Chapter 3

Syntadic Analysis|

= The Syntactic Analyzer, or Parser, isthe heat
of the front end of the compiler.

= The parser's main task isto analyzethe
structure of the program and its component
Statements.

Our principle resource in Parser Design isthe
theory of Formal Languages.

We will use and study context free grammars
(They cannot handle definition before use, but
we an get around this other ways)

Chapter 3-- Syntactic Analysis| 2

1. Grammars

= Informal Definition -- afinite set of rulesfor
generating an infinite set of sentences.

m Def: Generative Grammar: this type of
grammar builds a sentence in a series of steps,
refining each step, to go from an abstract to a
concrete sentence.

Chapter 3 - Syntactic Analysis |

» Def: Parse Tree atreethat representsthe
analysig/structure of a sentence (following the
refinement steps used by a generative grammar
to buldit.

(sentence)
(noun phrase) (verb phrase)

(article) (noun! (verb) (noun phrase)

(article) (noun)

\

= Def: Productions/Re-Write Rules: rules that
explain how to refine the steps of a generative
grammar.

» Def: Terminals: the atual wordsin the
language.

= Def: Non-Terminals: Symbals not in the
language, but part of the refinement process

Chapter 3 - Syntactic Andysis |

the dog gnawed the _ bone
= Figure 3.1
i Chapter 3 -- Syntactic Analysis | 4
1.1 Syntax and Semantics

= Syntax dealswith the way a sentenceis put
together.

= Semantics deals with what the sentence means.

= There ae sentences that are grammatically
corred that do not make ay sense.

Chapter 3~ Syntactic Andlysis | 6

= There ae thingsthat make sense that are not
grammatically correct.

= The compiler will check for syntadical
corredness, yet it isthe programmers
responsibility (usually during debugging) to
make sure it makes sense.

Chapter 3 Syntactic Andysis | 7

1.2 Grammars: Formal Definition

= G=(T,N,SR)
0T =set of Terminals
0 N = set of Non-Terminals
0 S = Start Symba (element of N)
0 R = Set of Rewrite Rules (o -> 3)

Chapter 3 - Syntactic Analysis| 8

= [n your rewriterules, if a isasingle non-
terminal the language is Context-Free

= BNF stands for Backus-Naur Form

0 ::=isused in placeof ->
0 inextended BNF { } isequivaent to ()*

Chapter 3 Syntactic Andysis | 9

1.3 Parse Trees and Derivations

= al =>a2 -- string al is changed to string a2 via
1 rewriterule.
= 0 ="=>f-- 0 or morere-writerules

= sentential forms -- the strings appeaing in
various derivation steps

L(G) ={ w|S=g"=>w}

Chapter 3 - Syntactic Analysis| 10

1.4 Rightmost and L eftmost
Derivations

= Which non-terminal do you rewrite-expand
when there is more than one to choose from.

0 If you always select the rightmost NonTerminal
to expand, it is a Rightmost Derivation.

= Leftmost and Rightmost derivations are
unique.

Chapter 3 -~ Syntactic Analysis | 11

= Def: any sentential form occurringin a
leftmost { rightmost} derivationistermed aleft

{right} sentential form.

= Some parsers construct leftmost derivations
and athers rightmost, so it isimportant to
understand the difference.

Chapter 3 -~ Syntactic Analysis| 12

= Given (pg 72) G = (T, N, S,R)
oT={i,+-*%/()}

oN={E}
0S=E
oR={
nE->E+E E->E-E
nE->E*E E->E/E
0E->(E) E->i}
m consider: (i+i)/(i-i)
Chapter 3 - Syntactic Analysis | 13

o

o
o

Figure 3.4(c)

Chapter 3 - Syntactic Analysis| 14

1.5 Ambiguows Grammars

= Given (pg 72) G =(T,N, S,R)
oT={i,+-*%/()}

oN={E}
0S=E
oR={
DE->E+E E->E-E
DE->E*E E->E/E
0E->(E) E->i}
m consider:i+i*i
Chapter 3 - Syntactic Analysis| 15

-

/l\E - -
-
|

+—1n

o

E
.|
i

*
-y

(@) i i (b)

