Chapter 4

Syntadic Analysis|I

1. Introduction to Bottom-Up
parsing
= Grammar: E--> E+E | E*E|i
m Expression: i+i*i
= Rightmost derivation:
0 E=>E+E
0E=>E+E*E
0 E=>E+E*i
0 E=>E+i*i
0 E=>i+i*i

Chapter 4 - Syntactic Andlysis|1 2

1.1 Parsing with a Stack

= Wewill push tokens onto the stack urtil we
seesomething to reduce. This mething is
caled a"handle"

0 Thisisknown as shifting and reducing.

m Def: ahandleisaright hand side of a
production that we an reduceto get to the
preceding step in the derivation.

Chapter 4 - Syntactic Analysis 11 3

0 We cary out the reduction by popping the right
hand side off of the stack and pushing the left
hand side onin its place

0 Notice: ahandeisnot just any right-hand
side; it hasto be the corred one -- the one that
takes us one step back in the derivation.

Chapter 4 -~ Syntactic Andlysis|1 4

1.2 More abou Handles

0 The bottom up parser's problem isto find away
of deteding when thereisahande at thetop o
the stack. If thereis, reduceit; otherwise shift.

0 For this reason bottom up parsers are often
cdled shift-reduce parsers

0 When seleding handles, some things may be
theright hand side, but may nat be handles.

Chapter 4 -~ Syntactic Analysis || 5

2. The Operator-Precedence Parser

» Thisisthe smplest bottom-up parser (and the
least powerful parser for CFG's)

m |t isgeneraly smpler to construct
= table entities consist of <, =, and >

» handeslook like <====

Chapter 4 -- Syntactic Analysis |1 6

2.1 A Simple Operator-Precedence
Parser

= Grammar:
ODE->E+E
o |E*E
o I(E)

0 li

Chapter 4 - Syntactic Andysis |1

= Algorithm:
0 Push a$ onstad and append $to end o input
0 repeat
0 x=top teminal onstad, y isincoming
o Find table relationship (x,y)
o if x<y or x=y, then shift.
o if x>y thereisahande on stack (<-to >)
0 Reduce & push LHS of production on stadk.

o If the table entry is blank, or handleis not aRHS,
thereisan error.

0 until x =$and y=$or an error isfound

Chapter 4 - Syntactic Analysis|1

Chapter 4 - Syntactic Andysis |1

Chapter 4 - Syntactic Analysis|1

10

m Parse: (i+i)i

Chapter 4 - Syntactic Analysis |1

Chapter 4 -- Syntactic Analysis ||

In input —
E o () i 8
On Fl> e s e
stack x > > o o o =
l (e = = =
= o > >
il> > > >
1l < o <
Chapter 4 - Syntactic Analysis | 13

Stack Input Production

$ < ()% =

o =)8

$<(%) > 8 E— (B)
Chapter 4 - Syntactic Analysis || 14

2.2 Forming the Table

= Grammar Restrictions

0 1. There must never be 2 or more conseautive
non-terminals on the right hand side.

0 2. No 2distinct nonterminals may have the
same right hand side.

0 3. For any 2terminalsat most 1 of <, =, or >
may hold
0 4.No € productions

Chapter 4 - Syntactic Analysis 11 15

= Rulesfor building the table:

0 If ahas higher precedencethan b,then a->b
and b<-a, regardless of the associdtivity.

0 If a and bhave equal precedence, then relations
depend uponassociativity.
o If left associative a>b and b>a
o If right associative a<b and b<a

Chapter 4 - Syntactic Analysis|1 16

= Rulesfor building the table (cont.):

0 Paired operatorslike () or [] arerelated by =

o Weforcethe parser to reduce expressonsinside
these operators by having (<a and a>)

o Similarly we forcethe parser to reduce(E) before
shifting any ather terminals by having a<- (and)
>a,

0 where ais any terminal that may legally precede (or
follow)

Chapter 4 -~ Syntactic Analysis 1| 17

= Rulesfor building the table (cont.):

