
Chapter 5

Intermediate Code Generation

Chapter 5 -- Intermediate Code Generation 2

■ Let us see where we are now.
◆ We have tokenized the program and parsed it.

◆ We know the structure of the program and of
every statement in it,

◆ and we have presumably established that it is
free of grammatical errors.

◆ It would appear that we are ready to start
translating it.

Chapter 5 -- Intermediate Code Generation 3

1. Semantic Actions and Syntax-
Directed Translation

■ We can attach a meaning to every production

■ Because the sequence of productions guides
the generation of intermediate code, we call
this process Syntax-Directed Translation.

■ Def: The computations or other operations
attached to the productions impute meaning to
each production, and so these operations are
called Semantic Actions

Chapter 5 -- Intermediate Code Generation 4

■ Def: The information obtained by the semantic
actions is associated with the symbols of the
grammar; it is normally put in fields of records
associated with the symbols; these fields are
called attributes

■ Note: as far as the parser is concerned, neither
the semantic actions nor the attributes are a
part of the grammar; they are only used as a
device for bridging the gap between parsing
and constructing an intermediate
representation.

Chapter 5 -- Intermediate Code Generation 5

■ Things we must take care of with the semantic
actions:
◆ making sure the variables are declared before

use.

◆ type checking

◆ making sure actual and formal parameters are
matched

■ These things are called semantic analysis

■ So we can now have it both ways, we can Put
context dependent information and actions
together into a language that is still context
free.

Chapter 5 -- Intermediate Code Generation 6

2. Intermediate Representations

■ We will look at several different
representations
◆ Syntax Trees

◆ Directed Acyclic Graphs

◆ Postfix notation

◆ Three-Address Code

◆ Other Forms.

Chapter 5 -- Intermediate Code Generation 7

2.1 Syntax Trees

■ typically used when intermediate code is to be
generated later (maybe after an optimization
pass)

Chapter 5 -- Intermediate Code Generation 8

■ Statement: x = a * b + a * b

■ Parse Tree

Chapter 5 -- Intermediate Code Generation 9

■ Syntax Tree

Chapter 5 -- Intermediate Code Generation 10

■ In a Parse Tree the emphasis is on the
grammatical structure of the statement.

■ In a Syntax Tree the emphasis is on the actual
computation to be performed.

Chapter 5 -- Intermediate Code Generation 11

2.2 Directed Acyclic Graphs

■ The directed acyclic graph (DAG) is a relative
of a Syntax Tree.

■ The difference is that nodes for variables or
repeated sub-expressions are merged.

Chapter 5 -- Intermediate Code Generation 12

■ DAG -- Notice that this is not the same
computations as in the previous examples
◆ They had a typo -- (swapped the * and +)

◆ But it still explains the concept

Chapter 5 -- Intermediate Code Generation 13

■ The use of DAG's to eliminate redundant code
is our first instance of optimization. We will
see more optimization in Chapter 6.

■ Redundant code really comes into play when
we do array subscripts.

■ When you start generating intermediate code,
you will be amazed at how much is generated
for array subscripts.

Chapter 5 -- Intermediate Code Generation 14

2.3 Postfix Notation

■ Very easy to generate from a Bottom-Up parse.

■ You can also generate it from a Syntax Tree
via a postorder traversal.

■ The chief virtue of postsfix is that it can be
evaluated with the use of a stack.

■ Nested if statements can cause problems.

Chapter 5 -- Intermediate Code Generation 15

2.4 Three-Address Code

■ This form breaks the program down into
elementary statements having no more than 3
variables and no more than one operator.

■ Sample Statement: x = a + b * b

■ Translation:
◆ T := b * b

◆ x := a + T

■ Note: T is a temporary variable.

Chapter 5 -- Intermediate Code Generation 16

■ The notation is a compromise; it has the
general form of a high-level language, but the
individual statements are simple enough that
they map into assembly language in a
reasonably straight forward manner.

■ 3AC may be:
◆ Generated from a traversal of a Syntax Tree or

a DAG.

◆ or it may be generated as intermediate code
directly in the course of the parse.

Chapter 5 -- Intermediate Code Generation 17

2.5 Intermediate Languages

■ Sometimes the Intermediate representation
may be a language of its own.

■ This helps uncouple the front end of the
compiler from the back end.

■ You can then have a front end for each
language that generate the same intermediate
language, and then one back end for each type
of computer.

Chapter 5 -- Intermediate Code Generation 18

■ Examples:
◆ UNCOL (1961) -- UNiversal Compiler-

Oriented Language.

◆ P-Code (1981) -- UCSD -- based upon a p-code
interpreter (they also built p-code compilers.)

◆ GNU Intermediate Code -- gcc, g++, g77, gada,
✦ -- a Lispish type intermediate language.

Chapter 5 -- Intermediate Code Generation 19

3. Bottom-Up Translation

■ Bottom-Up parsing generally lends itself to
intermediate code generation more readily than
does top-down parsing.

■ In either case, we must keep track of the
various elements or pieces of the intermediate
representation we are using, so we can get at
them when we need them.

Chapter 5 -- Intermediate Code Generation 20

■ These elements will be attributes of symbols in
the grammar.

◆ For an identifier, the attribute will usually be
its address in the symbol table.

◆ For a non-terminal, the attribute will be some
appropriate reference to part of the intermediate
representation.

Chapter 5 -- Intermediate Code Generation 21

■ The most convenient way to keep track of
these attributes is by keeping them in a stack
(known as the semantic stack).