Figure 3.5

Chapter 3 - Syntactic Analysis| 16

= agrammar in which it is possible to parse even
one sentence in two or more different waysis
ambiguous

= A language for which no unambiguous
grammar existsis said to be inherently
ambiguous

Chapter 3 -~ Syntactic Analysis | 17

= The previous exampleis "fixed" by
operator-precedencerules,

= Or re-write the grammar
DE->E+T|E-T|T
oT->T*F|T/F|F
0F->(E)]|i

w Try: i+i*i

Chapter 3 -~ Syntactic Analysis| 18

E
E/ L\T
0y |T * T
L i
b
i 1
Figure 3.6
Chapter 3 - Syntactic Analysis | 19

1.6 The Chomsky Hierarchy
(from the outside in)

= Type O gammars
0YyAd -> V33
0 these are cdl ed phrase structured, or
unrestricted grammars.

O It takes a Turing Madhine to recogrize these
types of langueges.

Chapter 3 - Syntactic Analysis| 20

= Type 1l grammars
0YyAd ->yBd
Bl=¢
0 therefore the sentential form never gets shorter.

0 Context Sensitive Grammars.

0 Remgnized by asimpler Turing machine
[linea bounced automata (Iba)]

Chapter 3 Syntactic Andysis | 21

= Type2 gammars:
0A->f

0 Context Free Grammars

O it takes a stack automaton to recognize CFG's
(FSA with temporary storage)

0 Nondeterministic Stadk Automaton cannat be
mapped to aDSA, but all the languages we will
look at will be DSA's

Chapter 3 - Syntactic Analysis| 22

= Type 3 gammars
0 The Right Hand Side may be
o asingleterminal
o asingle non-terminal followed by asingle terminal.

0 Regular Grammars

0 Remgnized by FSA's

Chapter 3 -~ Syntactic Analysis | 23

1.7 Some Context-Free and Norn-
Context-Free Languages

= Example 1:
0S->SS
o 1©
o 10

O Thisis Context Free

Chapter 3 -~ Syntactic Analysis| 24

= Example 2:
0 a'b"e”

» thisisNOT Context Free

Chapter 3 Syntactic Andysis | 25

= Example 3:
0S->aSBC
0S->abC
oCB->BC
0 bB ->bb
0bC->hbc
ocC->cc

» ThisisaContext Sensitive Grammar

Chapter 3 - Syntactic Analysis| 26

» L, ={wecw|win (T-c)*} isNOT aContext
Free Grammar.

Chapter 3 Syntactic Andysis | 27

1.8 More abou the Chomsky

Hierarchy
= Thereisa doserelationship between the
productionsin a CFG and the mrresponding

computations to be carried ou by the program
being parsed.

= Thisisthe basis of Syntax-directed trandation
which we use to generate intermediate mde.

Chapter 3 - Syntactic Analysis| 28

2. Top-Down parsers

= The top-down parser must start at the root of
the tree and determine, from the token stream,
how to grow the parse tree that resultsin the
observed tokens.

= This approach runsinto several problems,
which we will now dea with.

Chapter 3 -~ Syntactic Analysis | 29

2.1 Left Recursion

= Productions of the form (A->Aa) are left
reaursive.

= No Top-Down parser can handle |eft recursive
grammars.

= Therefore we must re-write the grammar and
eliminate both drea and indired left
reaursion.

Chapter 3 -~ Syntactic Analysis| 30

= How to eliminate Left Recursion (direct)
o Given:
oA ->Aaq, |Ag, |Agg] ...
0A->818,|5,] ...
O Introduce A
0A->8 A'|5,A|8,A]...
DA ->e|a, A'la, A |az A’ ..
0 Example:
0S->Salb
o Becomes
0S->hS
0S->¢|aS

Chapter 3 Syntactic Andysis | 31

= How toremove ALL Left Reaursion.
0 1.Sort the nonterminals

0 2.for each nonterminal
oif B->AB
oand A->y |V, |Vs] ...
othenB ->y,B[V,B | VB] ..

0 3.After all done, remove immediate | eft
reaursion.

