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■ Code as generated by syntax-directed
translation tends to contain a lot of deadwood.
◆ There are redundant instructions

◆ And operations are implemented in clumsy
ways.

■ Optimization is the attempt to reach the ideal.
◆ The type of code produced by an expert

assembly-language programmer on a familiar
machine.

Chapter 6 -- Optimization 3

■ The optimizer’s problem is to remove as much
of the deadwood as possible without changing
the meaning of the program.

■ But, There are limits to what optimization can
do.  Indeed, optimization may on rare
occasions make a program bigger or slower
than it was before.

■ Moreover, optimization is no substitute for
good program design, or especially for
intelligent algorithm selection.
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■ Most optimization consists of identifying
unnecessary computations.
◆ We have seen that DAGs can be used for this

purpose in short sequences of instructions.

◆ For larger-scale analysis, we must have a way
of tracking the way information about data
items moves through the program;

✦ This is known as data-flow analysis, and it is one of
our main tools in optimization.
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1. Machine Independent
Optimization
■ We classify optimization techniques as

machine dependent or machine independent.
◆ Machine dependent optimization consists of

finding convenient shortcuts that take
advantage of the architecture and instruction set
of the target machine.

◆ Machine independent optimization analyzes the
organization of the program itself at the
intermediate-code level.  This is more general,
so we will begin with it.
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1.1 Basic Blocks

■ Some optimization can be done within
individual statements, but the most fruitful
source of deadwood is in redundancies over
sequences of statements.

■ For this reason, most machine-independent
optimization takes as its starting point the
basic block.
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■ A basic block is a set of 3AC instructions that
are always executed sequentially from
beginning to end.
◆ This means that there are no branches into or

out of the middle of the block

◆ and that the entire program can be represented
as a set of basic blocks interconnected by
branches.

✦ The branches indeed define the boundaries of the
blocks.
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◆ A basic block begins
✦ At the start of the program,

✦ At the start of a procedure

✦ At the target of any branch

✦ Immediately after a branch

◆ And it ends
✦ Before the next basic block

✦ At the end of the program

✦ At the end of a procedure.

◆ It is easiest to identify the starts of the blocks;
then each block continues until the start of the
next one or the end of the program.
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■ We can now distinguish three levels of
optimization:
◆ local optimization

✦ which limits its scope to the current basic block.

◆ global optimization
✦ which must take into account the flow of

information between blocks.

◆ interprocedural optimization
✦ which considers the flow of information between

procedures.

■ We can generally do local with a DAG, the
others require data-flow analysis (Sec 6.3)
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■ First, let’s break a procedure into basic blocks.
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■ 3AC
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■ Basic Blocks.
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■ In the course of the ensuing optimizations,
instructions within a basic block may be
modified or deleted.
◆ Hence it is a good idea to make the gotos refer

to block numbers instead of quadruple
numbers, in case the target quad gets deleted.

◆ You may have noticed that this was done in the
breakdown of the previous basic blocks.
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■ At the moment we are interested in the
individual blocks;  but when we come to
global optimization, we will also be concerned
with the flow of control and of data between
the blocks.

■ The gotos in the code can be pictured as
creating paths between the blocks;  when we
show these paths, we get a flow graph.

■ The flow graph for the basic blocks we just
created is shown on the next slide.
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1.2 Local Optimization

■ We can do a significant variety of
enhancements within a basic block.

■ Some of these optimizations can be done
globally as well as locally;  I am listing them
here because then can be done locally.

■ Details about their implementation must await
the development of theory later in the chapter.
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■ Constant Folding.

◆ If a program contains a subexpression whose
operands are constants, li ke

✦ x := 2 * 3;

◆ There is no need to multiply these numbers at
run time; the compiler can compute the product
and substitute

✦ x := 6;
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◆ Programmers rarely write anything like that;
but good programmers will frequently write

✦ const
• lgth = 2;

• amount = 3;

✦ ...
✦ x:= lgth * amount;

◆ Programming practices give rise to operations
on constants.

