Chapter 6

Optimization

= Code as generated by syntax-directed
translation tends to contain alot of deadwood.

0 There ae redundant instructions

0 And operations are implemented in clumsy
ways.

= Optimizationisthe atempt to reach theided.

0 The type of code produced by an expert
assembly-language programmer on a familiar
machine.
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m The optimizer’ s problem isto remove & much
of the deadwood as possible without changing
the meaning of the program.

= But, There aelimitsto what optimizaion can
do. Indeed, optimization may on rare
occasions make aprogram bigger or slower
than it was before.

= Moreover, optimization is no substitute for
good program design, or especially for
intelligent algorithm selection.
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= Most optimization consists of identifying
unnecessary computations.
0 We have seen that DAGs can be used for this
purpose in short sequences of instructions.
0 For larger-scale analysis, we must have away
of tracking the way information about data
items moves throughthe program;

o Thisis known as data-flow analysis, and it is one of
our main todsin optimization.
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1. Machine Independent
Optimization

= We dassify optimization techniques as
machine dependent or machine independent.

0 Madhine dependent optimization consists of
finding convenient shortcuts that take
advantage of the achitedure and instruction set
of the target machine.

0 Madine independent optimization analyzes the
organizaion d the program itself at the
intermediate-code level. Thisis more general,
so we will beginwith it.
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1.1 Basic Blocks

= Some optimization can be done within
individual statements, but the most fruitful
source of deadwood is in redundancies over
sequences of statements.

= For thisreason, most machine-independent
optimization takes asits starting point the
basic block.
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» A basic block isaset of 3AC instructions that
are dways exeauted sequentially from
beginning to end.

0 This means that there ae no kranchesinto or
out of the middle of the block

0 and that the entire program can be represented
as a set of basic blocks interconrected by
branches.

0 The branches indeed define the boundaries of the
blocks.
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0 A basic block begins
o At the start of the program,
o0 At the start of a procedure
0 At the target of any branch
o Immediately after a branch
0 Andit ends
0 Before the next basic block
o At the end o the program
o At the end o aprocedure.
O It iseasiest to identify the starts of the blocks;
then ead block continues until the start of the
next one or the end o the program.
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= We can now distinguish three levels of
optimization:
0 local optimization
o which limits its scope to the aurrent basic block.
0 globa optimization
o which must take into acount the flow of
information ketween bocks.

0 interprocedural optimization

o which considers the flow of information between
procedures.

= We can generdly dolocal with aDAG, the
othersrequire data-flow analysis (Sec6.3)
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n First, let’s bresk a procedure into basic blocks.

1 procedure SORT (n: integer; var x: sortarray);

2 var

3 i, jmax, j, temp: integer;

4 begin

5 for i := n downto 2 do

6 begin

7 jmax :=1; 3

8 for j := 2 to i do { Find largest element }
9 if x[j] > x(jmax] then

10 jmax := j;

11 if jmax <> i then

121 begin { Swap into place I
13 temp := x[il;

14 © x[i] := x[jmax];

15 x[jmax] := temp;

16 end

17 end

18 end; { Sort }
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Ty n Line §
= 3AC (2) if i < 2 then goto (32)
1

@) jnax := Line 7
2 Line 8

if j > i then goto (16)
Tt =% Lige 8

T3 holds x[j]

T6 holds x[jmax]

Line 10

(15) goto (5)
(16) if jmax = 1 then goto (30)  Line 11
dn Ty - Line 13

T9 holds x[i]
e

T12 holds x[jmax]
Line 14

(25) T4 i= T13s4
=T12 x[1] := x[jmax)
Lize 15

i= temp x[jmax] := temp
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By (Start of procedure)
(@ if 1 <2 then goto By _ B, (Target of goto, Line 31)

n Basic Blocks. Mﬂ By (Follows conditional branch)

B (Tt of ek Line 15

@ T =g-1 B (Pollows conditional branch)

5]
(12) 17 T3 <= T6 then goto By

B (Followscondiional branc)
ROERCEEEY By (Target of goto, Line 12)
a5
=

-1 By (Follows conditional branch)

(25) Ti4 := T4
(26) x[T14] := T2
Q@7) 11

(28) T16 := Tisw
(29) x[T16] := temp

@) L mi-1 Buo (Target of goto, Line 16)
(31) goto By |

@) e ] By (Target of goto, Line 2)
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= Inthe @urse of the ensuing otimizations,
instructions within a basic block may be
modified or deleted.

