
Chapter 4

Syntactic Analysis II

Chapter 4 -- Syntactic Analysis II 2

1. Introduction to Bottom-Up
parsing

■ Grammar: E--> E+E | E*E | i

■ Expression: i+i* i

■ Rightmost derivation:
◆ E =>E+E

◆ E=> E+E*E

◆ E=>E+E* i

◆ E=>E+i* i

◆ E=>i+i* i

Chapter 4 -- Syntactic Analysis II 3

1.1 Parsing with a Stack

■ We will push tokens onto the stack until we
see something to reduce. This something is
called a "handle"
◆ This is known as shifting and reducing. 

■ Def: a handle is a right hand side of a
production that we can reduce to get to the
preceding step in the derivation.



Chapter 4 -- Syntactic Analysis II 4

◆ We carry out the reduction by popping the right
hand side off of the stack and pushing the left
hand side on in its place.

◆ Notice:  a handle is not just any right-hand
side;  it has to be the correct one -- the one that
takes us one step back in the derivation.

Chapter 4 -- Syntactic Analysis II 5

1.2 More about Handles

◆ The bottom up parser's problem is to find a way
of detecting when there is a handle at the top of
the stack. If there is, reduce it; otherwise shift.

◆ For this reason bottom up parsers are often
called shift-reduce parsers 

◆ When selecting handles, some things may be
the right hand side, but may not be handles.

Chapter 4 -- Syntactic Analysis II 6

2. The Operator-Precedence Parser

■ This is the simplest bottom-up parser (and the
least powerful parser for CFG's) 

■ It is generally simpler to construct 

■ table entities consist of <.., =, and ..> 

■ handles look like <..====..>



Chapter 4 -- Syntactic Analysis II 7

2.1 A Simple Operator-Precedence
Parser
■ Grammar:

◆ E -> E + E

◆       | E * E

◆       | ( E )

◆       | i

■ Table:

Chapter 4 -- Syntactic Analysis II 8

■ Algorithm:
◆ Push a $ on stack and append $ to end of input

◆ repeat
✦ x=top teminal on stack, y is incoming

✦ Find table relationship (x,y)

✦ if x<.y or x=y, then shift.

✦ if x.>y there is a handle on stack (<. to  .>)

✦ Reduce & push LHS of production on stack.

✦ If the table entry is blank, or handle is not a RHS,
there is an error.

◆ until x = $ and y = $ or an error is found

Chapter 4 -- Syntactic Analysis II 9

■ Parse: i+i* i



Chapter 4 -- Syntactic Analysis II 10

Chapter 4 -- Syntactic Analysis II 11

■ Parse: (i+i)i

Chapter 4 -- Syntactic Analysis II 12



Chapter 4 -- Syntactic Analysis II 13

■ Parse: ( )

Chapter 4 -- Syntactic Analysis II 14

Chapter 4 -- Syntactic Analysis II 15

2.2 Forming the Table

■ Grammar Restrictions
◆ 1. There must never be 2 or more consecutive

non-terminals on the right hand side.

◆ 2. No 2 distinct non-terminals may have the
same right hand side.

◆ 3. For any 2 terminals at most 1 of <., =, or .>
may hold

◆ 4.No ε productions



Chapter 4 -- Syntactic Analysis II 16

■ Rules for building the table:

◆ If a has higher precedence than b, then a .>b
and b<.a, regardless of the associativity.

◆ If a and b have equal precedence, then relations
depend upon associativity.

✦ If left associative a.>b and b.>a

✦ If right associative a<.b and b<.a

Chapter 4 -- Syntactic Analysis II 17

■ Rules for building the table (cont.):

◆ Paired operators like ( ) or [ ] are related by =
✦ We force the parser to reduce expressions inside

these operators by having ( <.a and a.>)

✦ Similarly we force the parser to reduce ( E ) before
shifting any other terminals by having a <. ( and )
.>a,

✦ where a is any terminal that may legally precede ( or
follow )

Chapter 4 -- Syntactic Analysis II 18

■ Rules for building the table (cont.):

◆ For identifiers, i .>a and a<.i,
✦ where a is any terminal that may legally precede or

follow an identifier. 

◆ End markers have lower precedence than any
other terminal.