■ In the case of bottom-up parsing, the semantic
stack and the parser stack move in
synchronism.
◆ When we pop from the parse stack we pop the

semantic stack, and when we push something
onto the parse stack we will push something
onto the semantic stack

Chapter 5 -- Intermediate Code Generation 22

3.1 Trees

■ Syntax Trees
◆ The semantic action associated with each

production will i nclude planting a tree and
taking care of the grafts.

◆ The attribute will contain a pointer to the root
of the tree for this expression.

◆ You will need functions like make_tree() and
make_leaf()

Chapter 5 -- Intermediate Code Generation 23

■ DAGS
◆ The main difference between constructing a

DAG and constructing a Syntax Tree is that we
do not create redundant nodes in a DAG.

◆ That means that the functions to create trees
and grafts must be modified to check for
duplicates.

✦ This is typically done with a hash function.

Chapter 5 -- Intermediate Code Generation 24

3.2 Postfix Notation

■ Postfix notation is particularly easy to generate
from a bottom-up parse.

■ Grammar:

Chapter 5 -- Intermediate Code Generation 25

3.3 Three-Address Code

■ We can obtain 3AC from a tree or a DAG, or
we can generate it directly in the course of a
bottom-up parse.

■ To generate 3AC during the parse we need the
following functions:
◆ MakeQuad() -- puts its parameters into the

listing file in the proper format.

◆ GetTemp() -- Generates a new temporary
number.

Chapter 5 -- Intermediate Code Generation 26

4. Top-Down Translation

■ It is, to be blunt, a mess

■ Two stacks, one for the parser, and one for the
attributes. Thus the semantic stack must now
be separate and will not move in synchronism
with the parser stack

Chapter 5 -- Intermediate Code Generation 27

■ Up to now, we picked up attributes from
children, and the bottom-up parser provided a
handy way to do this. Now we have to be able
to transfer attributes between siblings, and in
some cases it may be necessary to transfer
them from parent to child.

Chapter 5 -- Intermediate Code Generation 28

4.1 Synthesized and Inherited
Attributes
■ synthesized -- from your children (like we

have looked at).

■ inherited -- from your parent, or sibling

■ Def: A grammar in which all attributes are
synthesized is called an S-attribute grammar

Chapter 5 -- Intermediate Code Generation 29

■ Notice that inheritance so far is from left to
right.
◆ That may not always be the case, and that can

really mess things up.

■ Def: Grammars in which no non-terminal ever
inherits from a younger brother are called L-
attributed grammars

Chapter 5 -- Intermediate Code Generation 30

4.2 Attributes in a Top-Down Parse

■ Since so many of our problems arise from the
need to eliminate left recursion in the
underlying grammar, the place to start is to see
how a normal semantic action has to be
modified when removing left recursion.

Chapter 5 -- Intermediate Code Generation 31

■ In this example, .s is used to denote a
synthesized attribute, and .i an inherited one.

Chapter 5 -- Intermediate Code Generation 32

■ An sample parse tree of a+b

Chapter 5 -- Intermediate Code Generation 33

4.3 Removal of Left Recursion

■ When transforming a grammar to remove left
recursions, we must also transform the
semantic actions, as the example we just saw
implies.

■ There are some basic rules on how to do this,
but we will not cover them at this time.

Chapter 5 -- Intermediate Code Generation 34

5. More about Bottom-Up
Translation
■ We are now going to consider the cases where

semantic actions must be embedded in the
midst of the right-hand side of a production.

■ And cases where it is expedient to use
inherited attributes.

Chapter 5 -- Intermediate Code Generation 35

5.1 Embedded Semantic Actions

■ You will recall that in S-attributed grammars,
the semantic actions occur in one piece at the
end of the right-hand side of the production.

■ For some statements that is fine, but for others
it is not.
◆ The typical example is: if C then S

◆ because based upon the value of C we need a
conditional jump to the end of the statement S.

Chapter 5 -- Intermediate Code Generation 36

■ There are a few ways around this:
◆ Add Semantic actions in the middle of the

production (YACC/BISON allow this)

◆ Breaking Productions up

◆ Adding Marker Non-Terminals

■ Another problem:
◆ The limit a jump non zero can go (jnz limit).

On the Intel architecture, this is 127 bytes.

Chapter 5 -- Intermediate Code Generation 37

5.2 Inherited Attributes

■ Example: Fortran Variables
◆ The data type comes first, so you can enter

lexemes into the symbol table with the data
type (an inherited attribute)

Chapter 5 -- Intermediate Code Generation 38

6. Pascal-Type Declarations

■ Problem:
◆ The data type comes last, so you can’ t add the

variables into the Symbol table as they come.

■ Solution:
◆ Save the identifiers (or their symbol table

pointer) onto some stack/list

◆ When the data types come around, update the
list elements.

Chapter 5 -- Intermediate Code Generation 39

7. Type Checking and Coercion

■ integer operation / float operation

■ is it integer_add, float_add,...
◆ The problem is that this is an overloaded

operator

■ It is up to the Semantic Analyzer
◆ to determine which operation is desired and to

choose the appropriate implementation.

◆ And if the user has specified two incompatible
operands, it must take some action.

Chapter 5 -- Intermediate Code Generation 40

Chapter 5 -- Intermediate Code Generation 41

8. Summary

■ We have seen some of the principal methods
for intermediate code generation and some of
the principal problems.

■ Now we have nearly reached the conclusion of
the front end of the compiler.

■ Some front-ends also include some
optimization, and some interpreters also stop
here.