0 For identifiers, i>a and a<i,
o where aisany terminal that may legally precede or
follow an identifier.

0 End markers have lower precedence than any
other terminal.

Chapter 4 -~ Syntactic Analysis|| 18

3. The LR Parser

= The most powerful of all parsers that we will
consider (Knuth, 1965)

= They can handle the widest variety of CFG's
(including everything that predictive parsers
and precedence parsers can handle)

= They work fast, and can deted errors as soon
aspossible. (assoon asthe first incorred token
is encountered)

Chapter 4 - Syntactic Analysis 11 19

m |t isalso easy to extend LR parsersto
incorporate intermediate code generation.

» Def: LR(k) -- Left to right scan dof the tokens,
Rightmost derivation, k-character |ookahead.

= Thelarger the lookahead (k) the larger the
table.

= Hopcroft and Ullman (1979) have shown that
any deterministic CFL can be handled by an
LR(1) parser, so that isthe kind we will lean.

Chapter 4 - Syntactic Analysis|1 20

= Table Layout:
O states | <- Terminals -> | <- Non-Terminas ->
a]

I
1 | Adction | m-to
2 | pat I part

O o o d

] |

= LR Parser tablestend to belarge. For
economy, we don't placethe productions
themselvesin the table; instead, we number
them and refer to them in the table by number.

Chapter 4 - Syntactic Analysis 11 21

0 place $ at end o input, state O onstack.

0 Reped Until input is accepted or an error

o Let g, be the current state (at the top of the stadk)
and let g be the incoming token.
o Enter the action part of the table; X=Tabl¢[q,,,.a]
o Case X of
« Shift g,: Shift (that is, push) g onto the stack and enter
State q,,. (We mark the fact that we have entered that state
by pushing it onto the stack along with g
« Reducen: Reduceby meansof production #n. (We do the
reduction in esentially the same was as in the operator-
precedence parser, except for managing the states.) When
the |eft-hand side has been pushed, we must also place a
new state on the stadk using the go-to part of the table.
« Accept: parseiscomplete
« Error: Indicate input error
Chapter 4 - Syntactic Analysis || 22

= The only complicated thing is reducing.

0 1. If the right hand side of the indicated
production has k symbds, popthe top k things
off the stack (that is, k state-symbadl pairs). This
isthe handle. If theright hand side is epsil on,
nothing is popped.)

0 2. Next, note the state on the top d the stack
(after the handle has been pgpped). Suppose it
isq.

0 3. Suppese the left-hand side is X. Enter the go-
to part of thetable & [, X] and note the entry.
It will be astate; supposeit is g,

0 4. Push X and the new state g, onto the stack.

Chapter 4 -~ Syntactic Analyss 1| 23

= Wewill use our familiar grammar for
expressions: (with productions numbered)
O()E->E+T

0(E->E-T
OQ)E->T
D@ T->T*F
oB)T->TI/F
o) T->F
o F->(E)
o) F->1
Chapter 4 -- Syntactic Analysis || 24

m Parse (i+i)/i
Terminals Nonterminals
State | i) F = e /] €] $ BT F
0 s5 sd i 2 3
1 s6 | s7 acc
% 13 | r3 | s8 | s9 3 | 13
3 16 | 16 | 16 | 16 16 | 16
4 s5 s4 10 2 3
5 18 | 18 [18 | 18 8 | 8
6 s5 s4 11 3
i s5 s4 12 3
8 s5 s4 13
9 s5 s4 14
10 s6 | s7 515
11 rl | rl | s8 | s9 rl t rl
12 12 | 12 | s8 | s9 2 2
13 14 (14 |14 |14 4 | r4
14 15 (15 | 15 | 15 5 | 15
15 T? | U7 I | T If |t
Chapter 4 - Syntactic Analysis 11 25
w Parsei*(i-i
Terminals Nonterminals
State | i) F = e] €] $ BT F
0 s5 sd i 2 3
1 s6 | s7 acc
% 13 | r3 | s8 | s9 3 | 13
3 16 | 16 | 16 | 16 6 | 16
4 s5 s4 10 2 3
5 18 | 18 [18 | 18 8 | 8
6 s5 s4 11 3
i s5 s4 12 3
8 s5 s4 13
9 s5 s4 14
10 s6 | s7 515
11 rl | rl | s8 | s9 rl t rl
12 12 | 12 | s8 | s9 2 2
13 14 |14 |14 |14 4 | r4
14 15 (15 | 15 | 15 5 | 15
15 T? | U7 I | T If |t