0 Henceit is agoodideato make the gatos refer
to block numbersinstead of quadruple
numbers, in case the target quad gets deleted.

0 You may have naticed that this was donein the
breakdown of the previous basic blocks.
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= At the moment we aeinterested in the
individual blocks; but when we mmeto
global optimization, we will also be mncerned
with the flow of control and of data between
the blocks.

= Thegotosin the cde aan be pictured as
creating peths between the blocks; when we
show these paths, we get aflow graph.

= The flow graph for the basic blocks we just
created is srown onthe next dide.
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Figure 6.1
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1.2 Local Optimization

= We can do asignificant variety of

enhancements within a basic block.

= Some of these optimizations can be done

globally aswell aslocally; | am listing them
here because then can be done localy.

» Details about their implementation must await

the development of theory later in the chapter.
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= Constant Folding.

0 If aprogram contains a subexpression whose
operands are constants, like
OX:=2%*3;

0 There is no need to multi ply these numbers at
runtime; the compil er can compute the product
and substitute

0X:=6;
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0 Programmers rarely write anything like that;
but good programmers will frequently write

o const
e Igth=2;
* amount = 3;

o x:= Igth * amount;
0 Programming practices give rise to operations
on constants.

0 Precomputing the results of such gperations at
compiletimeiscdled constant folding andis
one of the most common types of optimization.
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0 The picture is more complicated if the
programmer has scétered constants abot the
statement, as, for example, in

o x = Igth*(b + c/a)*amount;

0 From axiomsin basic math you would say you
could re-order the statement to be
0 x := Igth*amount*(b+c/a);
o Don't even think about thisif anything in the
statement is not an integer, because the order change
can change the final result.
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0 Another, less obvious, oppatunity occurs when
aprogrammer assigns avalue to a variable once
and never changes the value again.

ovar.

« Igth : integer;

olgth:=2;

o For all pradicd purposes gth is a onstant, but
using it throughout the program in an gptimizaion
tedhniqueis caled constant propagation.

o If a mmputed value, likelgth, isto be propagated
through the entire program, then we need to do
data-flow analysis to guaranteethat the valueis the
same regardlessof the path taken through the
program at runtime.
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= Copy Propagation.

0 Copy instructions are 3AC instructions of the

form
OX:=Yy,

0 When instructions of this ort occur, foll owed
later by ause of x, we can frequently substitute
y for x (provided neither has changed between
the copy and the use).

0 Thisisancther optimization that can be done
locally with the sue of a DAG (or globally)

o If x isatemporary, we have now created
useless code. Wediscussitsremoval in 6.1.4
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= Reductionin Strength.

O It isoccasionally possible to replace an
expensive operation with a cheger one; thisis
known as reduction in strength.

o Aninteger that isto be multiplied by 2can be
shifted 1 kit to the left.
oa=x*y (in FORTRAN) would namally be
compiled as:
e T1:=In(x)
e T2:=y*T1
* a:=exp(T2)

0 We will return to reductionin strength when we

discuss loop ogimizationin Sec 6.1.3
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= Substitution o In-Line Code.
0 A statement like:
0i = abs(j)
D isat least nominally afunctioncall.
O In most computersit is easier smply to test the
sign d j and complement it if it is negative.
0 May computers have an instruction that will
simply force the @ntents of aregister to be
positive
oL 3,J
o LPR 3,3 Force a positive value
oST 3,1
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= Common Subexpressions.
0 We saw the use of DAGs to deted common
subexpressions locally in Chapter 5.
0 We will pursue this further in the next sedion,
Loop Optimization (6.1.3) and then again in
Section 62
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1.3 LoopOptimization

= Most programs gpend the bulk of their
exeadtiontimein loops, and especialy in the
innermost levels of nested loops.

= Thereisawell-known saying that 10 percent
of the mde acountsfor 90 percent of the
exeadtiontime; this 10 percent isusually
found in loops.

