Chapter 5

Intermediate Code Generation

= Letus eewherewe ae now.
0 We have tokenized the program and parsed it.
0 We know the structure of the program and o
every statement in it,
0 and we have presumably established that it is
freeof grammetical errors.

0 It would appea that we are realy to start
trandatingit.

Chapter 5 -- Intermediate Code Generation 2

1. Semantic Actions and Syntax-
Directed Translation

= We can attach a meaning to every production

= Because the sequence of productions guides
the generation of intermediate ade, we all
this process Syntax-Direded Trandlation.

» Def: The omputations or other operations
attached to the productions impute meaning to
each production, and so these operations are
called Semantic Actions

Chapter 5 -- Intermediate Code Generation 3

» Def: Theinformation oltained by the semantic
actionsis associated with the symbols of the
grammar; it isnormally put in fields of records
asciated with the symbols; thesefields are
called attributes

= Note: asfar asthe parser is concerned, neither
the semantic ctions nor the atributes are a
part of the grammar; they are only used asa
devicefor bridging the gap between parsing
and constructing an intermediate
representation.

Chapter 5 -- Intermediate Code Generation 4

Things we must take cre of with the semantic
actions:
0 making sure the variables are dedared before
use.
O type checking
0 making sure actual and formal parameters are
matched
These things are cdled semantic analysis
= Sowe can now haveit both ways, we can Put
context dependent information and actions
together into alanguage that is gill context
free.

Chapter 5 -- Intermediate Code Generation 5

2. Intermediate Representations

= Wewill look at several different
representations
O Syntax Trees
0 Directed Acyclic Graphs
0 Postfix notation
0 Three AddressCode
0 Other Forms.

Chapter 5 -- Intermediate Code Generation 6

2.1 Syntax Trees

= typicdly used when intermediate awdeisto be
generated later (maybe dter an optimization
pass)

Chapter 5 -- Intermediate Code Generation

= Statement: x=a*b +a*b
n Parse Tree
S

-

E

E 5 E

-

E * E B * T
i

i=a i=b i-a
Figure 5.2(a)

Chapter 5 -- Intermediate Code Generation

= Syntax Tree

* *
i=a 1=0 " i—q i=b
Figure 5.2(b)

Chapter 5 - Intermediate Code Generation

= InaParse Tree the enphasisisonthe
grammatical structure of the statement.

= InaSyntax Tree the enphasisison the actual
computation to be performed.

Chapter 5 -- Intermediate Code Generation 10

2.2 Directed Acyclic Graphs

= Thedirected acyclic graph (DAG) isarelative
of aSyntax Tree.

= Thedifferenceisthat nodes for variables or
repeated sub-expressions are merged.

Chapter 5 -- Intermediate Code Generation 11

s DAG -- Noticethat thisis not the same
computations asin the previous examples
0 They had atypo -- (swapped the* and +)
0 But it gtill explains the mncept

=
¢
Jon

i=a i=b

Figure 5.2(c)

Chapter 5 -- Intermediate Code Generation 12

= The use of DAG'sto eliminate redundant code
isour first instance of optimization. We will
seemore optimizationin Chapter 6.

= Redundant code really comesinto play when
we do array subscripts.

= When you start generating intermediate mde,
you will be anazed at how much is generated
for array subscripts.

Chapter 5 -- Intermediate Code Generation 13

2.3 Postfix Notation

= Very easy to generate from a Bottom-Up parse.

= You can also generate it from a Syntax Tree
via apostorder traversal.

m The dnief virtue of postsfix isthat it can be
evaluated with the use of a stack.

= Nested if statements can cause problems.

Chapter 5 -- Intermediate Code Generation 14

2.4 Three Address Code

= Thisform breaks the program down into
elementary statements having no morethan 3
variables and no more than ore operator.

= Sample Statement: x =a+b* b

= Trandation:
0T:=b*b
ox:=a+T

= Note: T isatemporary variable.

Chapter 5 -- Intermediate Code Generation 15

= Thenotation isa ompromise; it has the
general form of ahigh-level language, but the
individual statements are simple enough that
they map into assembly language in a
reasonably straight forward manner.
= 3AC may be:
0 Generated from atraversal of a Syntax Treeor
aDAG.
0 or it may be generated as intermediate mde
directly in the course of the parse.

Chapter 5 -- Intermediate Code Generation 16

2.5 Intermediate Languages

= Sometimes the Intermediate representation
may be alanguage of its own.