◆ Precomputing the results of such operations at
compile time is called constant folding  and is
one of the most common types of optimization.
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◆ The picture is more complicated if the
programmer has scattered constants about the
statement, as, for example, in

✦ x := lgth*(b + c/a)*amount;

◆ From axioms in basic math you would say you
could re-order the statement to be

✦ x := lgth*amount*(b+c/a);
✦ Don’ t even think about this if anything in the

statement is not an integer, because the order change
can change the final result.
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◆ Another, less obvious, opportunity occurs when
a programmer assigns a value to a variable once
and never changes the value again.

✦ var.
• lgth : integer;

✦ lgth:=2;
✦ For all practical purposes lgth is a constant, but

using it throughout the program in an optimization
technique is called constant propagation.

✦ If a computed value, like lgth, is to be propagated
through the entire program, then we need to do
data-flow analysis to guarantee that the value is the
same regardless of the path taken through the
program at run time.

Chapter 6 -- Optimization 21

■ Copy Propagation.
◆ Copy instructions are 3AC instructions of the

form
✦ x := y;

◆ When instructions of this sort occur, followed
later by a use of x, we can frequently substitute
y for x (provided neither has changed between
the copy and the use).

◆ This is another optimization that can be done
locally with the sue of a DAG (or globally)

◆ If x is a temporary, we have now created
useless code.  We discuss its removal in 6.1.4
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■ Reduction in Strength.
◆ It is occasionally possible to replace an

expensive operation with a cheaper one; this is
known as reduction in strength.

✦ An integer that is to be multiplied by 2 can be
shifted 1 bit to the left.

✦ a = x**y (in FORTRAN) would normally be
compiled as:

• T1 := ln(x)

• T2 := y * T1
• a := exp(T2)

◆ We will return to reduction in strength when we
discuss loop optimization in Sec. 6.1.3
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■ Substitution of In-Line Code.
◆ A statement like:

✦ i := abs(j)

◆ is at least nominally a function call .

◆ In most computers it is easier simply to test the
sign of j and complement it if it is negative.

◆ May computers have an instruction that will
simply force the contents of a register to be
positive

✦ L 3,J
✦ LPR 3,3   Force a positive value
✦ ST 3,I

Chapter 6 -- Optimization 24

■ Common Subexpressions.
◆ We saw the use of DAGs to detect common

subexpressions locally in Chapter 5.

◆ We will pursue this further in the next section,
Loop Optimization (6.1.3) and then again in
Section 6.2
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1.3 Loop Optimization

■ Most programs spend the bulk of their
execution time in loops, and especially in the
innermost levels of nested loops.

■ There is a well-known saying that 10 percent
of the code accounts for 90 percent of the
execution time;  this 10 percent is usually
found in loops.

■ Hence loop optimization is of particular
importance.
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■ Loop-Invariant Expressions
◆ A relative of common subexpression is the

repeated subexpression.
✦ for k:= 1 to 1000 do

• c[k] := 2*(p-q)*(n-k+1)/(sqr(n)+n);

◆ Certain parts of this expression are not
dependent upon the loop variables (k) and
should be moved out of the loop.

✦ 2*(p-q)
✦ sqr(n)+n

◆ This process is called invariant code motion.
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◆ There are other operations that could be moved
that are not reachable by the programmer.

✦ for i:= 1 to 30 do
✦      for j:= 1 to 30 do
✦         for k:= 1 to 30 do
✦             x[i, j, k] := y[i, j, k] + z[i, j, k]

◆ To find the address of [i,j,k] we must compute:
✦ addr(x[i, j, k]) = base(x) + offset(i, j, k)
✦ offset(i, j, k) = e(k-l3) + offset(i, j)
✦ offset(i, j) = e(j-l2)(u3+1-l3)+ offset(i)
✦ offset(i) = e(i-l1)(u2+1-l2)(u3+1-l3)
✦ where ui and l i are the upper and lower bounds of

each dimension.
✦ Note: offset(i) and offset(i, j) are invariants to the

inner loops.
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◆ T1 := (u3 + 1 - l3);