= Henceloop optimization is of particular
importance.
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= Loop-Invariant Expressions

0 A relative of common subexpressionis the

repeated subexpression.
o for k:= 1 to 1000 do
* c[K] := 2*(p-g)*(n-k+1)/(sqr(n)+n);

0 Certain parts of this expression are not
dependent upan the loop variables (k) and
shoud be moved out of the loop.

0 2%(p-q)
osqgr(n)+n
0 This processis call ed invariant code motion.
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0 There ae other operations that could be moved
that are not reachable by the programmer.
o fori:=1to 30 do
g forj:=1to 30do
o for k:=1 to 30 do
a x[i, j, Kl :=yli, j, K] + 2[i, j, K]
0 To find the address of [i,j,k] we must compute:
o addr(x[i, j, K]) = base(x) + off set(i, j, k)
o offset(i, j, k) = e(k-1,) + offset(i, j)
o offset(i, j) = e(j-1,) (ug+1-1 )+ offset(i)
0 offset(i) = e(i-1,)(Uyt1-1) (Ug+1-1 )
o where u, and |, are the upper and lower bounds of
eath dmension.

0 Note: offset(i) and offset(i, j) areinvariants to the
inner loops.
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0 Tl:=u3+1-I3);
0 T2:=u2+1-12);
o fori:=1to 30do
0 begin
T3 :=e*(I-11)*T1*T2 {T3is offset(i)}
for(j:= 1 to 30 do
begin
T4 :=T3 + e*(-12)*T1 {T4 is offset(i, j)}
for k:= 1 to 30 do
begin
T5 = T4 + e*(k-13);
X[T5] := y[T5] + z[T5]
end,
end,
end,

[om o e e R o o (e (|
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0 Therestrictions on high-level languages
generally forbid us writing thing like this,

0 But the optimizer, having access to the 3AC
instructions that accompli sh these
computations, can reaognize the loop invariants
and shift them to the preheaders of their
respedive loops, as this code suggests.
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= Reductionin Strength.

0 A particularly important kind o strength
reductionis associated with loops.
ofori:=1to 1000 do
0 sum:=sum + di];
0 Suppose the elements of a ae 4 bytereds
oi=1
oTl=i-1
0T2:=4%i
o T3:=a[T2]
o...
oi=itl
0 We could change the 4*i statement to a 2-bit
left shift
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= Loop Unralling.

0 The management of aloopnormally reguires a
certain amount of initial setup and acertain
amount of cheding every timetheloopis
repeated.

o fori:=1to20do

0 begin

o forj:=1to2do
o write (X[i, j]:9:3);
o writeln;

o end;
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0 For the outer loop the overhead is aceptable,
for the inner, it isnot. So you may just
duplicate the code and substitute j with 1or 2.

0 If you wish to include this kind of optimization,
you must dedde how much spaceyou are
willi ng to lose in order to save exeaution time.

0 The optimizer must then figure the spacétime
trade-off for unrolling any particular loop and
unroll it only if the trade-off is aceptable.

Chapter 6 - Optimization 32

1.4 Global Optimization

= There ae other optimizations that span more
than asingle basic block but are not associated
with loops.
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Dead Code Elimination.

0 Dead code is code that is never executed r that
does nothing useful.

0 It does not appear regularly, but it may result
from copy propagation, o from the
programmer’ s debugging variables.
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O Inthefirst case
o Tl:=k
o ...
oX:=Xx+T1
oy:=x-T1
o ..
0 Which could be changed to
ox:=x+k
oy:=x-k
0 If T1 hasno other use, it is now dead, so the
tuple with the assignment to it can be removed.
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0 In debuggng a program, we will write
o if trace then

o begin
o writeln(...);
o writeln(...);
o end;

0 with

o const trace = true;
o when we ae debuggng

0 Then when we are done we changeiit to
o trace = false;

0 Now the if isdeal code, and shoud be
removed.
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0 Sometimes the optimizer can get carried away.
o forl:=1to 128 do
o begin

port[x] :=1;

delay(1); {do nothing for 1 millisecond }

port[x] : = 0;

delay(1);

end;

0 An overly ambiti ous optimizer could remove

thewhdle for loop.
0 Therefore you may want acompiler flag to turn

off certain optimizations over a certain pieceof
code.

oo o oo
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= Code Mation.

