Chapter 5

Intermediate Code Generation

= Letus eewherewe ae now.
0 We have tokenized the program and parsed it.
0 We know the structure of the program and o
every statement in it,
0 and we have presumably established that it is
freeof grammetical errors.

0 It would appea that we are realy to start
trandatingit.
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1. Semantic Actions and Syntax-
Directed Translation

= We can attach a meaning to every production

= Because the sequence of productions guides
the generation of intermediate ade, we all
this process Syntax-Direded Trandlation.

» Def: The omputations or other operations
attached to the productions impute meaning to
each production, and so these operations are
called Semantic Actions
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» Def: Theinformation oltained by the semantic
actionsis associated with the symbols of the
grammar; it isnormally put in fields of records
asciated with the symbols; thesefields are
called attributes

= Note: asfar asthe parser is concerned, neither
the semantic ctions nor the atributes are a
part of the grammar; they are only used asa
devicefor bridging the gap between parsing
and constructing an intermediate
representation.
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Things we must take cre of with the semantic
actions:
0 making sure the variables are dedared before
use.
O type checking
0 making sure actual and formal parameters are
matched
These things are cdled semantic analysis
= Sowe can now haveit both ways, we can Put
context dependent information and actions
together into alanguage that is gill context
free.
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2. Intermediate Representations

= Wewill look at several different
representations
O Syntax Trees
0 Directed Acyclic Graphs
0 Postfix notation
0 Three AddressCode
0 Other Forms.
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2.1 Syntax Trees

= typicdly used when intermediate awdeisto be
generated later (maybe dter an optimization
pass)
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= Statement: x=a*b +a*b
n Parse Tree
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Figure 5.2(a)
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= Syntax Tree

* *
i=a 1=0 " i—q i=b
Figure 5.2(b)
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= InaParse Tree the enphasisisonthe
grammatical structure of the statement.

= InaSyntax Tree the enphasisison the actual
computation to be performed.
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2.2 Directed Acyclic Graphs

= Thedirected acyclic graph (DAG) isarelative
of aSyntax Tree.

= Thedifferenceisthat nodes for variables or
repeated sub-expressions are merged.
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s DAG -- Noticethat thisis not the same
computations asin the previous examples
0 They had atypo -- (swapped the* and +)
0 But it gtill explains the mncept
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Figure 5.2(c)
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= The use of DAG'sto eliminate redundant code
isour first instance of optimization. We will
seemore optimizationin Chapter 6.

= Redundant code really comesinto play when
we do array subscripts.

= When you start generating intermediate mde,
you will be anazed at how much is generated
for array subscripts.
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2.3 Postfix Notation

= Very easy to generate from a Bottom-Up parse.

= You can also generate it from a Syntax Tree
via apostorder traversal.

m The dnief virtue of postsfix isthat it can be
evaluated with the use of a stack.

= Nested if statements can cause problems.
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2.4 Three Address Code

= Thisform breaks the program down into
elementary statements having no morethan 3
variables and no more than ore operator.

= Sample Statement: x =a+b* b

= Trandation:
0T:=b*b
ox:=a+T

= Note: T isatemporary variable.
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= Thenotation isa ompromise; it has the
general form of ahigh-level language, but the
individual statements are simple enough that
they map into assembly language in a
reasonably straight forward manner.
= 3AC may be:
0 Generated from atraversal of a Syntax Treeor
aDAG.
0 or it may be generated as intermediate mde
directly in the course of the parse.
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2.5 Intermediate Languages

= Sometimes the Intermediate representation
may be alanguage of its own.

= This helps uncouple the front end of the
compiler from the bad end.

= You can then have afront end for each
language that generate the same intermediate
language, and then one back end for each type
of computer.
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= Examples:

0 UNCOL (1961) -- UNiversal Compil er-
Oriented Language.

0 P-Code (1981) -- UCSD -- based upon a p-code
interpreter (they also built p-code compilers.)

0 GNU Intermediate Code -- gcc, gt+, g77, gada,
0 -- aLispish type intermediate language.
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3. Bottom-Up Trandlation

= Bottom-Up parsing generaly lendsitself to
intermediate mde generation more readily than
does top-down parsing.

= |n either case, we must keep track of the
various elements or pieces of the intermediate
representation we ae using, so we an get at
them when we need them.
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= These dementswill be dtributes of symbolsin
the grammar.

0 For an identifier, the dtribute will usualy be
its address in the symbol table.

0 For anonterminal, the attribute will be some
appropriate referenceto part of the intermediate
representation.
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= The most convenient way to keep track of
these dtributesis by keeping them in a stack
(known as the semantic stack).

= Inthe ase of bottom-up parsing, the semantic
stack and the parser stack movein
synchronism.

0 When we pop from the parse stack we popthe
semantic stack, and when we push something
onto the parse stack we will push something
onto the semantic stack
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3.1 Trees

= Syntax Trees

0 The semantic adion associated with each
productionwill i nclude planting atree aad
taking care of the grafts.

0 The attribute will contain a pointer to the root
of the treefor this expression.

0 You will need functions like make_tree() and
make_leaf( )
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n DAGS
0 The main dff erence between constructing a
DAG and constructing a Syntax Treeis that we
do nd create redundant nodesin aDAG.

0 That means that the functions to crede trees
and grafts must be modified to ched for
duplicates.

o Thisistypicaly done with a hash function.
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3.2 Postfix Notation

» Postfix notationis particularly essy to generate
from a bottom-up parse.