◆ T2 := u2 + 1 - l2);
◆ for i := 1 to 30 do
◆     begin

◆     T3 := e*(I-l1)*T1*T2  {T3 is offset(i)}
◆     for(j:= 1 to 30 do
◆         begin
◆         T4 := T3 + e*(j-l2)*T1 {T4 is offset(i, j)}

◆         for k:= 1 to 30 do
◆             begin
◆             T5 := T4 + e*(k-l3);
◆             x[T5] := y[T5] + z[T5]

◆             end;
◆         end;
◆     end;
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◆ The restrictions on high-level languages
generally forbid us writing thing like this, 

◆ But the optimizer, having access to the 3AC
instructions that accomplish these
computations, can recognize the loop invariants
and shift them to the preheaders of their
respective loops, as this code suggests.
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■ Reduction in Strength.
◆ A particularly important kind of strength

reduction is associated with loops.
✦ for i:=1 to 1000 do

✦     sum:= sum + a[i];

◆ Suppose the elements of a are 4 byte reals
✦ i := 1

✦ T1 := i - 1
✦ T2 := 4 * i
✦ T3 := a[T2]
✦ …

✦ i := i+1

◆ We could change the 4*i statement to a 2-bit
left shift
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■ Loop Unrolling.
◆ The management of a loop normally requires a

certain amount of initial setup and a certain
amount of checking every time the loop is
repeated. 

◆ for i := 1 to 20 do
◆     begin
◆     for j := 1 to 2 do
◆         write (x[i, j]:9:3);
◆     writeln;
◆     end;
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◆ For the outer loop the overhead is acceptable,
for the inner, it is not.  So you may just
duplicate the code and substitute j with 1 or 2.

◆ If you wish to include this kind of optimization,
you must decide how much space you are
willi ng to lose in order to save execution time.

◆ The optimizer must then figure the space/time
trade-off for unrolli ng any particular loop and
unroll it only if the trade-off is acceptable.
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1.4 Global Optimization

■ There are other optimizations that span more
than a single basic block but are not associated
with loops.
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■ Dead Code Elimination.

◆ Dead code is code that is never executed r that
does nothing useful.

◆ It does not appear regularly, but it may result
from copy propagation, or from the
programmer’s debugging variables.
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◆ In the first case
✦ T1 := k
✦ …
✦ x := x + T1
✦ y := x - T1
✦ …

◆ Which could be changed to
✦ x : = x + k

✦ y : = x - k

◆ If T1 has no other use, it is now dead, so the
tuple with the assignment to it can be removed.
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◆ In debugging a program, we will write
✦ if trace then
✦     begin
✦     writeln(…);
✦     writeln(…);
✦     end;

◆ with
✦ const trace = true;

✦ when we are debugging

◆ Then when we are done we change it to
✦ trace = false;

◆ Now the if is dead code, and should be
removed.
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◆ Sometimes the optimizer can get carried away.
✦ for I := 1 to 128 do
✦     begin
✦     port[x] := 1;
✦     delay(1);        {do nothing for 1 millisecond }
✦     port[x] : = 0;
✦     delay(1);
✦     end;

◆ An overly ambitious optimizer could remove
the whole for loop.

◆ Therefore you may want a compiler flag to turn
off certain optimizations over a certain piece of
code.

Chapter 6 -- Optimization 38

■ Code Motion.
◆ Another form of code motion is when we are

optimizing the program for size rather than for
speed is code hoisting.

✦ case p of
✦     1: c : = a + b*d;
✦     2: m := b*d - r;
✦     3: f := a - b*d;
✦     4: c:= q / (b*d + r)
✦     end;

◆ Observe the b*d in every option of the case
statement.
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◆ Such an expression is said to be very busy.

◆ Clearly we should be able to precompute b*d
✦ T := b*d
✦ case p of
✦     1: c : = a + T;
✦     2: m := T - r;
✦     3: f := a - T;
✦     4: c:= q / (T + r)
✦     end;

◆ It is because of this moving-up that this
particular kind of optimization is called
hoisting.