0 Another form of code motionis when we ae
optimizing the program for size rather than for
sped is code hoisting.

o case p of
o lic:=a+b*d;
2:m:=b*d-r;

o
o 3:f:=a-b*d;
o 4c=q/(b*d+r)
o end;
0 Observe the b*d in every option of the ase
statement.
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0 Such an expression is said to be very busy.

0 Clearly we should be ale to precompute b*d
o T:=b*d

o case p of

o lic:=a+T;
o 2m:=T-r

o 3f=a-T,

o 4c=ql/(T+r)
o end;

O It is because of this moving-up that this
particular kind of optimization iscdled
haisting.

0 This may not save time, but it saves pace
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2. DAGsAgan

= We saw how to generate DAGs under the
control of the parser in Chapter 5.

= |f we generate 3AC diredly under the parse,
then we may have to construct aDAG from
scratch duing the optimization phase in order
to detedt and remove common subexpressions.

Chapter 6 - Optimization 40

2.1 Generating DAGs from 3AC

= We can assume that every 3AC instructionis
in ore of two forms:

Da:=bopc

oDa:=opb

©pa

or:
e Ob
Figure 6.2
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o Algorithm:

0 We aamethereis an array curr that contains a
pointer to the node that holds the variable' s current
value.

o If curr[b] = nil,

« create aledf, label it b, make curr[b] point to this leaf.
« If theinstruction includes an operand c, do the same for it.

o Look for an existing node labeled opthat is already
linked to the nodes painted to by curr[b] and curr[c]
(or curr[b] if that's the only operand).

« If nosuch node «ists, create one and link it.

« |n either case set curr[g] to this node.

« If opisan assgnment (a:=b) we simply apply label ato
the same node as b and make curr[a] point to it.

o If ancther nodein the DAG islabeled a, remove that
label; in any case label the aurrent node a

Chapter 6 -- Optimization 42




Figure 6.3(d)
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0 Constructinga DAG has to be done with some
care, because we must be sure that two
instances of an expressionreally refer to the
samething.

0 We can cope with most problems by adding a
flag to the record describing ead nock,
indicating whether anything it refersto has
been changed. Thisis sometimes known asa
kill bit.

O If our optimizer includes data flow analysis
between procedures, then we will know
whether any variables are dhanged by the cdl
and can avoid killing nades unnecessarily.
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2.2 Generating 3AC from DAGs

= The DAG, once we have it, tells uswhat the
minima code must be, and it aso shows the
dependencies among the various cdculations.

= [n generating 3AC from the DAG, we work
from the leaves upward. Traversingthe DAG
in order of its dependenciesis equivaent to
topological sorting.
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= Topologica Sort Algorithm
OSetn=1
0 Reped

0 Seled any source assgn it the number n, and
removeit and its incident edges from the graph

0Setn=n+l
0 Until the graph is empty.
= You then gothrough thislist in reverse order,
starting with the last interior node in the list,
and constructing the crresponding 3AC.
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0 In the example given in the text, which used the
DAG shown afew slides ago, they cut the size
of the block from thirteen 3AC statements to
eight, and reduced the number of temporaries
from ten to five.

0 When there are no repeated subexpressionsin a
basic block, the DAG opensout into atree

O Inthis case you can traverseit in preorder and
get similar results, bu there is a better way.
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3. Data-Flow Anaysis

= As 0n aswe expand the scope of
optimization beyond the basic block, we must
be @leto trace how values make their way
through a program.

= Thisprocessiscdled data-flow analysis.
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3.1 Flow Graphs

= To show the transfer of control between basic
blocks, we use aflow graph.

0 it isadireded graph in which each nodeis a
basic block

0 the edges show the transfer of control between
the blocks.
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0 When we
isolated the basic
blocks we used
the branchesin
the program to
determine their
boundaries.