= Grammar:
S —i=FE {output (‘=, i.lezeme) }
E—-E+E {output (‘+) }
E— ExE {output (‘+’) }
E—(E) {do nothing }
E—i { output (i.lexeme) }
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3.3 Three Address Code

= We can dbtain 3AC from atree or aDAG, or
we @n generate it diredly in the murse of a
bottom-up parse.
= To generate 3AC during the parse we neal the
following functions:
0 MakeQuad( ) -- puts its parametersinto the
ligting filein the proper format.
0 GetTemp( ) -- Generates a new temporary
number.
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4. Top-Down Translation
m |tis, to beblunt, amess

= Two stacks, one for the parser, and me for the
attributes. Thus the semantic stadk must now
be separate and will not move in synchronism
with the parser stack
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= Up to now, we picked up attributes from
children, and the bottom-up parser provided a
handy way to do this. Now we have to be ale
to transfer attributes between siblings, and in
some caesit may be necessary to transfer
them from parent to child.
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4.1 Synthesized and Inherited

Attributes
= synthesized -- from your children (like we
have looked at).

= inherited -- from your parent, or sibling
» Def: A grammar in which al attributes are

synthesized is called an S-attribute grammar
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= Noticethat inheritance so far is from left to
right.
0 That may nat always be the ase, andthat can
redly mess things up.

s Def: Grammarsin which no nan-terminal ever
inherits from ayounger brother are alled L-

attributed grammars
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4.2 Attributesin a Top-Down Parse

= Since so many of our problems arise from the
need to eliminate | eft reaursionin the
underlying grammar, the place to start isto see
how anormal semantic adion hasto be
modified when removing | eft recursion.
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= Inthisexample, .sis used to denote a
synthesized attribute, and .i an inherited one.

E »T{Qi:="Ts}Q{Es:=Q.s}

Q1 = +T {Q24 = Q1.4 + T.s} Q2 {Q1.5 := Q2.5}

Q —e{Q.s:=Qi} ;

T — F{Ri:=F.s} R{T.s:= Rs}

Ry — % F {Ryi:= Rii* F.s} Ry {Ri1.5 = Rs.s}

R — e {R.s:=R.i}
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= An sample parse treeof atb
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4.3 Removal of Left Recursion

= When transforming a grammar to remove left
reaursions, we must also transform the
semantic adions, asthe example we just saw
implies.

= There ae some basic rules on how to do this,
but we will not cover them at thistime.
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5. More abou Bottom-Up
Translation
= We ae now going to consider the @ses where

semantic adions must be enbedded in the
midst of the right-hand side of a production.

= And caseswhere it is expedient to use
inherited attributes.
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5.1 Embedded Semantic Actions

= You will recall that in S-attributed grammars,
the semantic actions occur in one piece & the
end of the right-hand side of the production.
= For some statements that is fine, but for others
itisnat.
0 Thetypicd exampleis: if C then S

0 because based uponthe value of C we need a
conditional jump to the end of the statement S.
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= There ae afew ways aroundthis:

0 Add Semantic actionsin the middle of the
production (Y ACC/BISON allow this)

0 Breaking Productions up
0 Adding Marker Non-Terminals

= Another problem:

0 The limit ajump non zero can go (jnz limit).
On the Intel architecture, thisis 127 bytes.
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5.2 Inherited Attributes

= Example: Fortran Variables

0 The data type comesfirst, so you can enter
lexemes into the symbol table with the data
type (an inherited attribute)
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6. Pascd-Type Declarations

= Problem:

0 The data type comes last, so you can’t add the
variables into the Symboal table athey come.

= Solution:
0 Save the identifiers (or their symbal table
pointer) onto some stack/li st

0 When the data types come aourd, upcite the
list elements.
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7. Type Chedking and Coercion

= integer operation/ float operation
m isitinteger_add, float_add,...
0 The problem is that thisis an overloaded
operator
= [t isupto the Semantic Analyzer

0 to determine which operation is desired and to
choose the gpropriate implementation.

0 And if the user has gecified two incompatible
operands, it must take some adion.
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if E.type = integer and T'type = integer then
begin
got a temporary variable @ for the result (as usual);
generate 3AC for integer addition of E and T:
(1add, E.loc, Tloc, Q.loc)

end
else if E.type = real and T.type = real then
begin
get a temporary variable for the result;
generate 3AC for floating-point addition of E and T
(fadd, E.loc, T.loc, Q.loc)
end
else if B.type = real and T.type = integer then
begin
get a temporary variable Q; for a floating-point number;
generate code to convert T to floating-point form and put it into Qy:
(£1oat, T.loc, —, Qy.loc);
get a temporary variable Q; for the result;
generate 3AC for floating-point addition of £ and Q1:
(fadd, E.loc, Q1.loc, Q2.loc)

en
else {other way around }
begin
get a temporary variable Q1 for a floating-point number;
generate code to convert E to floating-point form and put it into Qu:
(1o0at, E.loc, —, Q1.loc);
get a temporary variable @ for the result;
generate 3AC for floating-point addition of @1 and T
(fadd, @i .loc, T.loc, Q2.Toc)
end;
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8. Summary

= We have seen some of the principal methods
for intermediate ade generation and some of
the principal problems.

= Now we have nearly reached the mnclusion of
the front end of the compiler.

= Some front-ends also include some
optimization, and some interpreters also stop
here.
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