◆ This may not save time, but it saves space.
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2. DAGs Again

■ We saw how to generate DAGs under the
control of the parser in Chapter 5.

■ If we generate 3AC directly under the parse,
then we may have to construct a DAG from
scratch during the optimization phase in order
to detect and remove common subexpressions.
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2.1 Generating DAGs from 3AC

■ We can assume that every 3AC instruction is
in one of two forms:
◆ a := b op c

◆ a := op b
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◆ Algorithm:
✦ We assume there is an array curr that contains a

pointer to the node that holds the variable’s current
value.

✦ If curr[b] = nil,
• create a leaf, label it b, make curr[b] point to this leaf.
• If the instruction includes an operand c, do the same for it.

✦ Look for an existing node labeled op that is already
linked to the nodes pointed to by curr[b] and curr[c]
(or curr[b] if that’s the only operand).

• If no such node exists, create one and link it.
• In either case set curr[a] to this node.
• If op is an assignment (a := b) we simply apply label a to

the same node as b and make curr[a] point to it.

✦ If another node in the DAG is labeled a, remove that
label; in any case label the current node a.
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◆ Constructing a DAG has to be done with some
care, because we must be sure that two
instances of an expression really refer to the
same thing.

◆ We can cope with most problems by adding a
flag to the record describing each node,
indicating whether anything it refers to has
been changed.  This is sometimes known as a
kill bit.

◆ If our optimizer includes data flow analysis
between procedures, then we will know
whether any variables are changed by the call
and can avoid kil ling nodes unnecessarily.
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2.2 Generating 3AC from DAGs

■ The DAG, once we have it, tells us what the
minimal code must be, and it also shows the
dependencies among the various calculations.

■ In generating 3AC from the DAG, we work
from the leaves upward.  Traversing the DAG
in order of its dependencies is equivalent to
topological sorting.
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■ Topological Sort Algorithm
◆ Set n = 1

◆ Repeat
✦ Select any source, assign it the number n, and

remove it and its incident edges from the graph

✦ Set n = n+1

◆ Until the graph is empty.

■ You then go through this list in reverse order,
starting with the last interior node in the list,
and constructing the corresponding 3AC.
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◆ In the example given in the text, which used the
DAG shown a few slides ago, they cut the size
of the block from thirteen 3AC statements to
eight, and reduced the number of temporaries
from ten to five.

◆ When there are no repeated subexpressions in a
basic block, the DAG opens out into a tree.

◆ In this case you can traverse it in preorder and
get similar results, but there is a better way.
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3. Data-Flow Analysis

■ As soon as we expand the scope of
optimization beyond the basic block, we must
be able to trace how values make their way
through a program.

■ This process is called data-flow analysis.
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3.1 Flow Graphs

■ To show the transfer of control between basic
blocks, we use a flow graph.
◆ it is a directed graph in which each node is a

basic block

◆ the edges show the transfer of control between
the blocks.
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◆ When we
isolated the basic
blocks we used
the branches in
the program to
determine their
boundaries.

◆ In the flow
graph, these
branches are
used to link the
blocks
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◆ The flow graph reveals the pattern of branching
and looping within the procedure.

◆ Some Definitions
✦ A block Bi is a predecessor of block Bj if there is an

edge in the flow graph from Bi to Bj.
• For example B2 is a predecessor of B3 (B2 pred B3)

✦ We can also say that B3 is a successor of B2 
(B3 succ B2)

• Note that B2 is not a predecessor of B4

✦ We say that Bi dominates a node Bj if we must pass
through Bi when going from the start of the node to
Bj

• Node Bi is the immediate dominator of Node Bj if it’s the
last dominator we pass through before we reach Node Bj
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◆ Dominance is a
partial ordering,
but, more
importantly for
our concerns,
dominators can be
displayed as a tree
in which the root
is their starting
node and every
interior node
dominates all it s
descendants.
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◆ The main usefulness of dominators is that they
enable the compiler to recognize loops

✦ There is a loop in the flow graph if there is an edge
whose head dominates its tail.

