Chapter 5

Intermediate Code Generation

= Let us £ewherewe ae now.
0 We have tokenized the program and parsed it.
0 We know the structure of the program and o
every statement in it,
0 and we have presumably established that it is
freeof grammatical errors.

0 It would appea that we are realy to start
translating it.

Chapter 5 - Intermediate Code Generation 2

1. Semantic Actions and Syntax-
Directed Tranglation

= We can attach a meaning to every production

= Because the sequence of productions guides
the generation of intermediate ade, we all
this process Syntax-Direded Trandation.

» Def: The computations or other operations
attached to the productions impute meaning to
each production, and so these operations are
called Semantic Actions

Chapter 5 - Intermediate Code Generation

n Def: Theinformation oktained by the semantic
actionsis associated with the symbols of the
grammar; it isnormally put in fields of records
asciated with the symbols; these fields are
called attributes

= Note: asfar asthe parser is concerned, neither
the semantic actions nor the dtributesare a
part of the grammar; they are only used as a
devicefor bridging the gap between parsing
and constructing an intermediate
representation.

Chapter 5 - Intermediate Code Generation 4

= Things we must take cre of with the semantic
actions:
0 making sure the variables are dedared before
use.
0 type checking
0 making sure actual and formal parameters are
matched
m Thesethingsare cdled semantic analysis

= Sowe ca) now haveit both ways, we can Put
context dependent information and actions
together into alanguage that is gill context
free.

Chapter 5 - Intermediate Code Generation

2. Intermediate Representations

= Wewill look at several different
representations
O Syntax Trees
0 Directed Acyclic Graphs
0 Postfix natation
0 Three AddressCode
0 Other Forms.

Chapter 5 -- Intermediate Code Generation 6

2.1 Syntax Trees

= typicdly used when intermediate awdeisto be
generated later (maybe dter an optimization
pass)

Chapter 5 -- Intermediate Code Generation 7

m Statement: x=a*b+a*b
m PaseTree

=a i= i=a =b
Figure 5.2(a)
Chapter 5 - Intermediate Code Generation 8

= Syntax Tree

=/ =\+
*/ *
-
Figure 5.2(b)

Chapter 5 -- Intermediate Code Generation 9

= InaParse Treethe enphasisisonthe
grammatical structure of the statement.

= InaSyntax Treethe enphasisis on the actual
computation to be performed.

Chapter 5 - Intermediate Code Generation 10

2.2 Directed Acyclic Graphs

= Thedirected acyclic graph (DAG) isarelative
of aSyntax Tree.

» Thedifferenceisthat nodes for variables or
repeated sub-expressions are merged.

Chapter 5 -- Intermediate Code Generation 11

= DAG -- Noticethat thisis not the same
computations asin the previous examples
0 They had atypo-- (swapped the* and +)
0 But it till explains the mncept

e
o
e

i=a i=b
Figure 5.2(c)
Chapter 5 - Intermediate Code Generation 12

= The use of DAG'sto eliminate redundant code
isour first instance of optimization. We will
seemore optimizationin Chapter 6.

= Redundant code really comesinto play when
we do array subscripts.

= When you start generating intermediate mde,
you will be anazed at how much is generated
for array subscripts.

Chapter 5 -- Intermediate Code Generation 13

2.3 Postfix Notation

= Very easy to generate from a Bottom-Up parse.

= You can dso generate it from a Syntax Tree
via apostorder traversal.

» The chief virtue of postsfix isthat it can be
evaluated with the use of a stack.

= Nested if statements can cause problems.

Chapter 5 - Intermediate Code Generation 14

2.4 Three Address Code

= Thisform breaks the program down into
elementary statements having no more than 3
variables and no more than ore operator.

= Sample Statement: x=a+b *b

= Trandation:
oT:=b*b
ox:=a+T

= Note: T isatemporary variable.

Chapter 5 -- Intermediate Code Generation 15

= The notation isa mmpromise; it hasthe
general form of a high-level language, but the
individua statements are simple enough that
they map into assembly languagein a
reasonably straight forward manner.
= 3AC may be:
0 Generated from atraversal of a Syntax Treeor
aDAG.
0 or it may be generated as intermediate cde
directly in the course of the parse.

Chapter 5 - Intermediate Code Generation 16

2.5 Intermediate Languages

= Sometimes the Intermediate representation
may be alanguage of its own.