0 In the flow
graph, these
branches are
used to link the
blocks
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0 The flow graph reveals the pattern of branching

and looping within the procedure.
0 Some Definitions
o A block B, isapredecessor of block B if thereis an
edgein the flow graph from B; to B;.
« For example B, is a predecessor of B, (B, pred B;)
0 We can also say that B, is a successor of B,
(B;succB,)
* Notethat B, is not a predecessor of B,
0 We say that B; dominates anode B; if we must pass
through B; when going from the start of the node to
B
1
* Node B; is the immediate dominator of Node B; if it'sthe
last dominator we passthrough before we reach Node B;
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0 Dominanceisa
partial ordering,
but, more
importantly for
our concerns,
dominators can be
displayed as atree
in which theroot
istheir starting
node and every
interior node
dominates all its
descendants.
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0 The main usefulness of dominatorsisthat they
enable the compil er to recognizeloops

o Thereisaloop in the flow graphif thereis an edge
whose head daminatesitstail.

+ Such an edgeis céled aback edge.

0 Rewgnizing loopsisimportant, since loops tend to
acaount for the bulk of the run time in any program
and hence ae prime candidates for optimization.

o To recognizeloops, we look for back edges

« In our example flow graph we find two nested loops
because there ae two back edges
- BytoB,
-B;t0B,
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3.2 Data-Flow Equations

0 To optimizeglobally, we have to be able to
tradk the movement of information between
basic blocks.

0 We must, in fad, consider all the blocksin the
procedure because a computed value may be
used in some remote block, na necessarily the
succesr of the block in which it was
computed; thus we have to consider the
procedure as awhole.
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0 We dothis by setting up equations describing
the fate of the cmputed valuesinside eat
block and describing how the interconnedions
of the blocks aff ect these values.

= These ajuations are the data-flow equations.

0 Data-flow analysis considers
0 what happensto variables or expresson values
within ablock, that is, whether they are updated
o how variables or values reat the beginning o a
block

o where they go from the end o ablock
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0 Data Flow Analysis takes four diff erent forms,
depending on whether we work forward or
backward throuch the flow graph and on
whether we may consider any peth to or from a
block or must consider all paths.

0 Eadh of these forms hasits own set of data-flow
equations.
o We need an equation relating the onditions at a
block boundary to thosein adjacent blocks,
o and we need an equation expressng how conditions
change within the block.
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0 Fortunately, the eguations for all four forms
have the same genera appearance, with minor
variations, and the methods for solving them
run alongthe same general li nes.

0 We also need some sort of initial conditions
o for the beginning d the flow graph
« (if our analysisis forward)
o or for the end d the flow graph
« (if our analysisis backward)

0 We now look at the examples of the four types,
develop equations, and then see how they are
solved.
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= Forward-Flow Analysis.

0 Consider the problem of eliminating common
subexpressions.

o We saw how to dothiswithin ablock; but that does
not help usif we wish to remove redundant
computations between blocks.

0 An expressionis redundant if its valueis arealy
known; globally, it isredundant if its value will be
already known no matter how we reach it.
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o Wewill say that an expressonis avail able at a point
p if its value has been computed some placebefore
p.

* Therefore, an expression is available & the entry toa
block if it isavailable & the outputs of all the predecessor
blocks.

o Now for some definitions:
« Letin[B;] betheset of dl expressons available coming
into any block B;
* Let out[Bi] bethe set of &l those available & the output.
* Then we may write:

ine|Bi] = n out,[B;].
BJ' pred B;
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o Within ablock, we say that an expresson iskilled if
any of its operands are changed, sincethat means
the expresgon's current value is nolonger valid.

o And we say that an expresson is generated if its
valueis computed in the block and rot kill ed before
theend of the block.

o If welet gen[B] andkill[B] be the sets of
expressons generated and killed in B;, then we can
say:

out,[B;] = gen[B;] U (ing[B;] — kill[B;]).
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0 These equations are typicd of aforward-flow, all-
paths data-flow problem.

o If wetake aour initial condition the fad that
nothing is avail able & the start of the program, or

*in[B] = {}

0 we have aset of equations which applied to the
entire flow graph, will tell us predsely what
expressons are avail able at any block in the graph.

0 There ae dso example problems for forward-
flow, any-path problems.
0 use-definition chaining (ud chains).
« theud chain for any use of avariableisalist of al the
definitions in the program that reach the use.
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= Backward-Flow Analysis.