Chapter 3 - Syntactic Analysis| 32

= Example:
0S->aA|b|cS
DA->Sd|e

becomes

0S->aA|b|cS
OA->aAd|bd|cd|e

= note: the Sin A(3) -> but it isNOT left
reaursion

Chapter 3 Syntactic Andysis | 33

2.2 Badktracking

= Oneway to carry out atop-down parseis
simply to have the parser try al applicable
productions exhaustively until it findsatree

» Thisis sometimes cdled the brute force
method.

= |t issimilar to depth-first search of agraph
= Tokens may have to be put back on the input
stream

Chapter 3 - Syntactic Analysis| 34

= Given agrammar:
0 S->ee|bAc|bAe
DA ->d|cA

= A Backtracking algorithm will not work
properly with this grammar.

= Example: input string is bcde

0 When you see ab you select S-> bAc
0 Thisiswrongsince the last letter isenot ¢

Chapter 3 -~ Syntactic Analysis | 35

= The solution is Left Factorization.

0 Def: Left Fadorization: -- create anew non-
terminal for auniqueright part of aleft
fadorable production.

= Left Fador the grammar given previoudly.
0S->ee|bAQ
oQ->cle
DA->d|cA

Chapter 3 -~ Syntactic Analysis| 36

3. Recursive-Descent Parsing

= Thereisone function for each non-terminal
these functions try each production and call
other functions for non-terminals.

=» Thestadk isinvisible for CFG's

= The problem is-- anew grammar requires new

= dse

code.
i Chapter 3 - Syntactic Analysis| 37
= function A: boolean = else
u begin . A =fase
s A:=true = end
= if token is('d') then » dse
= begin = if token_is('€) then
= if Sthen = writeln (A -->€)

= iftoken is(d)then = €lse
» witdn(A -->dsd); = begin

= Example: « if token_is (<) then
0S->bAjc . writeln ('S--> ¢
o0A->dd|e . dee
s Code: . begin
= functionS: bodean; n error ('S);
= begin n S:=fase
s S:i=true . end
= if token_is('b) then = end; { S}
[if A then
. writeln('S --> bA")
[ese
. S:=false
Chapter 3 -- Syntactic Analysis | 38
= |nput String: bdcd
Chapter 3 -- Syntactic Analysis | 40

. dse u error (AY);
. begin . A =fdse
. error (AY); = end
. A:=fdse mend { A}
i - end Chapter 3 -~ Syntactic Analysis | 39
S &
b /A token_is A
L 2 .
d S d token_is S, token_is
| (@ (@
@ ¢
Figure 3.13

Chapter 3 -~ Syntactic Analysis | 41

4. Predictive Parsers

= The goal of apredictive parser isto know
which characters on the input string trigger
which productionsin building the parse tree.

= Backtracking can be avoided if the parser had
the aility to look ahead in the grammar so as
to anticipate what terminals are derivable (by
leftmost derivations) from each of the various
nonterminals on the RHS.

Chapter 3 -~ Syntactic Analysis| 42

m First (CX)
(you construct first() of RHS's)
0 1.if a beginswith aterminal X,
o then first(a) = x.
02ifa="=>¢,
o then first(a) includese.
0 3.First(e) = {¢}.
0 4.f a beginswith anonterminal A,
o then first(a) includes first(A) - {€}

= Follow(a)
0 1if A isthe start symbal,
o then put the end marker $ into follow(A).
0 2 for each production with A ontheright hand
side
Q->xAy

o Lif y beginswith aterminal g,
« gisinfollow(A).
0 2.elsefollow(A) includes first(y)-€.
0 3ify=¢, oryisnulable(y ="=>¢)
« then add follow(Q) to follow(A).