• Such an edge is called a back edge.

✦ Recognizing loops is important, since loops tend to
account for the bulk of the run time in any program
and hence are prime candidates for optimization.

✦ To recognize loops, we look for back edges
• In our example flow graph we find two nested loops

because there are two back edges

– B10 to B2

– B7 to B4
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3.2 Data-Flow Equations

◆ To optimize globally, we have to be able to
track the movement of information between
basic blocks.

◆ We must, in fact, consider all the blocks in the
procedure because a computed value may be
used in some remote block, not necessarily the
successor of the block in which it was
computed; thus we have to consider the
procedure as a whole.
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◆ We do this by setting up equations describing
the fate of the computed values inside each
block and describing how the interconnections
of the blocks affect these values.

■ These equations are the data-flow equations.

◆ Data-flow analysis considers
✦ what happens to variables or expression values

within a block, that is, whether they are updated

✦ how variables or values reach the beginning of a
block

✦ where they go from the end of a block
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◆ Data Flow Analysis takes four different forms,
depending on whether we work forward or
backward through the flow graph and on
whether we may consider any path to or from a
block or must consider all paths.

◆ Each of these forms has its own set of data-flow
equations.

✦ We need an equation relating the conditions at a
block boundary to those in adjacent blocks,

✦ and we need an equation expressing how conditions
change within the block.
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◆ Fortunately, the equations for all four forms
have the same general appearance, with minor
variations, and the methods for solving them
run along the same general li nes.

◆ We also need some sort of initial conditions
✦ for the beginning of the flow graph

• (if our analysis is forward)

✦ or for the end of the flow graph
• (if our analysis is backward)

◆ We now look at the examples of the four types,
develop equations, and then see how they are
solved.
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■ Forward-Flow Analysis.
◆ Consider the problem of eliminating common

subexpressions.

✦ We saw how to do this within a block; but that does
not help us if we wish to remove redundant
computations between blocks.

✦ An expression is redundant if its value is already
known;  globally, it is redundant if its value will be
already known no matter how we reach it.
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✦ We will say that an expression is available at a point
p if its value has been computed some place before
p.

• Therefore, an expression is available at the entry to a
block if it is available at the outputs of all the predecessor
blocks.

✦ Now for some definitions:
• Let ina[Bi] be the set of all expressions available coming

into any block Bi

• Let outa[Bi] be the set of all those available at the output.

• Then we may write:
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✦ Within a block, we say that an expression is killed if
any of its operands are changed, since that means
the expression's current value is no longer valid.

✦ And we say that an expression is generated if its
value is computed in the block and not kill ed before
the end of the block.

✦ If we let gen[Bi] and kill[Bi] be the sets of
expressions generated and kil led in Bi, then we can
say:
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✦ These equations are typical of a forward-flow, all -
paths data-flow problem.

✦ If we take as our initial condition the fact that
nothing is available at the start of the program, or

• ina[B1] = { }

✦ we have a set of equations which applied to the
entire flow graph, will tell us precisely what
expressions are available at any block in the graph.

◆ There are also example problems for forward-
flow, any-path problems.

✦ use-definition chaining (ud chains).
• the ud chain for any use of a variable is a list of all the

definitions in the program that reach the use.
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■ Backward-Flow Analysis.

◆ As an example of backward-flow analysis,
consider the problem of identifying very busy
expressions.

✦ An expression is very busy if, in all paths going
forward from the expression, it is always used (that
is, referred to) before it is kill ed by redefinition
(either by the expression itself, or any of its
operands)
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◆ So, if we now let inb[Bi] be the set of very busy
expressions at the start of any block Bi, and
outb[Bi] those at the end, then:

✦ Note: we must take the intersection because if one
node below us says that it is not busy, then we can’ t
say it is busy.

✦ This also means that we must work backwards from
the bottom of the flow graph
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◆ The set of very busy expressions at the start of
a block can be written as:

◆ From this we see that identifying very busy
expressions is a backward-flow, all -paths
problem.