Chapter 4 -- Syntactic Analysis II 19

3. The LR Parser

■ The most powerful of all parsers that we will
consider  (Knuth, 1965)

■ They can handle the widest variety of CFG's
(including everything that predictive parsers
and precedence parsers can handle)

■ They work fast, and can detect errors as soon
as possible. (as soon as the first incorrect token
is encountered)

Chapter 4 -- Syntactic Analysis II 20

■ It is also easy to extend LR parsers to
incorporate intermediate code generation. 

■ Def: LR(k) -- Left to right scan of the tokens,
Rightmost derivation, k-character lookahead.

■ The larger the lookahead (k) the larger the
table.

■ Hopcroft and Ullman (1979) have shown that
any deterministic CFL can be handled by an
LR(1) parser, so that is the kind we will learn.

Chapter 4 -- Syntactic Analysis II 21

■ Table Layout:
◆ states | <- Terminals -> | <- Non-Terminals ->

◆ --------------------------------------------------

◆   0      |                           |

◆   1      |       Action         |         go-to

◆   2      |        part             |         part

◆   ...     |                           |

■ LR Parser tables tend to be large. For
economy, we don't place the productions
themselves in the table; instead, we number
them and refer to them in the table by number.



Chapter 4 -- Syntactic Analysis II 22

◆ place $ at end of input, state 0 on stack.

◆ Repeat Until i nput is accepted or an error
✦ Let qm be the current state (at the top of the stack)

and let ai be the incoming token.

✦ Enter the action part of the table; X=Table[ qm,ai]

✦ Case X of
• Shift qn: Shift (that is, push) ai onto the stack and enter

State qn. (We mark the fact that we have entered that state
by pushing it onto the stack along with ai

• Reduce n: Reduce by means of  production #n. (We do the
reduction in essentially the same was as in the operator-
precedence parser, except for managing the states.) When
the left-hand side has been pushed, we must also place a
new state on the stack using the go-to part of the table.

• Accept: parse is complete

• Error: Indicate input error

Chapter 4 -- Syntactic Analysis II 23

■ The only complicated thing is reducing.
◆ 1. If the right hand side of the indicated

production has k symbols, pop the top k things
off the stack (that is, k state-symbol pairs). This
is the handle. If the right hand side is epsilon,
nothing is popped.)

◆ 2. Next, note the state on the top of the stack
(after the handle has been popped). Suppose it
is qj.

◆ 3. Suppose the left-hand side is X. Enter the go-
to part of the table at [qj, X] and note the entry.
It will be a state; suppose it is qk

◆ 4. Push X and the new state qk onto the stack.

Chapter 4 -- Syntactic Analysis II 24

■ We will use our familiar grammar for
expressions: (with productions numbered)
◆ (1) E -> E + T

◆ (2) E -> E - T

◆ (3) E -> T

◆ (4) T -> T * F

◆ (5) T -> T / F

◆ (6) T -> F

◆ (7) F -> ( E )

◆ (8) F -> I



Chapter 4 -- Syntactic Analysis II 25

■ Parse (i+i)/i

Chapter 4 -- Syntactic Analysis II 26

Chapter 4 -- Syntactic Analysis II 27

■ Parse i* (i-i



Chapter 4 -- Syntactic Analysis II 28

Chapter 4 -- Syntactic Analysis II 29

3.1 Construction of LR Parsing
Tables
■ It is customary to cover the generation of LR

parsing tables in a series of stages, showing
three levels of LR parsers of increasing
complexity.
◆ (1) Simple LR (SLR)

◆ (2) the canonical LR parser, and

◆ (3) the lookahead LR (LALR) parser.

Chapter 4 -- Syntactic Analysis II 30

■ This approach leads us into the subject by
gradual stages, each building on the previous
one, until we reach the LALR parser, the most
practical one, which is impossibly complicated
if presented without the background provided
by the other 2.

■ Let’s begin by introducing items that will be
common for all three parsers.



Chapter 4 -- Syntactic Analysis II 31

■ Parser States
◆ In the LR parsers, each current state

corresponds to a particular sequence of symbols
at the top of the stack

◆ States in a FSA do two things. They reflect
what has happened in the recent past, and they
control how the FSA will respond to the next
input. 

◆ Hence, in the design of an LR parser, we must
relate the state transition to what goes onto the
stack.

Chapter 4 -- Syntactic Analysis II 32

■ Items
◆ An item is a production with a placeholder (.)

telli ng how far we have gotten.

◆ The production E-> E+T gives rise to the
following items.