Chapter 3 - Syntactic Analysis| 44

Chapter 3 - Syntactic Analysis | 43
= Grammar:

ODE->TQ

0Q->+TQ|-TQ|epsion

oT->FR

O0R->*FR|/FR|epsilon

oF->(E)]|I

= Construction of First and Follow Sets:

Chapter 3 Syntactic Andysis | 45

» First(E) = First(T) = First(F) = {i,(}

First(Q) = {+,-,€}

First(R) ={*,/,€}

Follow(E) ={$,)}

Follow(Q) = Follow(E) = {$,)}

= Follow(T) = First(Q) - € + Follow(E)
{+-1+{).%

= Follow(R) = Follow(T)

» Follow(F) = First(R) - € + Follow(T)
{*1/} + {+1'v)v$}

Chapter 3 - Syntactic Analysis| 46

w LL (1) Grammars

0 In a predictive parser, Foll ow tell s us when to
use the gosilon productions.

0 Def: LL(1) -- Left to Right Scan of the tokens,
Leftmost derivation, 1 token lookahead.

Chapter 3 -~ Syntactic Analysis | 47

= For agrammar to be LL(1), we require that for
every pair of productions A -> alphalbeta
0 1 First(alpha)-epsil on and First(beta)-epsilon
must be digoint.
0 2if aphais nulable, then First(beta) and
Follow(A) must be disjoint.

oif rule 1 isviolated, we may nat know which
right hand side to chocse

0 if rule 2 isviolated, we may nat know when to
choose Beta or epsilon.

Chapter 3 -~ Syntactic Analysis| 48

4.1 A Predictive Recursive-Descent
Parser

= The book builds a predictive recursive-descent
parser for
DE->E+T|T
oT->T*F|F
oF->(E)|l

= First step is-- Remove Left Reaursion

Chapter 3 Syntactic Andysis | 49

4.2 Table-Driven Predictive Parsers

s Grammar
ODE->E+TI|E-T|T
oT->T*F|T/F|F
oF->(E)|I

= Step 1 Eliminate Left Recursion.

= Grammar without |eft recursion

ODE->TQ
0Q->+TQ|-TQ]|epslon
oT->FR
O0R->*FR|/FR|epsilon
oF->(E)]I

= |tiseasier to show you thetable, and how it is
used first, and to show how the table is
constructed afterward.

Chapter 3 Syntactic Andysis | 51

Chapter 3 - Syntactic Analysis| 50
= Table
i + | - * / () $
E 70 TQ
Q +7Q | -TQ € €
T FR FR
R € € «FR | /[FR € €
F i (E)
Chapter 3 Syntactic Analysis| 52

= Driver Algorithm:
0 Push $ onto the stack
0 Put asmilar end marker onthe end of the
string.
0 Push the start symbol onto the stack.

Chapter 3 -~ Syntactic Analysis | 53

0 While (stack nat empty do)
0 Let x =top of stack and a=incoming token.
olf xisinT (aterminal)
o if x==athen pop xand goto next input token
o else aror
0 else (nonterminal)
o if Table[x,a]
0 popX
0 push Table[x,a] onto stadk in reverse order
o else aror

» |tisasuccessul parseif the stack is empty and
theinputisused up

Chapter 3 -~ Syntactic Analysis| 54

s Example 1: (i+i)*i (pg 108)

Chapter 3 - Syntactic Andysis | 55 Chapter 3 - Syntactic Analysis| 56

= Example 2: (i*) (pg 109)

Chapter 3 - Syntactic Andysis | 57 . Chapter 3 - Syntactic Analysis| 58

4.3 Constructing the Predictive
Parser Table

= Go through all the productions.
X ->Bisyour typica production.
0 1.For al terminals ain First(B), except €,
Table[X,a] = B.
0 2If B=¢, orif eisinfirst(B) then For ALL ain
Follow(X), Table[X,a] = €.
= So, Construct First and Follow for all Left and
right hand sides.

Chapter 3 -- Syntactic Analysis | 59 Chapter 3 -- Syntactic Analysis | 60

4.4 Conflicts

= A conflict occursif there ismore than 1 entry
in atable slot. This can sometimes be fixed by
Left Fadoring, ...

= If agrammar isLL (1) there will not be
multiple entries.

Chapter 3 Syntactic Andysis | 61

5. Summary

= Left Recursion

= Left Fadorization

m First (A)

= Follow (A)

= Predictive Parsers (table driven)

Chapter 3 - Syntactic Analysis| 62