✦ Since we are working backward, our initial
condition must be sought at the end of the program.

✦ So, if a graph has n blocks, we may write

• outb[Bn] = { }
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◆ There are also  Backward-Flow, any-path
problems:

✦ Consider the problem of identifying live variables
• a variable is live if its current value is going to be used

again

✦ Another problem is the construction of definition-
use chains (du chains)

• This tells us for any definition of a variable, all the uses of
that variable reached by that definition.
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◆ These four families of equations
✦ forward-flow

✦ or backward-flow

✦ and all-paths

✦ or any-path

◆ are our mechanism for tracing the movement of
information through the program.
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3.3 Solving Data Flow Equations

■ There is clearly a family resemblance among
all four kinds of data-flow analysis.

■ There is also a family resemblance among the
methods for solving them as well.

■ The most common general solution proceeds
iteratively:
◆ Make an initial guess, and use the equations to

refine the guess.
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◆ Refinement Algorithm:
✦ Make initial guess

✦ Repeat
• Save old_guess

• equations to obtain new_guess

✦ Until old_guess == new_guess

◆ We must now consider what our initial guess
will be.

✦ One value is provided by the initial conditions.

✦ In the case of any-path problem we assume that all
sets are empty and the algorithm will fill them up.

✦ In the case of the all -path problem we assume that
all sets are full and the algorithm will empty them
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■ The solutions to Data-flow equations are said
to be conservative, in that they make the
optimizer overly careful.

■ In order to guarantee that optimization does
not change what the program computes,
however, we want a conservative solution.

■ At issue here is a Type I versus Type II error.
◆ We would rather the optimizer miss a possible

optimization rather than mess up the program
by doing something wrong.
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4. Optimization Techniques
Revisited

■ We will now return to the nonlocal
optimizations introduced earlier and reconsider
them in the light of the information we obtain
from data-flow analysis.
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4.1 Loop Optimizations

■ We will start by considering how we can use
data-flow information to identify loop
invariants that can be moved and to find
induction variables and simplify their
computation.
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■ Loop Invariants
◆ A 3AC statement is a loop invariant if its

operands
✦ Are constant, or
✦ Are defined outside the loop, or
✦ Are defined by some other invariant in the same

loop.

◆ To identify loop invariants, you need only go
through the body of the loop and apply these
tests to every statement.

✦ You can find where the operands are defined by
their du-chains.

✦ It may be necessary to go through the loop
repeatedly until no more invariant statements can be
found.
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◆ Once the invariants have been found, we can
consider moving them.

✦ Not every invariant can be moved.
• For Example:

– begin
– …
– a:=5;
– …
– a:=6;
– …
– end;

• These are invariants by our example, but clearly they can’ t
be moved; otherwise the value of a won’ t be changed at
the proper point in the loop.

• So, for an invariant a:= b+c to be movable, it must be the
only definition of a in the loop.
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✦ Furthermore, we have to be certain that the
definition of a is the only one reaching outside the
loop.

• a :=0;
• for i:= 1 to lim do
•     begin
•     …
•     a := 6;
•     …
•     end;
• yy:

✦ The value of a at point yy depends on whether the
loop was executed at all (lim was positive).

• hence we cannot move a:= 6 outside the loop.

• note that these conditions can be checked with the aid of
up and du-chains.
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◆ It is also important to move the statements in
such a way that they appear in the same order in
the preheader as they did in the body of the
loop.

◆ If the loop contains
✦ x:= 5;
✦ …
✦ y:- x+1;

◆ Then clearly the assignment to x must still
precede the assignment to y after these
statements have been moved to the preheader.
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■ Induction Variables.
◆ An induction variable is any variable in a loop

whose value changes by a constant step size
every pass through the loop.

◆ The problem is in detecting these
✦ If the loop variable is i, then the computation of an

induction variable j generally takes the form j:= ai+b
• where a is the step size, and b is some constant. (these

must be loop invariants)

◆ These variables arise most commonly in
computing the locations of subscripted
variables.
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◆ It takes a good deal of searching and checking
to identity all i nduction variables, but the time
is well spent.

