Chapter 7

Objed Code Generation

= Statementsin 3AC are simple enough that it is
usualy no geat problem to map them to
corresponding sequences of machine-language
instructions, if some caeistaken.

= Thisis, of course, one of the great attractions
of 3AC

= Themain issuesin Objed Code Generation:
0 How to avoid redundant Operations.
0 Which Madine Instructions to use.
0 How to manage Registers.

Chapter 7 -~ Object Code Generation

1. Generating Machine Language
from 3AC

= Thiscan be done blindly, instruction by
instruction, or it can be done with some
thought to the way successve instructions
interact and especially to the intelli gent use of
registers.
0 We will consider the blind method firgt, since it
isthe simplest.

Chapter 7 -- Object Code Generation 3




= In machines where the number of registersis
small or their uses are severely restricted, it
may not make alot of senseto devote alot of
effort to gptimizing register use.

= Optimizationimplies awide range of options
to choose from, and if the optimizations are
limited, so isthe anount of optimizing we can
do.

Chapter 7 -- Object Code Generation

1.1 Blind Generation

= You must take into account
0 The addressing modes of the operands.
O result and register restrictions (pairs,...)
= We oould write aprocedure, one for each type
of 3AC, that handlesthe blind trandation.
= These would ignore register allocation, and
just doloadsto get stuff in, and storesto pu
stuff badk.

Chapter 7 -- Object Code Generation

1.2 Specia Considerations

= The main issues are:
0 taking advantage of spedal instructions,
0 deciding when to deviate from straight
translation.
= The use of special instructions arises because
there is often more than one way to do things.
0 thisis where peephole optimizationis good.
0 procedures for repeated things. (cdculating
array subscripts)

Chapter 7 -- Object Code Generation




2. Context-Sensitive Trand ation and

Register Use

= Thevast mgjority of computer instructions use
aworking register to hold ore of its operands.

= Sinceit takes time to copy from registersto
memory, keep thingsin registers.

= The general rulefor register usageis: If avalue
isinaregister, and it isgoing to be used again
soon, keep it in aregister.

= The problem iswhen yourun out of registers.

Chapter 7 -- Object Code Generation 7

» Therefore, we must keep track of:

0 1. Which registers are used, and what do they
hald.

0 2. Where the arrent value of the variable can
be found.

0 3. Which variables will be needed later in the
block, and where.

0 4. Which variables whose airrent values arein
registers must be stored upon exiting the block
(these aelive variables)

Chapter 7 -- Object Code Generation 8

= Since programs may have hundreds of
variables (including temporaries created in
code generation) this job can easily get out of
hand.

Chapter 7 -- Object Code Generation 9




2.1 Livens and Next Use

= avariableisliveif it isgoingto be used again
in the program.

= programmer defined variables can be assumed
live & the end of the block.

= temporaries are asumed to nd be dive & the
end of ablock.

Chapter 7 -- Object Code Generation 10

2.2 Descriptor Tables

= register allocation table -- current contents of
each register (every use of aregister updates
thistable).

= addresstable -- where the aurrent value of
each variable may be found (memory, register,
both)

Chapter 7 -- Object Code Generation 11

2.3 Assigning Registers
m int Get_Register(char *, int & new);

= Passit the operand

0 1.Find ou if the parameter isarealy ina
register. If soreturn it.

0 2. If not, find an empty register andfill it i n the
register table and set new to true.

0 3. If there ae no empty registers, spill .

Chapter 7 -- Object Code Generation 12




2.4 Generating Code

ma=boc
= 1. R= Get_Register (B, new);
n 2. if(new)

0L R, B // Load register Rwith B
» 3. Check addresstable for C

o if memory

oopR,C
oif register S

00pRR,S Chapter 7 -- Object Code Generation 13

= Don't forget to free temporaries from registers
after they are used.
0 This may require asemnd functionto free the
register of some variable.
free_register (char *name);

= Note: Get_Register may also have to worry
about even/odd register pairsin some
architedures.

Chapter 7 -- Object Code Generation 14

2.5 Instruction Sequencing

» Aho, Sethi, and Ullman [1970] devised a
method o re-ordering the instructions to
evaluate the basic blocks that require the most
registersfirst.

= This can save on your register use, thereby
minimizing spilling of registers.

Chapter 7 -- Object Code Generation 15




3. Special Architedural Feaures

= The mde generator should be aleto take
advantage of any special cgpabilities provided
by the target machine.

0 The PD.-11 provided auto-increment and auto-
decrement registers. Y ou could set them to
auto-increment before or after they gave you
the value.

O ++i or i++

Chapter 7 -- Object Code Generation 16

= Thereislittle to say about exotic instructions,
since it depends on what the instructionis, and
what you consider exatic.

= One can generally say, the more exotic the
instruction, the lessuseit islikely to be.

= |t may be more trouble than it is worth to
detect the opportunity to use some unusua
instruction urless it saves atruly huge number
of conventiond instructions.

Chapter 7 -- Object Code Generation 17

4. Summary

= Object code generation takes as many forms as
there ae target machines.
= Some programming languages have been
influenced by the instruction sets of the
machines on which they were first devel oped
oCandi++
0 FORTRAN andif(x) 10, 20,30

o refleds the comparison and conditional -jump
operations of the original target machine.

Chapter 7 -- Object Code Generation 18




You can lean agreat deal by using an
interactive debugger to analyze and study the
object code generated by other compilers for
the same macdhine.
0 You may spot some things the compil er does
that are stupid.
0 It may also aert you to problems you can
avoid.

Chapter 7 -- Object Code Generation