= This helps uncouple the front end o the
compiler from the bad end.

= You can then have afront end for each
language that generate the same intermediate
language, and then one back end for each type
of computer.

Chapter 5 -- Intermediate Code Generation 17

= Examples:
0 UNCOL (1961) -- UNiversal Compil er-
Oriented Language.

0 P-Code (1981) -- UCSD -- based upon a p-code
interpreter (they also built p-code compilers.)

0 GNU Intermediate Code -- gcc, gt++, g77, gada,
0 -- aLispish type intermediate language.

Chapter 5 - Intermediate Code Generation 18

3. Bottom-Up Trandlation

= Bottom-Up parsing generaly lendsitself to
intermediate mde generation more readily than
does top-down parsing.

= |n either case, we must keep track of the
various elements or pieces of the intermediate
representation we ae using, so we an get at
them when we need them.

Chapter 5 -- Intermediate Code Generation 19

= These dementswill be &tributes of symbolsin
the grammar.

0 For an identifier, the &tribute will usually be
its address in the symbol table.

0 For anonterminal, the attribute will be some
appropriate referenceto part of theintermediate
representation.

Chapter 5 - Intermediate Code Generation 20

= The most convenient way to keep track of
these atributesis by kegping them in a stack
(known as the semantic stack).

= Inthe ase of bottom-up parsing, the semantic
stack and the parser stack movein
synchronism.

0 When we pop from the parse stack we popthe
semantic stack, and when we push something
onto the parse stack we will push something
onto the semantic stack

Chapter 5 -- Intermediate Code Generation 21

3.1 Trees

= Syntax Trees

0 The semantic adion associated with each
productionwill i nclude planting atree ad
taking care of the grafts.

0 The attribute will contain a pointer to the root
of the treefor this expression.

0 You will need functions like make_tree(') and
make_leaf()

Chapter 5 - Intermediate Code Generation 22

= DAGS
0 The main dff erence between constructing a

DAG and constructing a Syntax Tree s that we
do nd create redundant nodesin aDAG.

0 That means that the functions to crege trees
and grafts must be modified to ched for
duplicates.

o Thisistypicaly done with a hash function.

Chapter 5 -- Intermediate Code Generation 23

3.2 Postfix Notation

= Postfix notationis particularly easy to generate
from a bottom-up parse.

= Grammar:
S —i=F {output (‘=, i.lexeme) }
E—-E+E {output (‘+)}
E—> ExE { output (‘+’) }
E— (E) { do nothing }
E—i {output (i.lezeme) }

Chapter 5 - Intermediate Code Generation 24

3.3 Three Address Code

= We can dbtain 3AC from atree or aDAG, or
we @n generate it diredly in the murse of a
bottom-up parse.
= To generate 3AC during the parse we neal the
following functions:
0 MakeQuad() -- puts its parametersinto the
ligting filein the proper format.
0 GetTemp() -- Generates a new temporary
number.

Chapter 5 -- Intermediate Code Generation 25

4. Top-Down Translation
m |t is, to beblunt, amess

= Two stacks, one for the parser, and mefor the
attributes. Thus the semantic stack must now
be separate and will nat move in synchronism
with the parser stack

Chapter 5 - Intermediate Code Generation 26

= Up to now, we picked up attributes from
children, and the bottom-up parser provided a
handy way to do this. Now we haveto be &le
to transfer attributes between siblings, and in
some caesit may be necessary to transfer
them from parent to child.

Chapter 5 -- Intermediate Code Generation 27

4.1 Synthesized and Inherited
Attributes

= synthesized -- from your children (like we
have looked at).

= inherited -- from your parent, or sibling
» Def: A grammar in which al attributes are

synthesized is called an S-attribute grammar

Chapter 5 - Intermediate Code Generation 28

= Noticethat inheritance so far is from left to
right.
0 That may nat always be the @se, and that can
redly messthings up.

m Def: Grammarsin which no nan-terminal ever

inherits from a younger brother are clled L-
attributed grammars

Chapter 5 -- Intermediate Code Generation 29

4.2 Attributesin a Top-Down Parse

= Since so many of our problems arise from the
need to eliminate |eft recursionin the
underlying grammar, the place to start isto see
how anormal semantic adion hasto be
modified when removing left recursion.