✦ The basic search is for 3AC instructions whose
right-hand sides are of the form a*i, where a is a
loop invariant and i is the loop counter (or some
other induction variable).

✦ The left hand sides of these instructions are now
induction variables, which can produce more….
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4.2 Other Optimizations

■ Constant Folding.
◆ To do constant folding or propagation globally,

we must check the ud-chains of each use of the
expression in which we suspect an operand is a
constant to ensure that it has the same value no
matter how it got there.
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■ Copy Propagation.
◆ Redundant copy statements local to a single

basic block wil l be removed by the DAG.

◆ For copy propagation between the blocks, we
need to know whether the copy is really
redundant.

◆ Suppose the copy is p=q
✦ It will be redundant if:

• No other definitions reach that use and

• Neither p nor q is redefined on the way to that use.

✦ These requirements can be checked by yet another
set of forward-flow, all-paths data-flow equations.

Chapter 6 -- Optimization 80

5. More Optimization Issues

■ In this section the text touches briefly on other
kinds of optimization that are even beyond the
scope of introductory books.

■ These include:
◆ the analysis of data flow between a subprogram

and the program that calls them

◆ problems associated with pointers.
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◆ Interprocedural data-flow analysis.
✦ It is desirable to be able to trace the movement of

data between a subprogram and the program that
calls it.

• This is called interprocedural data-flow analysis.

✦ If we can do this, then when we are constructing a
DAG for a block that includes a function call , we
will know which if any nodes in the DAG must be
killed.

✦ and when we are optimizing a loop, we will know
whether it is safe to move a function call outside the
loop.
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◆ Problems with pointers.
✦ Finding whether a simple variable is changed by a

subprogram is reasonably straightforward, but in the
case of arrays and data objects accessed by pointers,
the problem is more difficult.

✦ The picture is further complicated by the fact that
• x[i] and x[j] may refer to the same thing (if i==j)

• and *p may refer to the same thing as x[j]

✦ A data object that is known by two different names
is said to be aliased.

• There are methods for dealing with aliasing, with arrays,
and with pointers, but they are beyond the scope of an
introductory text.

• Aho, Sethi, and Ullman [1986] is, as usual, the most
comprehensive reference.
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6. Machine-Dependent Optimization

■ Machine dependent optimization falls into two
main classes:
◆ optimizing register assignments subject to the

constraints imposed by the hardware

◆ the particular target machine may have in its set
a handy instruction that provides a convenient
shortcut.

■ The architecture of the target machine bears on
optimization and code generation.
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6.1 Registers and Instructions

■ We will look at some examples of register
optimization here, although detailed techniques
for selection registers will have to await the
discussion of code generation in Chapter 7.

■ Examples of instruction use are harder to find,
since machine architectures vary so widely.
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■ Registers.
◆ As an example of register use, it should be clear

that the most frequently accessed variables
should be held in registers instead of memory.

◆ But there are never enough registers.
✦ The first computers had one or perhaps two working

registers (the second was for double length math
operations)

✦ The IBM System/360 was the first major
architecture to provide multiple working registers.

• They say that Iverson, the architect of the 360 family,
when asked why he provided 16 general registers, replied,
“Because I couldn’ t manage 32.”
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◆ The problem is further complicated by the fact
that there are nearly always restrictions on the
use of these registers.

✦ Multiplication/Division with even/odd register pairs.

✦ Stack Pointer,

✦ Indirect Addressing restrictions,

✦ …

◆ Restrictions like these handicap the
programmer.

✦ With many machines, it is not a question of
optimization but of making the best of a bad deal.
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■ Instructions.
◆ Examples of instruction use depend upon the

target machine.

◆ One common case, however, arises from the
statement i = i+1, where i is an integer.

✦ Unoptimized code wil l look like
• L    3,I
• A    3,=F’1’

• ST  3,I

✦ But almost any computer now has an instruction for
incrementing a register.
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◆ Many architectures provide instructions that
support loops.