✦ [E->.E+T]

✦ [E->E.+T]

✦ [E->E+.T]

✦ [E->E+T.]

◆ symbols to the left of the . are already on the
stack; the rest is yet to come.

Chapter 4 -- Syntactic Analysis II 33

■ So, putting it all together:
◆ An item is a summary of the recent history of

the parse.

◆ An LR parser is controlled by a finite-state
machine.

◆ The recent history of a finite-state machine is
contained in its state...So an item must
correspond to a state in a LR parser



Chapter 4 -- Syntactic Analysis II 34

■ Almost, If we have a state for each item we
basically have an NDFA. Getting the LR states
parallels getting the DFA from the NDFA. 

■ We need to tell the parser when to accept. For
this we add a new "dummy" Non-Terminal Z
-> E instead of reducing this production, we
accept.

Chapter 4 -- Syntactic Analysis II 35

■ State Transitions 
◆ Transitions are determined by the grammar and

the item sets obtained from it. 

◆ If we have 2 items P=[F->.(E)] and
Q=[F->(.E)], then the structure of the items
dictates that we have a transition on the symbol
( from P to Q.

Chapter 4 -- Syntactic Analysis II 36

■ Constructing the State Table
◆ State 0

✦ 1. put Z -> .E into the set

✦ 2. for all it ems in the set, if there is a . before a Non-
Terminal include all their initial items. (initial items
are where the N-T --> .stuff (note the . is first)

✦ 3. Apply 2 until nothing can be added. 

◆ for every item in a state C->a.Xb
✦ move the . past X

✦ perform closure



Chapter 4 -- Syntactic Analysis II 37

■ Our Language Example. -- by hand
◆ (0) Z -> E

◆ (1) E -> E + T

◆ (2) E -> E - T

◆ (3) E -> T

◆ (4) T -> T * F

◆ (5) T -> T / F

◆ (6) T -> F

◆ (7) F -> ( E )

◆ (8) F -> I

Chapter 4 -- Syntactic Analysis II 38

■ Our Language Example. -- by hand
◆ 0:

✦ Z -> .E

✦ E -> .E+T

✦ E -> .E-T

✦ E -> .T

✦ T -> .T*F

✦ T -> .T/F

✦ T -> .F

✦ F -> .(E)

✦ F -> .i

Chapter 4 -- Syntactic Analysis II 39

◆ 1: (move over E from 0)
✦ Z -> E.

✦ E -> E.+T

✦ E -> E.-T 

◆ 2: (move over T from 0)
✦ E -> T.

✦ T -> T.*F

✦ T -> T./F 

◆ 3: (move over F from 0)
✦  T -> F.

◆ 4: (move over '('
from 0)

✦ F -> (.E)

✦ E -> .E+T

✦ E -> .E-T

✦ E -> .T

✦ T -> .T*F

✦ T -> .T/F

✦ T -> .F

✦ F -> .(E)

✦ F -> .i 



Chapter 4 -- Syntactic Analysis II 40

◆ 5: (move over i from 0)
✦ F -> i. 

◆ 6: (move over '+' from 1)
✦ E -> E+.T

✦ T -> .T*F

✦ T -> .T/F

✦ T -> .F

✦ F -> .(E)

✦ F -> .i

◆ 7: (move over '-' from 1)
✦ E -> E-.T

✦ T -> .T*F

✦ T -> .T/F

✦ T -> .F

✦ F -> .(E)

✦ F -> .i

◆ 8: (move over '* ' from 2)
✦ T -> T*.F

✦ F -> .(E)

✦ F -> .i

Chapter 4 -- Syntactic Analysis II 41

◆ 9: (move over '/' from 2)
✦ T -> T/.F

✦ F -> .(E)

✦ F -> .i 

◆ 10: (move over E from 4)
✦ F -> (E.)

✦ E -> E.+T

✦ E -> E.-T 

◆ (over T from 4) 
-- same as 2  

◆ (over F from 4) 
-- same as 3

◆ 11: (over T from 6)
✦ E -> E+T.

✦ T -> T.*F

✦ T -> T./F 

◆ 12: (over T from 7)
✦ E -> E-T.

✦ T -> T.*F

✦ T -> T./F

◆ 13: (over F from 8)
✦ T -> T*F.

◆ 14: (over F from 9)
✦ T -> T/F.

◆ 15: (over ')' from 10)
✦ F -> (E).