= This helps uncouple the front end of the
compiler from the bad end.

= You can then have afront end for each
language that generate the same intermediate
language, and then one back end for each type
of computer.

Chapter 5 -- Intermediate Code Generation 17

= Examples:

0 UNCOL (1961) -- UNiversal Compil er-
Oriented Language.

0 P-Code (1981) -- UCSD -- based upon a p-code
interpreter (they also built p-code compilers.)

0 GNU Intermediate Code -- gcc, gt+, g77, gada,
0 -- aLispish type intermediate language.

Chapter 5 -- Intermediate Code Generation 18

3. Bottom-Up Trandlation

= Bottom-Up parsing generaly lendsitself to
intermediate mde generation more readily than
does top-down parsing.

= |n either case, we must keep track of the
various elements or pieces of the intermediate
representation we ae using, so we an get at
them when we need them.

Chapter 5 -- Intermediate Code Generation 19

= These dementswill be dtributes of symbolsin
the grammar.

0 For an identifier, the dtribute will usualy be
its address in the symbol table.

0 For anonterminal, the attribute will be some
appropriate referenceto part of the intermediate
representation.

Chapter 5 -- Intermediate Code Generation 20

= The most convenient way to keep track of
these dtributesis by keeping them in a stack
(known as the semantic stack).

= Inthe ase of bottom-up parsing, the semantic
stack and the parser stack movein
synchronism.

0 When we pop from the parse stack we popthe
semantic stack, and when we push something
onto the parse stack we will push something
onto the semantic stack

Chapter 5 -- Intermediate Code Generation 21

3.1 Trees

= Syntax Trees

0 The semantic adion associated with each
productionwill i nclude planting atree aad
taking care of the grafts.

0 The attribute will contain a pointer to the root
of the treefor this expression.

0 You will need functions like make_tree() and
make_leaf()

Chapter 5 -- Intermediate Code Generation 22

n DAGS
0 The main dff erence between constructing a
DAG and constructing a Syntax Treeis that we
do nd create redundant nodesin aDAG.

0 That means that the functions to crede trees
and grafts must be modified to ched for
duplicates.

o Thisistypicaly done with a hash function.

Chapter 5 -- Intermediate Code Generation 23

3.2 Postfix Notation

» Postfix notationis particularly essy to generate
from a bottom-up parse.

= Grammar:
S —i=FE {output (‘=, i.lezeme) }
E—-E+E {output (‘+) }
E— ExE {output (‘+’) }
E—(E) {do nothing }
E—i { output (i.lexeme) }

Chapter 5 -- Intermediate Code Generation 24

3.3 Three Address Code

= We can dbtain 3AC from atree or aDAG, or
we @n generate it diredly in the murse of a
bottom-up parse.
= To generate 3AC during the parse we neal the
following functions:
0 MakeQuad() -- puts its parametersinto the
ligting filein the proper format.
0 GetTemp() -- Generates a new temporary
number.

Chapter 5 -- Intermediate Code Generation 25

4. Top-Down Translation
m |tis, to beblunt, amess

= Two stacks, one for the parser, and me for the
attributes. Thus the semantic stadk must now
be separate and will not move in synchronism
with the parser stack

Chapter 5 -- Intermediate Code Generation 26

= Up to now, we picked up attributes from
children, and the bottom-up parser provided a
handy way to do this. Now we have to be ale
to transfer attributes between siblings, and in
some caesit may be necessary to transfer
them from parent to child.

Chapter 5 -- Intermediate Code Generation 27

4.1 Synthesized and Inherited

Attributes
= synthesized -- from your children (like we
have looked at).

= inherited -- from your parent, or sibling
» Def: A grammar in which al attributes are

synthesized is called an S-attribute grammar

Chapter 5 -- Intermediate Code Generation 28

= Noticethat inheritance so far is from left to
right.
0 That may nat always be the ase, andthat can
redly mess things up.

s Def: Grammarsin which no nan-terminal ever
inherits from ayounger brother are alled L-

attributed grammars

Chapter 5 -- Intermediate Code Generation 29

4.2 Attributesin a Top-Down Parse

= Since so many of our problems arise from the
need to eliminate | eft reaursionin the
underlying grammar, the place to start isto see
how anormal semantic adion hasto be
modified when removing | eft recursion.

Chapter 5 -- Intermediate Code Generation 30

= Inthisexample, .sis used to denote a
synthesized attribute, and .i an inherited one.