✦ unfortunately some architectures limit the scope of
the loop (their conditional jumps can only go so far)

◆ As an example of a more obscure instruction,
consider the xchg instruction in the 80*86 set.

✦ This exchanges the contents of two register.

✦ When you program a sort, you use a temp, the
optimizer could eliminate this, by swapping them in
registers with this instruction.
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◆ This brings two questions in its train.
✦ First, is it worth the trouble to program an optimizer

to keep an eye out for opportunities to use an
instruction like xchg?

• It is often easier to use a small repertoire of common
instructions and ignore those that are more rarely useful.

• This is part of the bases for RISC architectures.

✦ Second, if temp has been optimized out of
existence, then what will happen when the user runs
the program through a debugger and wants to
observe the value of temp?

• In an integrated environment, you may want to omit these
types of optimizations.

• It maybe decided, as a matter of policy to avoid such
optimizations in the first place on the grounds that, in a
certain sense, they change the meaning of the program.
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6.2 Peephole Optimization

■ Machine-dependent optimization must be done
after the final code-generation phase.

■ Once the program has been translated into
machine language, the analytical techniques,
like data-flow analysis, are generally too
difficult to be practical.
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■ Instead we look at code through a small
moving window that spans just a few
instructions at a time, and we look for small-
scale redundancies visible through this
window.
◆ Because of this tiny window, the process is

known as peephole optimization.

■ We will now look at some of the redundancies
found and removed by peephole optimization.
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■ Jumps over Jumps.
◆ In conditional jumps,

✦ if the destination is some point beyond where we are
right now, the compiler won’ t know yet how far
away that wil l be.  The easiest way out is to compile
a conditional jump as a jump over a jump

•     jnz x1
•     jmp xx
• x1: …

✦ But suppose that xx turns out be be only, say, 95
bytes away.  Then this was unnecessary.  In this
case the peephole optimizer will substitute

•     jz xx

✦ for the two jumps.
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■ Redundant Loads and Stores.
◆ Naïve translation of 3AC is likely to result in

sequences in which a variable is stored in
memory and then immediately loaded back into
the register from which it came.

◆ It is easy for the peephole optimizer to catch
and remove redundant loads, especially if they
come right after the corresponding store.
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■ Other simplifications.
◆ These include:

✦ reduction in strength (if not done earlier)
• multiplication by a power of 2

✦ algebraic simpli fications, and
• adding 0 or multiplying by 1

✦ making use of special instructions.
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7. Summary: How Much
Optimization?
■ Optimization is a huge topic, and researchers

have devised an enormous variety of
techniques.  

■ We have looked at some of the most important
ones, but we have only scratched the surface.
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■ If we know all these techniques, how many of
them are we going to use?
◆ Presumably the ultimate optimizing compiler is

going to se every single one of them;

◆ But in practice we may settle for much less,
particularly because some techniques may be
effective only rarely.

◆ One obvious approach is to restrict our
optimizations to those in which the ratio of
payoff to cost is highest.
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◆ Memory limitations may also influence our
decision.

✦ Global optimizations like interprocedural data-flow
analysis may be difficult or impossible unless the
entire source program is in memory.

✦ If the amount of memory is limited, we may omit
this optimization.

◆ Another possibilit y is to write two versions of
the compiler and market the more elaborate one
as an “optimizing compiler”

✦ Even the less elaborate version will usually include
some minimal amount of optimization, however.
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■ We could possibly take three things as the
minimum
◆ Local optimization by means of DAGs

✦ DAGs are easy to construct, and it is not difficult to
produce 3AC from a DAG.

◆ Loop Optimization
✦ Loop optimization is likely to require more work,

but the payoff is likely to be high, since programs
tend to spend so much of their time in loops.

◆ Peephole Optimization
✦ Peephole optimization is relatively cheap,

particularly if the size of the peephole is small and if
we restrict the transformations to simple ones.
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■ Many commercial compilers attempt nothing
more than this minimum.