Chapter 4 -- Syntactic Analysis II 42



Chapter 4 -- Syntactic Analysis II 43

■ Our Language Example: Yacc grammar
✦ E
✦  : E PlusTok T
✦  | E MinusTok T
✦  | T
✦  ;
✦ T
✦   : T TimesTok F
✦   | T DivideTok F
✦   | F
✦   ;
✦ F
✦   : LParenTok E RParenTok
✦   | IDTok
✦   ;

Chapter 4 -- Syntactic Analysis II 44

■ Yacc output with states

◆ state 0
✦ $accept : _E $end

✦ IDTok  shift 5

✦ LParenTok  shift 4

✦ .  error

✦ E  goto 1

✦ T  goto 2

✦ F  goto 3

◆ state 1
✦         $accept :  E_$end

✦         E :  E_PlusTok T

✦         E :  E_MinusTok T

✦         $end  accept

✦         PlusTok  shift 6

✦         MinusTok  shift 7

✦         .  error

Chapter 4 -- Syntactic Analysis II 45

◆ state 2
✦  E :  T_    (3)

✦  T :  T_TimesTok F

✦  T :  T_DivideTok F

✦  TimesTok  shift 8

✦  DivideTok  shift 9

✦  .  reduce 3

◆ state 3
✦  T :  F_    (6)

✦  .  reduce 6

◆ state 4
✦ F :  LParenTok_E

RParenTok

✦ IDTok  shift 5

✦ LParenTok  shift 4

✦ .  error

✦ E  goto 10

✦ T  goto 2

✦ F  goto 3

◆ state 5
✦  F :  IDTok_    (8)

✦  .  reduce 8

◆ state ...



Chapter 4 -- Syntactic Analysis II 46

■ Filling the Rows of the State Table
◆ State 0:

Chapter 4 -- Syntactic Analysis II 47

■ Creating Action Table Entries
◆ The shift entries are taken from the state table

entries we just created. (terminals we moved
across to get the next state). 

◆ If a state, q, contains a completed item
n:[C->β.] then for all i nputs, x, in the
Follow(C) reduce n is in [q,x] 

◆ If State q contains [Z -> E.] then the action for
[q,$] is "accept"

Chapter 4 -- Syntactic Analysis II 48



Chapter 4 -- Syntactic Analysis II 49

3.2 Error Handling

■ For each empty slot in your table, you can
have a unique error message. 

■ You could also try to guess what they left out.

■ Panic Mode -- ignore everything until a ;

Chapter 4 -- Syntactic Analysis II 50

3.3 Conflicts

■ If a grammar is not LR it will show up in the
creation of the table. 

■ No ambiguous grammar is LR.

Chapter 4 -- Syntactic Analysis II 51

3.4 Canonical LR Parsers

■ The SLR parser breaks down with a conflict.

■ LR(1) item sets
◆ standard item sets plus a lookahead symbol

◆ this creates a lot more states. It is possible to
have |LR(0) item set| * |terminals|



Chapter 4 -- Syntactic Analysis II 52

3.5 Lookahead LR (LALR) Parsers

■ Why not just use the LR(0) item sets and only
add a look ahead when we need one? 

■ They are as powerful as Canonical LR parsers.

■ They are slower to detect errors (but will
detect one before the next token is shifted onto
the stack)

Chapter 4 -- Syntactic Analysis II 53

■ Two ways to construct these: 

◆ 1. Brute Force LALR Parser Construction
✦ Start with the LR(1) item sets and merge states. 

◆ 2. Eff icient LALR Parser Construction
✦ Start with the LR(0) item sets and add lookaheads as

needed.

Chapter 4 -- Syntactic Analysis II 54

3.6 Compiler-Compilers

■ YACC generates LALR(1) parser code
◆ When it runs into conflicts it notifies the user 

◆ shift/reduce conflicts are resolved in favor of
the shift. 

◆ operators are right associative by default



Chapter 4 -- Syntactic Analysis II 55

4. Summary: Which Parser Should I
Use?
■ We have seen several different parsing

techniques, of which the most realistic are
probably the table driven parsers. (predictive,
operator precedence, and LR)

■ Which is best? -- it seems to be personal taste.

■ Now that Yacc-like parser generators are
available, the LR parser seems to be the
inevitable choice, but, a lot of people still write
predictive, recursive-descent parsers.


