
grammar exists is said to be inherently
ambiguous

Chapter 3 -- Syntactic Analysis I 18

■ The previous example is "fixed" by
operator-precedence rules,

■ or re-write the grammar
◆ E -> E + T | E - T | T

◆ T -> T * F | T / F | F

◆ F -> (E) | i

■ Try: i+i* i

Chapter 3 -- Syntactic Analysis I 19 Chapter 3 -- Syntactic Analysis I 20

1.6 The Chomsky Hierarchy
(from the outside in)
■ Type 0 grammars

◆ γAδ -> γβδ
◆ these are called phrase structured, or

unrestricted grammars.

◆ It takes a Turing Machine to recognize these
types of languages.

Chapter 3 -- Syntactic Analysis I 21

■ Type 1 grammars
◆ γAδ -> γβδ

β != ε

◆ therefore the sentential form never gets shorter.

◆ Context Sensitive Grammars.

◆ Recognized by a simpler Turing machine
[linear bounded automata (lba)]

Chapter 3 -- Syntactic Analysis I 22

■ Type 2 grammars:
◆ A -> β

◆ Context Free Grammars

◆ it takes a stack automaton to recognize CFG's
(FSA with temporary storage)

◆ Nondeterministic Stack Automaton cannot be
mapped to a DSA, but all the languages we will
look at will be DSA's

Chapter 3 -- Syntactic Analysis I 23

■ Type 3 grammars
◆ The Right Hand Side may be

✦ a single terminal

✦ a single non-terminal followed by a single terminal.

◆ Regular Grammars

◆ Recognized by FSA's

Chapter 3 -- Syntactic Analysis I 24

1.7 Some Context-Free and Non-
Context-Free Languages
■ Example 1:

◆ S -> S S

◆ | (S)

◆ | ()

◆ This is Context Free.

Chapter 3 -- Syntactic Analysis I 25

■ Example 2:
◆ anbncn

■ this is NOT Context Free.

Chapter 3 -- Syntactic Analysis I 26

■ Example 3:
◆ S -> aSBC

◆ S -> abC

◆ CB -> BC

◆ bB -> bb

◆ bC -> bc

◆ cC -> cc

■ This is a Context Sensitive Grammar

Chapter 3 -- Syntactic Analysis I 27

■ L2 = { wcw| w in (T-c)* } is NOT a Context
Free Grammar.

Chapter 3 -- Syntactic Analysis I 28

1.8 More about the Chomsky
Hierarchy
■ There is a close relationship between the

productions in a CFG and the corresponding
computations to be carried out by the program
being parsed.

■ This is the basis of Syntax-directed translation
which we use to generate intermediate code.

Chapter 3 -- Syntactic Analysis I 29

2. Top-Down parsers

■ The top-down parser must start at the root of
the tree and determine, from the token stream,
how to grow the parse tree that results in the
observed tokens.

■ This approach runs into several problems,
which we will now deal with.

Chapter 3 -- Syntactic Analysis I 30

2.1 Left Recursion

■ Productions of the form (A->Aα) are left
recursive.

■ No Top-Down parser can handle left recursive
grammars.

■ Therefore we must re-write the grammar and
eliminate both direct and indirect left
recursion.

Chapter 3 -- Syntactic Analysis I 31

■ How to eliminate Left Recursion (direct)
◆ Given:

✦ A -> Aα1 | Aα2 | Aα3 | …

✦ A -> δ1 | δ2 | δ3 | ...

◆ Introduce A'
✦ A -> δ1 A' | δ2 A' | δ3 A' | ...

✦ A' -> ε | α1 A' | α2 A' | α3 A' | ...

◆ Example:
✦ S -> Sa | b

✦ Becomes
✦ S -> bS'

✦ S' -> ε | a S'

Chapter 3 -- Syntactic Analysis I 32

■ How to remove ALL Left Recursion.
◆ 1.Sort the nonterminals

◆ 2.for each nonterminal
✦ if B -> Aβ
✦ and A -> γ1 | γ2 | γ3 | ...

✦ then B -> γ1β | γ2β | γ3β | ...

◆ 3.After all done, remove immediate left
recursion.