Chapter 4 - Syntactic Analysis 11

3.1 Construction d LR Parsing
Tables

= |t iscustomary to cover the generation of LR
parsing tables in a series of stages, showing
three levels of LR parsers of increasing
complexity.
0 (1) SmpleLR (SLR)
0 (2) the canonicd LR parser, and
0 (3) thelookahead LR (LALR) parser.

Chapter 4 -~ Syntactic Analysis 1|

Line Stack Input Entry Action/Production
i 0 (G +i)/i$ s4 Shift, enter State 4
2 0(4 i+i)/i$ s5 Shift, enter State 5
3 0(4i5> + 1)/i$ 18 F—i
4 0(4F3 + i)/i$ 6 T F
5 0(4T2 +1)/i$ 13 T
6 0(4E10 + i)/i$ s6 Shift, enter State 6
7 0(4E10+6 i)/i$ $5 Shift, enter State 5
8 0(4E10+6i5)/i$ 8 B
9 0(4E10+6F3)/i$ 16 T F
10 0(4E10+6T11)/i$ rl B BT
11 0(4E10)/i8 s15 Shift, enter State 15
12 0(4E10)15 /i8 7 F - (B)
13 0F3 /i8 6 T—F
14 0T2 /i$ s9 Shift, enter State 9
15 072/9 i$ 85 Shift, enter State 5
16 072/9i5 $ 18 F—i
17 0T2/9F14 $ r4 & T B
18 072 $ 3 E—>T
19 0FE1 $ acc
Chapter 4 -- Syntactic Analysis || 26
Line Stack Input Entry Action/Production
i 0 ix(i—i$ 5
2 0i5 x(1—i$ 8 F—i
3 0F3 #(i—i$ 16 e
4 072 *(1 - i$ s8
5 072 %8 (i-i$ sd
6 072 * 8(4 i—i$ sb
7 0T2x8(4i5 i 8 F—i
8 0T2x8(4F3 g 6 TR
9 072 x 8(4T2 —i$ T3 E—-T
10 0T2+8(4E10 —i$ s7
11 072 % 8(4E10-7 i$ sh
17 072 x 8(4E10-T7i $ 8 F i
13 072 % 8(4E10-7F3 $ 6 T—>F
14 072 8(4E10-7T12 $ 2 E—-E-T
15 072 *8(4E10 $ # x Error: no table entry for [10, §]
Chapter 4 - Syntactic Analysis || 28
= This approach leads us into the subject by
gradual stages, each bulding onthe previous
one, until we reach the LALR parser, the most
practicd one, which isimpossibly complicated
if presented without the background provided
by the other 2.
= Let'sbegin by introducing itemsthat will be

common for all threeparsers.

Chapter 4 -~ Syntactic Analysis|| 30

m Parser States
0 Inthe LR parsers, each current state
corresponds to a particular sequence of symbols
at the top d the stack

0 Statesin a FSA dotwo things. They refled
what has happened in the recent past, and they
control how the FSA will respond to the next

input.

0 Hence in the design of an LR parser, we must
relate the state transition to what goes onto the
stadk.

Chapter 4 - Syntactic Analysis 11 31

= [tems
0 An item is a production with a placénolder (.)
telling how far we have gotten.
0 The production E-> E+T givesriseto the
followingitems.
0 [E->.E+T]
0 [E->E+T)
0 [E->E+.T]
0 [E->E+T]
0 symbdsto the left of the . are dready on the
stadk; the rest is yet to come.