0 As an example of backward-flow analysis,
consider the problem of identifying very busy
expressions.

o An expressionis very busy if, in al paths going
forward from the expresson, it is always used (that
is, referred to) beforeit iskill ed by redefinition
(either by the expresgon itself, or any of its
operands)
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0 So, if wenow let iny[B;] be the set of very busy
expressions at the start of any block B;, and
out,[B;] those at the end, then:

outy[B;] = n inp[B;].

B; succ B;

o Note: we must take the intersedion becauseif one
node below us systhat it isnot busy, then we can't
say it is busy.

0 This also means that we must work backwards from
the bottom of the flow graph
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0 The set of very busy expressions at the start of
ablock can be written as:

inb[Bi] = used[Bz] U (outb[B,] = klll[Bl])

0 From thiswe seethat identifying very busy
expressions is a backward-flow, all-paths
problem.

0 Sincewe ae working backward, our initial
condition must be sought at the end of the program.

o So, if agraph hasn blocks, we may write
* outy[B,] ={}
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0 There ae dso Badward-Flow, any-path
problems:
0 Consider the problem of identifying live variables
« avariableisliveif itscurrent valueis going to be used
again
o Another problem isthe mnstruction of definition-
use chains (du chains)

« Thistellsusfor any definition of avariable, all the uses of
that variable reached by that definition.
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0 These four families of equations
o forward-flow
o or badkward-flow
o and all-paths
o or any-path
0 are our mechanism for tradng the movement of
information through the program.
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3.3 Solving Data Flow Equations

= Thereisclearly afamily resemblance anong
al four kinds of data-flow analysis.

= Thereisalso afamily resemblance anongthe
methods for solving them as well.
= The most common general solution poceeds
iteratively:
0 Make aninitial guess, and use the equations to
refine the guess.
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0 Refinement Algorithm:
o Makeinitial guess
0 Reped
« Saveold_guess
 equations to obtain new_guess
o Until old_guess== new_guess
0 We must now consider what our initial guess
will be.
0 Onevalueis provided bytheinitial conditions.

0 In the cae of any-path problem we asume that all
sets are ampty and the dgorithm will fill them up.

o Inthe cae of the dl-path problem we assume that
all sets are full and the dgorithm will empty them
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= The solutions to Data-flow equations are said
to be monservative, in that they make the
optimizer overly careful.

= |n order to guaranteethat optimization does
not change what the program computes,
however, we want a @nservative solution.

n At issuehereisaTypel versus Typell error.

0 We would rather the optimizer miss a possible
optimization rather than mess up the program
by ddng something wrong.
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4. Optimization Techniques

Revisited

= We will now return to the nonlocal
optimizations introduced ealier and reconsider

them in the light of the information we obtain
from data-flow analysis.
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4.1 Loop Optimizations

= Wewill start by considering how we can use
data-flow information to identify loop
invariants that can be moved and to find
induction variables and simplify their
computation.
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= Loop Invariants

0 A 3AC statement isaloop invariant if its
operands
o Are onstant, or
o Are defined outside the loop, or
o iAre defined by some other invariant in the same
oop.

0 To identify loopinvariants, you need only go
through the body of the loop and apply these
tests to every statement.

o You can find where the operands are defined by
their du-chains.

0 It may be necessary to go through the loop
repeaedly until no more invariant statements can be
found.
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0 Oncethe invariants have been found, we can
consider moving them.
o Not every invariant can be moved.

* For Example:
— begin

- ;':1':'=5;
- 5:‘:6;
- éﬁd;
« These aeinvariants by our example, but clearly they can’t

be moved; otherwise the value of awon't be dhanged at
the proper point in the loop.

* So, for aninvariant a:= b+c to be movable, it must be the
only definition o ain theloop.
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o Furthermore, we have to be cetain that the
definition of aisthe only onereading ouside the

« for i::’ 1tolimdo
begin

. éhd;
oy
o Thevalue of a at paint yy depends on whether the
loop was exeauted at al (lim was positive).
* hence we cannot move a:= 6 outside the loop.

* note that these conditions can be checked with the aid of
up and du-chains.
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0 It is aso important to move the statementsin
such away that they appear in the same order in
the preheader as they did in the body of the
loop.

0 If the loop contains

ox:=5;

oy:- x+1;

0 Then clealy the assignment to x must still
precede the assignment to y after these
statements have been moved to the preheader.
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= |nduction Variables.