Chapter 3 -- Syntactic Analysis I 33

■ Example:
◆ S -> aA | b | cS

◆ A -> Sd | e

becomes

◆ S -> aA | b | cS

◆ A -> aAd | bd | cSd | e

■ note: the S in A(3) -> but it is NOT left
recursion

Chapter 3 -- Syntactic Analysis I 34

2.2 Backtracking

■ One way to carry out a top-down parse is
simply to have the parser try all applicable
productions exhaustively until i t finds a tree.

■ This is sometimes called the brute force
method.

■ It is similar to depth-first search of a graph

■ Tokens may have to be put back on the input
stream

Chapter 3 -- Syntactic Analysis I 35

■ Given a grammar:
◆ S -> ee | bAc | bAe

◆ A -> d | cA

■ A Backtracking algorithm will not work
properly with this grammar.

■ Example: input string is bcde
◆ When you see a b you select S -> bAc

◆ This is wrong since the last letter is e not c

Chapter 3 -- Syntactic Analysis I 36

■ The solution is Left Factorization.
◆ Def: Left Factorization: -- create a new non-

terminal for a unique right part of a left
factorable production.

■ Left Factor the grammar given previously.
◆ S -> ee | bAQ

◆ Q -> c | e

◆ A -> d | cA

Chapter 3 -- Syntactic Analysis I 37

3. Recursive-Descent Parsing

■ There is one function for each non-terminal
these functions try each production and call
other functions for non-terminals.

■ The stack is invisible for CFG's

■ The problem is -- a new grammar requires new
code.

Chapter 3 -- Syntactic Analysis I 38

■ Example:
◆ S -> bA | c

◆ A -> dSd | e

■ Code:
■ function S: boolean;

■ begin

■ S := true;

■ if token_is ('b') then

■ if A then

■ writeln('S --> bA')

■ else

■ S := false;

■ else

■ if token_is ('c') then

■ writeln ('S --> c')

■ else

■ begin

■ error ('S');

■ S := false

■ end

■ end; { S }

Chapter 3 -- Syntactic Analysis I 39

■ function A: boolean

■ begin

■ A := true;

■ if token_is ('d') then

■ begin

■ if S then

■ if token_is ('d') then

■ writeln('A --> dSd');

■ else

■ begin

■ error ('A');

■ A := false

■ end

■ else

■ A := false

■ end

■ else

■ if token_is ('e') then

■ writeln ('A --> e')

■ else

■ begin

■ error ('A');

■ A := false

■ end

■ end; { A }

Chapter 3 -- Syntactic Analysis I 40

■ Input String: bdcd

Chapter 3 -- Syntactic Analysis I 41 Chapter 3 -- Syntactic Analysis I 42

4. Predictive Parsers

■ The goal of a predictive parser is to know
which characters on the input string trigger
which productions in building the parse tree.

■ Backtracking can be avoided if the parser had
the ability to look ahead in the grammar so as
to anticipate what terminals are derivable (by
leftmost derivations) from each of the various
nonterminals on the RHS.

Chapter 3 -- Syntactic Analysis I 43

■ First (α)
(you construct first() of RHS’s)

◆ 1.if α begins with a terminal x,
✦ then first(α) = x.

◆ 2.if α =*=> ε,
✦ then first(α) includes ε.

◆ 3.First(ε) = { ε} .

◆ 4.if α begins with a nonterminal A,
✦ then first(α) includes first(A) - { ε}

Chapter 3 -- Syntactic Analysis I 44

■ Follow(α)
◆ 1.if A is the start symbol,

✦ then put the end marker $ into follow(A).

◆ 2.for each production with A on the right hand
side

Q -> xAy

✦ 1.if y begins with a terminal q,
• q is in follow(A).

✦ 2.else follow(A) includes first(y)-ε.

✦ 3.if y = ε, or y is nullable (y =*=> ε)
• then add follow(Q) to follow(A).