Chapter 5 - Intermediate Code Generation 30

= Inthisexample, .sis used to denote a
synthesized attribute, and .i an inherited one.

E »T{Qi:="Ts}Q{Es:=Q.s}

Q1 = +T {Qa _Q11+TS}Q2{Q18—Q25}

Q —e{Q.s:=Qi}

T — F{Ri:=F.s} R{T.s:= Rs}

Ry — % F {Rp.i := R1.4* F.s} Ry {R1.5 := Ry.s}

R — e {R.s:=R.i}

Chapter 5 -- Intermediate Code Generation 31

= An sample parse treeof at+b

E

/ -

M= = = = O
.
F R + T
- £
ii=a € F, o

.
i = €
Figure 5.8
Chapter 5 - Intermediate Code Generation 32

4.3 Removal of Left Recursion

= When transforming a grammar to remove left
reaursions, we must also transform the
semantic adions, asthe example we just saw
implies.

» There ae some basic rules on how to do this,
but we will not cover them at thistime.

Chapter 5 -- Intermediate Code Generation 33

5. More abou Bottom-Up
Translation
= We ae now going to consider the @ses where

semantic adions must be enbedded in the
midst of the right-hand side of a production.

= And caseswhereit is expedient to use
inherited attributes.

Chapter 5 - Intermediate Code Generation 34

5.1 Embedded Semantic Actions

= You will recal that in S-attributed grammars,
the semantic actions occur in one piece & the
end of the right-hand side of the production.
= For some statements that isfine, but for others
itisnot.
0 Thetypicd exampleis: if Cthen S

0 because based uponthe value of C we need a
conditional jump to the end of the statement S.

Chapter 5 -- Intermediate Code Generation 35

= There ae afew ways around this:

0 Add Semantic actions in the middle of the
production (Y ACC/BISON all ow this)

0 Breaking Productions up
0 Adding Marker Non-Terminals

= Another problem:

0 Thelimit ajump non zero can go (jnz limit).
On the Intel architecture, thisis 127 bytes.

Chapter 5 - Intermediate Code Generation 36

5.2 Inherited Attributes

= Example: Fortran Variables

0 The data type comesfirst, so you can enter
lexemes into the symbol table with the data
type (an inherited attribute)

Chapter 5 -- Intermediate Code Generation 37

6. Pascd-Type Declarations

= Problem:

0 The data type comes last, so you can’t add the
variables into the Symboal table a they come.

= Solution:
0 Save the identifiers (or their symbal table
pointer) onto some stack/li st

0 When the data types come aourd, update the
list elements.

Chapter 5 - Intermediate Code Generation 38

7. Type Chedking and Coercion

= integer operation/ float operation
= isitinteger_add, float_add,...
0 The problem is that thisis an overloaded
operator
= |t isupto the Semantic Analyzer

0 to determine which operation is desired and to
choose the gpropriate implementation.

0 And if the user has Pecified two incompatible
operands, it must take some adion.

Chapter 5 -- Intermediate Code Generation 39

if E.type = integer and T.type = integer then
begin
et a temporary variable @ for the result (as usual);
generate 3AC for integer addition of E and T
(iadd, B.loc, T.loc, Q.loc)

end
else if E.type = real and T.type = real then
begin
get a temporary variable for the result;
generate 3AC for floating-point addition of E and T
(£add, E.loc, T.loc, Q.loc)
end
else if E.type = real and T.type — integer then
begin
get a temporary variable Q; for a floating-point number;
generate code to convert T to floating-point form and put it into Qy:
(1oat, T.loc, —, Q1.loc);
get a temporary variable @ for the result;
generate 3AC for floating-point addition of E and Qy:
(£add, E.loc, Q.loc, Qa.loc)

else { other way around }

begin

get a temporary variable Q; for a floating-point number;

generate code to convert E to floating-point form and put it into Q1:
(f1oat, E.loc, —, Qn.loc);

get a temporary variable @ for the result;

generate 3AC for floating-point addition of @ and T
(£add, Q1.loc, Tloc, Qz.loc)

end;

Chapter 5 - Intermediate Code Generation 40

8. Summary

= We have seen some of the principal methods
for intermediate ade generation and some of
the principal problems.

= Now we have nearly reached the cnclusion of
thefront end of the compiler.

= Some front-ends also include some
optimization, and some interpreters also stop
here.

Chapter 5 -- Intermediate Code Generation 41