E »T{Qi:="Ts}Q{Es:=Q.s}

Q1 = +T {Q24 = Q1.4 + T.s} Q2 {Q1.5 := Q2.5}

Q —e{Q.s:=Qi} ;

T — F{Ri:=F.s} R{T.s:= Rs}

Ry — % F {Ryi:= Rii* F.s} Ry {Ri1.5 = Rs.s}

R — e {R.s:=R.i}

Chapter 5 -- Intermediate Code Generation 31

= An sample parse treeof atb

E

/ \

Bi= = = = = O
-
1 ot T,
. .

ii—a € F, 2 e
|
i :
Figure 5.8
Chepter 5 - Intermedizte Code Generation 2

4.3 Removal of Left Recursion

= When transforming a grammar to remove left
reaursions, we must also transform the
semantic adions, asthe example we just saw
implies.

= There ae some basic rules on how to do this,
but we will not cover them at thistime.

Chapter 5 -- Intermediate Code Generation 33

5. More abou Bottom-Up
Translation
= We ae now going to consider the @ses where

semantic adions must be enbedded in the
midst of the right-hand side of a production.

= And caseswhere it is expedient to use
inherited attributes.

Chapter 5 -- Intermediate Code Generation 34

5.1 Embedded Semantic Actions

= You will recall that in S-attributed grammars,
the semantic actions occur in one piece & the
end of the right-hand side of the production.
= For some statements that is fine, but for others
itisnat.
0 Thetypicd exampleis: if C then S

0 because based uponthe value of C we need a
conditional jump to the end of the statement S.

Chapter 5 -- Intermediate Code Generation 35

= There ae afew ways aroundthis:

0 Add Semantic actionsin the middle of the
production (Y ACC/BISON allow this)

0 Breaking Productions up
0 Adding Marker Non-Terminals

= Another problem:

0 The limit ajump non zero can go (jnz limit).
On the Intel architecture, thisis 127 bytes.

Chapter 5 -- Intermediate Code Generation 36

5.2 Inherited Attributes

= Example: Fortran Variables

0 The data type comesfirst, so you can enter
lexemes into the symbol table with the data
type (an inherited attribute)

Chapter 5 -- Intermediate Code Generation 37

6. Pascd-Type Declarations

= Problem:

0 The data type comes last, so you can’t add the
variables into the Symboal table athey come.

= Solution:
0 Save the identifiers (or their symbal table
pointer) onto some stack/li st

0 When the data types come aourd, upcite the
list elements.

Chapter 5 -- Intermediate Code Generation 38

7. Type Chedking and Coercion

= integer operation/ float operation
m isitinteger_add, float_add,...
0 The problem is that thisis an overloaded
operator
= [t isupto the Semantic Analyzer

0 to determine which operation is desired and to
choose the gpropriate implementation.

0 And if the user has gecified two incompatible
operands, it must take some adion.

Chapter 5 -- Intermediate Code Generation 39

if E.type = integer and T'type = integer then
begin
got a temporary variable @ for the result (as usual);
generate 3AC for integer addition of E and T:
(1add, E.loc, Tloc, Q.loc)

end
else if E.type = real and T.type = real then
begin
get a temporary variable for the result;
generate 3AC for floating-point addition of E and T
(fadd, E.loc, T.loc, Q.loc)
end
else if B.type = real and T.type = integer then
begin
get a temporary variable Q; for a floating-point number;
generate code to convert T to floating-point form and put it into Qy:
(£1oat, T.loc, —, Qy.loc);
get a temporary variable Q; for the result;
generate 3AC for floating-point addition of £ and Q1:
(fadd, E.loc, Q1.loc, Q2.loc)

en
else {other way around }
begin
get a temporary variable Q1 for a floating-point number;
generate code to convert E to floating-point form and put it into Qu:
(1o0at, E.loc, —, Q1.loc);
get a temporary variable @ for the result;
generate 3AC for floating-point addition of @1 and T
(fadd, @i .loc, T.loc, Q2.Toc)
end;

Chapter 5 -- Intermediate Code Generation 40

8. Summary

= We have seen some of the principal methods
for intermediate ade generation and some of
the principal problems.

= Now we have nearly reached the mnclusion of
the front end of the compiler.

= Some front-ends also include some
optimization, and some interpreters also stop
here.

Chapter 5 -- Intermediate Code Generation 41