Chapter 4 - Syntactic Analysis|1 32

= SO, putting it al together:

0 Anitem isasummary of the recent history of
the parse.

0 AN LR parser is controlled by afinite-state
machine.

0 The recent history of afinite-state machineis
contained in its state...So an item must
correspond to astate in aL R parser

Chapter 4 - Syntactic Analysis 11 33

= Almogt, If we have astate for each item we
basicdly have an NDFA. Getting the LR states
parallels getting the DFA from the NDFA.

= We need to tell the parser when to aacept. For
thiswe ald anew "dummy" Non-Terminal Z
-> E instead of reducing this production, we
accept.

Chapter 4 - Syntactic Analysis|1 34

= State Transitions

0 Transitions are determined by the grammar and
the item sets obtained from it.

o If we have 2 items P=[F->.(E)] and
Q=[F->(.E)], then the structure of the items
dictates that we have atransition an the symbal
(fromPto Q.

Chapter 4 -~ Syntactic Analysis 1| 35

= Constructing the State Table

0 State 0
0l putZ->.Eintothe set
0 2. foral itemsinthe set, if thereisa. before aNon-
Terminal include dl their initial items. (initial items
are where the N-T --> .stuff (nate the . isfirst)
0 3. Apply 2 wuntil nathing can be alded.

0 for every item in astate C->a.Xb
o movethe. past X
o perform closure

Chapter 4 -~ Syntactic Analysis|| 36

= Our Language Example. -- by hand

0(0)Z->E
O(E->E+T
0(QE->E-T
0RE->T
D@ T->T*F
0B T->T/F
o) T->F
o(MF->(E)
0@ F->1
Chapter 4 - Syntactic Analysis | 37

oo

= Our Language Example. -- by hand

nZ->.E
nE-> E+T
nE-> ET
oE->.T
oT->.T*F
oT->.T/IF
oT->.F
oF->.(E)

oF->.

Chapter 4 - Syntactic Analysis|1 38

0 1: (move over E from 0)

0 4: (move over ‘('

vz->E from 0)
0 E->E+T B
DE->E-T oF->(B)
o0E-> E+T
0 2: (moveover T from 0) nE->ET
0E->T. 0E->.T
0T->T*F oT->.T*F
o T->TJF 0T > TIF
0 3: (move over F from 0) oT->F
o T->F oF->.(B)
oF->.
Chapter 4 -- Syntactic Analysis || 39

0 5: (move over i from 0)

0 7: (move over "-' from 1)

0 E->i. 0E->E-T
> T*
0 6: (move over '+ from 1) oT->TF
CE-SE+T oT->.TIF
o0 T-> THF o> F
0T TIF oF->.(B)
0T F R
0 F->.(E) .
CE 0 8: (move over *' from 2)
’ DT->THF
o F->.(E)
oF->.i
Chapter 4 - Syntactic Analysis || 40

0 9: (move over /' from 2)

o T->TLF
o F->.(B)

oF->.i

0 10: (move over E from 4)

o F->(E)
0 E->E+T
0 E->E-T

0 (over T from 4)
--same &2

0 (over Ffrom 4)
--same &3

0 11: (over T from 6)
0 E->E+T.
0T->THF
0 T->TIF

0 12: (over T from 7)
0 E->ET.
0 T->T*F
o T->TIF

0 13: (over F from 8)
0 T->T*F.

0 14: (over Ffrom 9)
o T->TIF

0 15: (over ')’ from 10)
o F->(E).