Chapter 3 -- Syntactic Analysis I 45

■ Grammar:
◆ E -> T Q

◆ Q -> + T Q | - T Q | epsilon

◆ T -> F R

◆ R -> * F R | / F R | epsilon

◆ F -> (E) | I

■ Construction of First and Follow Sets:

Chapter 3 -- Syntactic Analysis I 46

■ First(E) = First(T) = First(F) = { i,(}

■ First(Q) = { +,-,ε}

■ First(R) = { * ,/,ε}

■ Follow(E) = { $,)}

■ Follow(Q) = Follow(E) = { $,)}

■ Follow(T) = First(Q) - ε + Follow(E)
{ +,-} + {),$}

■ Follow(R) = Follow(T)

■ Follow(F) = First(R) - ε + Follow(T)
{ * ,/} + { +,-,),$}

Chapter 3 -- Syntactic Analysis I 47

■ LL(1) Grammars
◆ In a predictive parser, Follow tells us when to

use the epsilon productions.

◆ Def: LL(1) -- Left to Right Scan of the tokens,
Leftmost derivation, 1 token lookahead.

Chapter 3 -- Syntactic Analysis I 48

■ For a grammar to be LL(1), we require that for
every pair of productions A -> alpha|beta
◆ 1.First(alpha)-epsilon and First(beta)-epsilon

must be disjoint.

◆ 2.if alpha is nullable, then First(beta) and
Follow(A) must be disjoint.

◆ if rule 1 is violated, we may not know which
right hand side to choose

◆ if rule 2 is violated, we may not know when to
choose Beta or epsilon.

Chapter 3 -- Syntactic Analysis I 49

4.1 A Predictive Recursive-Descent
Parser
■ The book builds a predictive recursive-descent

parser for
◆ E -> E + T | T

◆ T -> T * F | F

◆ F -> (E) | I

■ First step is -- Remove Left Recursion

Chapter 3 -- Syntactic Analysis I 50

4.2 Table-Driven Predictive Parsers

■ Grammar
◆ E -> E + T | E - T | T

◆ T -> T * F | T / F | F

◆ F -> (E) | I

■ Step 1: Eliminate Left Recursion.

Chapter 3 -- Syntactic Analysis I 51

■ Grammar without left recursion
◆ E -> T Q

◆ Q -> + T Q | - T Q | epsilon

◆ T -> F R

◆ R -> * F R | / F R | epsilon

◆ F -> (E) | I

■ It is easier to show you the table, and how it is
used first, and to show how the table is
constructed afterward.

Chapter 3 -- Syntactic Analysis I 52

■ Table

Chapter 3 -- Syntactic Analysis I 53

■ Driver Algorithm:
◆ Push $ onto the stack

◆ Put a similar end marker on the end of the
string.

◆ Push the start symbol onto the stack.

Chapter 3 -- Syntactic Analysis I 54

◆ While (stack not empty do)
✦ Let x = top of stack and a = incoming token.

✦ If x is in T (a terminal)

✦ if x == a then pop x and goto next input token

✦ else error

✦ else (nonterminal)

✦ if Table[x,a]

✦ pop x

✦ push Table[x,a] onto stack in reverse order

✦ else error

■ It is a successful parse if the stack is empty and
the input is used up.

Chapter 3 -- Syntactic Analysis I 55

■ Example 1: (i+i)* i (pg 108)

Chapter 3 -- Syntactic Analysis I 56

Chapter 3 -- Syntactic Analysis I 57 Chapter 3 -- Syntactic Analysis I 58

■ Example 2: (i*) (pg 109)

Chapter 3 -- Syntactic Analysis I 59 Chapter 3 -- Syntactic Analysis I 60

4.3 Constructing the Predictive
Parser Table
■ Go through all the productions.

X -> β is your typical production.
◆ 1.For all terminals a in First(β), except ε,

Table[X,a] = β.

◆ 2.If β = ε, or if ε is in first(β) then For ALL a in
Follow(X), Table[X,a] = ε.

■ So, Construct First and Follow for all Left and
right hand sides.

Chapter 3 -- Syntactic Analysis I 61

4.4 Conflicts

■ A conflict occurs if there is more than 1 entry
in a table slot. This can sometimes be fixed by
Left Factoring, ...

■ If a grammar is LL(1) there wil l not be
multiple entries.

Chapter 3 -- Syntactic Analysis I 62

5. Summary

■ Left Recursion

■ Left Factorization

■ First (A)

■ Follow (A)

■ Predictive Parsers (table driven)