0 Anindution variable is any variablein aloop
whose value changes by a cmnstant step size
every pass throughthe loop.

0 The problem isin deteding these
o If the loop variableisi, then the cmputation d an
induction variable j generally takesthe formj:= ai+b
« where aisthe step size, and bis sme wnstant. (these
must be loop invariants)

0 These variables arise most commonly in
computing the locations of subscripted
variables.
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0 It takesagoodded of seaching and checking
to identity all inductionvariables, bu the time
iswell spent.

0 The basic search is for 3AC instructions whose
right-hand sides are of the form a*i, whereaisa
loopinvariant and i is theloop counter (or some
other induction variable).

0 The left hand sides of these instructions are now
induction variables, which can producemore....
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4.2 Other Optimizaions

= Constant Folding.

0 To do constant folding or propagation gobally,
we must check the ud-chains of eat use of the
expression in which we suspect an gperandis a
constant to ensure that it has the same value no
matter how it got there.
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= Copy Propagation.

0 Redurdant copy statements local to asingle
basic block will be removed by the DAG.

0 For copy propagation between the blocks, we
need to know whether the wpy isredly
redundant.

0 Suppose the copyis p=q

o It will be redurdant if:
* No ather definitions reach that use and
« Neither p nor q isredefined on the way to that use.

o0 These requirements can be chedked by yet another
set of forward-flow, all-paths data-flow equations.
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5. More Optimization Isaues

= Inthis sctionthe text touches briefly on aher
kinds of optimization that are even beyond the
scope of introductory books.

= Theseinclude:

0 the analysis of data flow between a subprogram
and the program that cdls them

0 problems associated with pointers.
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O Interprocedural data-flow analysis.

o Itisdesirableto be ale to tracethe movement of
data between a subprogram and the program that
cdlsit.

 Thisiscalled interprocedural data-flow analysis.

o If we can dothis, then when we ae mnstructing a
DAG for ablock that includes afunction cdl, we
will know which if any nodes in the DAG must be
killed.

o and when we ae optimizing aloop, we will know
whether it is sfe to move afunction cdl outside the
loop.
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0 Problemswith pointers.

o Finding whether asimple variable is changed by a
subprogram is reasonably straightforward, but in the
case of arrays and data objeds accessed by panters,
the problem is more difficult.

o The pictureis further complicated by the fad that

« X[i] and x[j] may refer to the same thing (if i==j)
« and *p may refer to the same thing as x([j]

0 A dataobjed that is known by two different names
is said to be aliased.

* There ae methods for dealing with aliasing, with arrays,
and with pointers, but they are beyond the scope of an
introductory text.

* Aho, Sethi, and Ullman [1986] is, as usual, the most
comprehensive reference.
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6. Machine-Dependent Optimization

= Machine dependent optimization falls into two
main classes:
0 optimizing register assignments subjed to the
constraints imposed by the hardware
0 the particular target machine may havein its set
a handy instruction that provides a cmnvenient
shortcut.
= The achitecture of the target machine bearson
optimization and code generation.
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6.1 Registers and Instructions

= Wewill look a some examples of register
optimization here, although detailed techniques
for seledion registers will have to await the
discussion of code generation in Chapter 7.

= Examples of instruction use ae harder to find,
since machine achitectures vary so widely.
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= Registers.
0 As an example of register use, it should be clea
that the most frequently accessed variables
shoud be held in registersinstead of memory.

0 But there are never enough registers.

o The first computers had ore or perhaps two working
registers (the second was for double length math
operations)

0 The IBM System/360 was the first major
architedure to provide multiple working registers.

« They say that Iverson, the achitect of the 360 family,
when asked why he provided 16 general registers, replied,
“Because | couldn’'t manage 32.”
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0 The problem is further complicated bythe fad
that there ae nealy always restrictions onthe
use of these registers.

o Multi plication/Division with even/odd register pairs.
0 Stak Pointer,
o Indired Addressng restrictions,

0 Restrictions like these handicap the
programmer.
o With many machines, it is nat aquestion d
optimization but of making the best of a bad ded.
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= Instructions.

