Chapter 7

Objed Code Generation

= Statementsin 3AC are simple enoughthat it is
usualy no geat problem to map them to
corresponding sequences of machine-language
instructions, if some cae istaken.

Thisis, of course, one of the great attractions
of 3AC

The main issuesin Objea Code Generation:
0 How to avoid redundant Operations.
0 Which Machine Instructions to use.
0 How to manage Registers.

Chapter 7 -~ Object Code Generation

1. Generating Machine Language
from 3AC

= Thiscan be done blindly, instruction by
instruction, or it can be done with some
thought to the way successve instructions
interact and especially to the intelli gent use of
registers.
0 We will consider the blind method first, since it
isthe simplest.

Chapter 7 -~ Object Code Generation 3

= In machines where the number of registersis
small or their uses are severely restricted, it
may not make alot of senseto devote alot of
effort to optimizing register use.

Optimizationimplies awide range of options
to choose from, and if the optimizations are
limited, so isthe anount of optimizing we can
do.

Chapter 7 -~ Object Code Generation 4

1.1 Blind Generation

= You must take into account
0 The addressing modes of the operands.
0 result and register restrictions (pairs,...)
= We oould write aprocedure, one for each type
of 3AC, that handlesthe blind trandation.
= These would ignore register alocation, and
just doloadsto get stuff in, and storesto pu
stuff badk.

Chapter 7 -- Object Code Generation

1.2 Specia Considerations

= Themain issues are:
0 taking advantage of speda instructions,
0 deciding when to deviate from straight
translation.
= The use of special instructions arises because
there is often more than one way to do things.
0 thisis where pegphole optimizationis good.
0 procedures for repeated things. (cdculating
array subscripts)

Chapter 7 - Object Code Generation




2. Context-Sensitive Trand ation and

Register Use

= Thevast mgjority of computer instructions use
aworking register to hold ore of its operands.

= Sinceit takes time to copy from registersto
memory, keep thingsin registers.

= The general rulefor register usageis: If avalue
isinaregister, and it isgoing to be used again
soon, keep it in aregister.

= The problem iswhen yourun out of registers.

Chapter 7 -- Object Code Generation 7

= Therefore, we must keep track of:

0 1. Which registers are used, and what do they
hold.

0 2. Where the arrent value of the variable can
be found.

0 3. Which variables will be needed later in the
block, and where.

0 4. Which variableswhose aurrent values arein
registers must be stored upon exiting the block
(these ae live variables)

Chapter 7 - Object Code Generation 8

= Since programs may have hundreds of
variables (including temporaries created in
code generation) thisjob can easily get out of
hand.

Chapter 7 -- Object Code Generation 9

2.1 Livens and Next Use

= avariableisliveif it isgoingto be used again
in the program.

= programmer defined variables can be assumed
live & the end of the block.

= temporaries are assumed to na be dive & the
end of ablock.

Chapter 7 - Object Code Generation 10

2.2 Descriptor Tables

= register allocation table -- current contents of
each register (every use of aregister updates
thistable).

= addresstable -- where the aurrent value of
each variable may be found (memory, register,
both)

Chapter 7 -- Object Code Generation 11

2.3 Assigning Registers
= int Get_Register(char *, int & new);

» Passit the operand

0 1. Find ou if the parameter isalready in a
register. If so return it.

0 2. If not, find an empty register andfill it i n the
register table and set new to true.

0 3. If there ae no empty registers, spill .

Chapter 7 -- Object Code Generation 12




= Don't forget to free temporaries from registers

2.4 Generating Code = after they are used.
= 0 This may require asecnd functionto free the
ma=boc register of some variable.
= 1. R=Get_Register (B, new); free_register (char *name);
u 2. if(new)

= Note: Get_Register may also have to worry
about even/odd register pairsin some
architedures.

0L R, B // Load register Rwith B
» 3. Check addresstable for C
o if memory
oopR,C
oif register S

DO0PRRS a7 Object Code Generation 13 Chapter 7 - Object Code Generation 14

2.5 Instruction Sequencing 3. Special Architedural Feaures

= Aho, Sethi, and Ullman [1970] devised a = The @de generator should be aleto take

method o re-ordering the instructions to
evaluate the basic blocks that require the most
registersfirst.

This can save on your register use, thereby
minimizing spilling o registers.

Chapter 7 -- Object Code Generation 15

advantage of any specia cgpabilities provided
by the target machine.

0 The PD.-11 provided auto-increment and auto-
decrement registers. Y ou could set them to
auto-increment before or after they gave you
the value.

O ++i or i++

Chapter 7 - Object Code Generation 16

Thereislittle to say about exotic instructions,
since it depends on what the instructionis, and
what you consider exotic.

One ca generally say, the more exotic the
instruction, thelessuseitislikely to be.

It may be more trouble than it isworth to
detect the opportunity to use some unusual
instruction uriessit saves atruly huge number
of conventiona instructions.

Chapter 7 -- Object Code Generation 17

4, Summary

= Object code generation takes as many forms as

there ae target madhines.

= Some programming languages have been

influenced by the instruction sets of the
machines on which they were first developed
oCandi++
0 FORTRAN andif(x) 10, 20,30

o refleds the comparison and conditional -jump
operations of the original target machine.

Chapter 7 -- Object Code Generation 18




You can lean agreat deal by using an
interactive debugger to analyze and study the
object code generated by other compilers for
the same macdhine.
0 You may spot some things the compil er does
that are stupid.
0 It may also aert you to problems you can
avoid.

Chapter 7 -- Object Code Generation




