
Chapter 7

Object Code Generation

Chapter 7 -- Object Code Generation 2

■ Statements in 3AC are simple enough that it is
usually no great problem to map them to
corresponding sequences of machine-language
instructions, if some care is taken.

■ This is, of course, one of the great attractions
of 3AC

■ The main issues in Object Code Generation:
◆ How to avoid redundant Operations.

◆ Which Machine Instructions to use.

◆ How to manage Registers.

Chapter 7 -- Object Code Generation 3

1. Generating Machine Language
from 3AC

■ This can be done blindly, instruction by
instruction, or it can be done with some
thought to the way successive instructions
interact and especially to the intelligent use of
registers.
◆ We will consider the blind method first, since it

is the simplest.

Chapter 7 -- Object Code Generation 4

■ In machines where the number of registers is
small or their uses are severely restricted, it
may not make a lot of sense to devote a lot of
effort to optimizing register use.

■ Optimization implies a wide range of options
to choose from, and if the optimizations are
limited, so is the amount of optimizing we can
do.

Chapter 7 -- Object Code Generation 5

1.1 Blind Generation

■ You must take into account
◆ The addressing modes of the operands.

◆ result and register restrictions (pairs,…)

■ We could write a procedure, one for each type
of 3AC, that handles the blind translation.

■ These would ignore register allocation, and
just do loads to get stuff in, and stores to put
stuff back.

Chapter 7 -- Object Code Generation 6

1.2 Special Considerations

■ The main issues are:
◆ taking advantage of special instructions,

◆ deciding when to deviate from straight
translation.

■ The use of special instructions arises because
there is often more than one way to do things.
◆ this is where peephole optimization is good.

◆ procedures for repeated things. (calculating
array subscripts)

Chapter 7 -- Object Code Generation 7

2. Context-Sensitive Translation and
Register Use
■ The vast majority of computer instructions use

a working register to hold one of its operands.

■ Since it takes time to copy from registers to
memory, keep things in registers.

■ The general rule for register usage is: If a value
is in a register, and it is going to be used again
soon, keep it in a register.

■ The problem is when you run out of registers.

Chapter 7 -- Object Code Generation 8

■ Therefore, we must keep track of:
◆ 1. Which registers are used, and what do they

hold.

◆ 2. Where the current value of the variable can
be found.

◆ 3. Which variables will be needed later in the
block, and where.

◆ 4. Which variables whose current values are in
registers must be stored upon exiting the block
(these are live variables)

Chapter 7 -- Object Code Generation 9

■ Since programs may have hundreds of
variables (including temporaries created in
code generation) this job can easily get out of
hand.

Chapter 7 -- Object Code Generation 10

2.1 Livens and Next Use

■ a variable is live if it is going to be used again
in the program.

■ programmer defined variables can be assumed
live at the end of the block.

■ temporaries are assumed to not be alive at the
end of a block.

Chapter 7 -- Object Code Generation 11

2.2 Descriptor Tables

■ register allocation table -- current contents of
each register (every use of a register updates
this table).

■ address table -- where the current value of
each variable may be found (memory, register,
both)

Chapter 7 -- Object Code Generation 12

2.3 Assigning Registers

■ int Get_Register(char *, int & new);

■ Pass it the operand
◆ 1. Find out if the parameter is already in a

register. If so return it.

◆ 2. If not, find an empty register and fill it i n the
register table and set new to true.

◆ 3. If there are no empty registers, spill .

Chapter 7 -- Object Code Generation 13

2.4 Generating Code

■ a := b op c

■ 1. R = Get_Register (B, new);

■ 2. if(new)
◆ L R, B // Load register R with B

■ 3. Check address table for C
◆ if memory

✦ op R, C

◆ if register S
✦ opR R,S

Chapter 7 -- Object Code Generation 14

■ Don't forget to free temporaries from registers
after they are used.
◆ This may require a second function to free the

register of some variable.
free_register (char *name);

■ Note: Get_Register may also have to worry
about even/odd register pairs in some
architectures.

Chapter 7 -- Object Code Generation 15

2.5 Instruction Sequencing

■ Aho, Sethi, and Ullman [1970] devised a
method of re-ordering the instructions to
evaluate the basic blocks that require the most
registers first.

■ This can save on your register use, thereby
minimizing spill ing of registers.

Chapter 7 -- Object Code Generation 16

3. Special Architectural Features

■ The code generator should be able to take
advantage of any special capabilities provided
by the target machine.
◆ The PD.-11 provided auto-increment and auto-

decrement registers. You could set them to
auto-increment before or after they gave you
the value.

◆ ++i or i++

Chapter 7 -- Object Code Generation 17

■ There is little to say about exotic instructions,
since it depends on what the instruction is, and
what you consider exotic.

■ One can generally say, the more exotic the
instruction, the less use it is likely to be.

■ It may be more trouble than it is worth to
detect the opportunity to use some unusual
instruction unless it saves a truly huge number
of conventional instructions.

Chapter 7 -- Object Code Generation 18

4. Summary

■ Object code generation takes as many forms as
there are target machines.

■ Some programming languages have been
influenced by the instruction sets of the
machines on which they were first developed
◆ C and i++

◆ FORTRAN and if(x) 10, 20, 30
✦ reflects the comparison and conditional-jump

operations of the original target machine.

Chapter 7 -- Object Code Generation 19

■ You can learn a great deal by using an
interactive debugger to analyze and study the
object code generated by other compilers for
the same machine.
◆ You may spot some things the compiler does

that are stupid.

◆ It may also alert you to problems you can
avoid.