0 Examples of instruction wse depend uponthe
target machine.
0 One mmmon case, however, arises from the
statement i = i+1, wherei is an integer.
o Unoptimized code will look like
<L 3
A 3=F1
« ST 3l
0 But aimost any computer now has an instruction for
incrementing aregister.
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0 Many architedures provide instructions that
suppat loops.

o unfortunately some architedures limit the scope of
theloop (their conditional jumps can only go so far)

0 As an example of amore obscure instruction,
consider the xchg instruction in the 80* 86 set.
0 This exchanges the mntents of two register.

o When you pogram a sort, you use atemp, the
optimizer coud eliminate this, by swapping themin
registers with this instruction.
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0 This brings two questionsin itstrain.

o Firgt, isit worth the trouble to program an optimizer
to kegp an eye out for opportunitiesto use an
instruction like xchg?

« |tisoften easier to use asmall repertoire of common
instructions and ignore those that are more rarely useful.
« Thisis part of the bases for RISC architectures.

0 Seoond, if temp has been optimized out of
existence, then what will happen when the user runs
the program through a debugger and wants to
observe the value of temp?

« Inanintegrated environment, you may want to omit these
types of optimizations.

« It maybe decided, as a matter of policy to avoid such
optimizationsin the first placeon the groundsthat, in a
certain sense, they change the meaning d the program.
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6.2 Peephole Optimization

= Machine-dependent optimization must be done
after the final code-generation phase.

= Oncethe program has been trandlated into
machine language, the analyticd techniques,
like data-flow analysis, are generally too
difficult to be pradicd.
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= Instead we look at code through a small
moving window that spans just afew
instructions at atime, and we look for small-
scae redundancies visible through this
window.
0 Because of thistiny window, the processis
known as peephole optimization.

= Wewill now look at some of the redundancies
found and removed by peephole optimization.
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= Jumps over Jumps.

O In conditional jumps,

o if the destinationis some point beyond where we ae
right now, the compiler won't know yet how far
away that will be. The eaiest way out is to compile
a conditional jump as ajump owver ajump

¢ jnzxl
jmp xx
e x1:...

0 But suppose that xx turns out be be only, say, 95
bytesaway. Then thiswasunnecessry. Inthis
case the pegphole optimizer will substitute

jz xx
o for the two jumps.
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= Redundant Loads and Stores.

0 Naive translation of 3AC islikely to result in
sequencesin which avariableis gored in
memory and then immediately loaded badk into
theregister from which it came.

0 It iseasy for the pegohole optimizer to catch
and remove redundant loads, espedally if they
come right after the crresponding store.
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= Other simplifications.
0 Theseinclude:
o reduction in strength (if not done eailier)
« multiplication by a power of 2
0 algebraic simplificaions, and
« adding 0 or multiplying by 1
o making use of speda instructions.
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7. Summary: How Much
Optimization?

= Optimizationis ahuge topic, and reseachers
have devised an enormous variety of
techniques.

= We have looked at some of the most important
ones, but we have only scratched the surface.
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= |f we know all these techniques, how many of
them are we going to use?

0 Presumably the ultimate optimizing compiler is
going to se every single one of them;

0 But in practice we may settle for much less,
particularly because some techniques may be
effective only rarely.

0 One obvious approach is to restrict our
optimizations to those in which theratio of
payoff to cost is highest.

Chapter 6 -- Optimization 96




0 Memory limitations may also influence our
decision.
0 Global optimizations like interprocedural data-flow
analysis may be difficult or impossble unless the
entire source program isin memory.

o If the amount of memory is limited, we may omit
this optimization.

0 Another possibility is to write two versions of
the compil er and market the more daborate one
as an “optimizing compiler”

0 Even the lesselaborate version will usually include
some minimal amount of optimization, however.
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= We oould possibly take three things asthe

minimum
0 Local optimizaion by means of DAGs
0 DAGs are eay to construct, and it is not difficult to
produce 3AC from aDAG.
0 Loop Optimization
o Loop optimizétion islikely to require more work,
but the payoff islikely to be high, sinceprograms
tend to spend so much o their timein loops.
0 Peephde Optimization
0 Pegphole optimization isrelatively chea,
particularly if the size of the peephdeis gmall and if
we restrict the transformations to simple ones.
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= Many commercial compilers attempt nothing

more than this minimum.
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