Chapter 4 -~ Syntactic Analysis 1| 41

Figure 4.8

Chapter 4 -~ Syntactic Analysis|| 42

= Our Language Example: Y acc grammar = Yaccouput with states
oE 0 statel
o EPIysTokT 0 state 0 o $awept: E $end
o |EMinusTok T 0 $accept : _E $end o E: E PlusTok T
o|T o IDTok shift5 o E: E_MinusTok T
o 0 LParenTok shift 4 0 $end accept
oT o . error o PlusTok shift 6
o T TimesTok F o Egotol o MinusTok shift7
o | T DivideTok F o T goto2 o . error
o |F o F goo3
= oF =
o : LParenTok E RParenTok
o |IDTok
Chapter 4 - Syntactic Analysis || 43 Chapter 4 - Syntactic Analysis 11 44
O state 2 i
: 0 stete 4 = Filling the Rows of the State Table
o ErT_ (9 0 F: LParenTok_E
o T: T_TimesTok F RParenTok 0 State O:
o T: T_DivideTok F o IDTok shift5
o TimesTok shift 8 o LParenTok shift 4
o DivideTok shift9 o . error
o . reduce3 o E goto 10
0 state 3 o T goto2
o T:F_ (8 o F gao3
o . reduce6
0 state 5
o F: IDTok_ (8)
0 . reduce8
o state-... Figure 4.8
Chapter 4 -- Syntactic Analysis || 45 Chapter 4 -- Syntactic Analysis || 46
= Creding Action Table Entries 3 :
’) . Terminals Nonterminals
0 The shift entries are taken from the state table sl Bl o[AL 6L S
= entries we just creaed. (terminals we moved = - o e
aaossto get the next state). 2 xs o e [le B |3
3 16 | 16 | 16 | 16 6 | 6
4 |s5 sd 02 3
0 If astate, g, contains a completed item e .
n:[C->B.] then for al inpus, x, in the 7 | s5 s4 15 |3
. 8 sb sd 13
Follow(C) reducenisin [g,X] 9 s - 14
10 s6 | s7 s15
)) 11 rl | rl | s8|s9 rl rl
0 If State q contains [Z -> E.] then the adion for 12 2| r2|s8 |9 2 | 2
fam n 13 rd (rd (rd | 4 rd | rd
[9.9] is"acept 14 5 |15 | 15 | 15 5| 15
15 T¢ (il rr T r7 | 7
Chapter 4 - Syntactic Analysis 1 47 Chapter 4 -- Syntactic Analysis |1 48

3.2 Error Handling

= For each empty dot in your table, you can
have aunique eror message.

= You could also try to guesswhat they left out.

= Panic Mode -- ignore everything until a;

Chapter 4 - Syntactic Analysis 11 49

3.3 Conflicts

= |f agrammar isnot LR it will show up inthe
creation d thetable.

= No ambiguous grammar isLR.

Chapter 4 - Syntactic Analysis|1 50

3.4 Canonical LR Parsers
= The SLR parser breaks down with a onflict.
= LR(1) item sets

0 standard item sets plus alookahead symbol

0 this creges alot more states. It is possible to
have |LR(O) item set| * [terminalg|

Chapter 4 - Syntactic Analysis 11 51

3.5 Lookahead LR (LALR) Parsers

= Why not just use the LR(0) item setsand only
add alook ahead when we need one?

= They are @& powerful as Canonicd LR parsers.
= They are slower to deted errors (but will

detect one before the next token is ifted onto
the stack)

Chapter 4 - Syntactic Analysis|1 52

= Two waysto construct these:

0 1. Brute Force LALR Parser Construction
o Start with the LR(1) item sets and merge states.

0 2. Efficient LALR Parser Construction

o0 Start with the LR(0) item sets and add |ookaheads as
needed.

Chapter 4 -~ Syntactic Analysis 1| 53

3.6 Compiler-Compilers

= YACC generates LALR(1) parser code
0 When it runsinto conflicts it natifies the user

0 shift/reduce conflicts are resolved in favor of
the shift.

0 operators are right associative by default

Chapter 4 -~ Syntactic Analysis|| 54

4. Summary: Which Parser Shoud |
Use?

= We have seen several different parsing
tedhniques, of which the most redlistic ae
probably the table driven parsers. (predictive,
operator precedence, and LR)

= Which isbest? -- it seemsto be personal taste.

= Now that Yacc-like parser generators are
available, the LR parser seemsto bethe
inevitable dhoice, but, alot of people still write
predictive, recursive-descent parsers.

Chapter 4 - Syntactic Analysis 11 55

