Chapter 8

Memory Use

= In this chapter we will consider memory use
during compilation and run time.

= During compilation, the principal memory-use
problem is the management of the symbol
table.

= But the compiler must also lay the groundwork
for how datawill be stored and accessed
during program execution.

Chapter 8 -~ Memory Use 2

1. The Symbad Table

= The symbol table is consulted at almost every
point in the mmpilation process.

= Themainissuein symbol table designis
organization

= Wewill consider the grossorganization of the
table and then questions of how the structure of
the source program influences the structure of
the symbal table.

Chapter 8 - Memory Use 3

1.1 Organization

= A symbal table an be organized asasimple
array, alinked list, abinary search treg or an
array accessed by hashing.

0 The choiceof structure is atrade-off between
memory requirements and accessspeed.

0 Since the symbol table will typically be
consulted thousands of timesin the course of
compiling aprogram, speed of accessis
generaly given first priority.

Chapter 8 - Memory Use 4

= The simplest organizationisthe aray.

0 The advantages of using an array are:
o simplicity
o and economy of storage.

0 The disadvantages are:
o the limited size of the table
0 and thetime it takes to search the table.

Chapter 8 - Memory Use 5

n A linked list offers only two advantages over
an array.
O First, it is expandable
0 Second, using self-organizing storage @an speed
seach considerably.
0 Self-organizing storage is described in Sedgwick’s
texts

0 Basicdly, you move accesed membersto the front
of thelist, sincetheir accesswil | probably come
again soon.

Chapter 8 -- Memory Use 6

= A binary seach tree offers quicker access to
dataitems.

0 It offers the minor subsidiary advantage that if
thetableisto belisted at the end of
compilation, it can be displayed in aphabeticd
order by asimple ignored traversal.

0 lts main drawback is increased memory
consumption (2 pointers), and the fad that
deleting items tends to unbalanceit and
increase search time.

Chapter 8 - Memory Use 7

= Most compilers use hashed storage.

0 Usually hashing with chaining.

0 The array sizeislimited, but the linked-li sts can
be ay length.

0 The seach timeis O(k), where k is the length
of thelist

0 k isalso the number of items gored in the table
divided bythe sizeof the array, so you can set a
bound o it.

Chapter 8 - Memory Use 8

1.2 Storing Identifiers

= Storing variable names can present special
difficulties.

0 In FORTRAN, variable names are generaly
limited to eight charaders, and it isno geat
problem to provide an eight charader field in
the symbol-table record.

0 BUT, many modern languages suppat very
long variable names (31 is afrequent limit), and
that can waste spacein an array implementation
if you havei, j, and k used.

Chapter 8 -- Memory Use 9

= One compromiseisto allow very long
identifiers but recognize only the first six or
eight characters.

= Or, if you must store the entire name,
0 Use dynamic memory
0 or have abig array for names, and have the
symbal table point to the start of the name, with
some marker at the end.

o This represents a chegp and gotimal way of storing
them.

Chapter 8 - Memory Use 10

Symbol table
F~

Dy IXd[i st X r[aft]e b o alo x5 -
Identifiers <
Figure 8.1

Chapter 8 - Memory Use 11

1.3 Reoord Formats

= Symbad-table records must include éther the
identifier name or a pointer to the name, and a
code indicating the data type of the object to
which the entry refers. Beyond that, the
contents of the record may vary widely.

= |t followsthat it is probably not agood ideato
use auniform format for all symbol-table
entries.

Chapter 8 -- Memory Use 12

1.4 Special Problems

= Inalanguage like FORTRAN, thisisvirtually
al there isto symbol-table management.
0 Find a suitable organization,
0 Decide on record formats
0 Perhaps concoct a hashing function
0 -- and you are dore
= But other languages present additional
problems.

Chapter 8 - Memory Use 13

= Block-structured languages with static scope
rules, like Algol, Pascd, PL/I, and C, have to
model the scope rulesin the symbol table.

= |n addition, these languages permit records,
and again the symbol table must be designed to
fadlitate the handing d these structures.

Chapter 8 - Memory Use 14

= Scope Rules:
0 There ae two basic gpproachesto
implementing scope rules in the symbal table.
0 You can have aseparate table for ead scope

o You can have aglobal table in which ead identifier
is marked with the scope to which it belongs.

O It is probably easier to have aseparate table for
eah scope. Thenyoutred it like astadk.

Chapter 8 -- Memory Use 15

0 Problemswith using a stack
o If you have amulti-passcompil er

o If you reed to generate aossreferencetables
 where avariable was defined
« every placeit was used

0 Such tables are typicaly generated at the end o
compilation, but at that time dl the stadk entries
have been deleted. So it may be necessary to save
these symbadl tablesfor later use when they are
“popped” off the stadk.

Chapter 8 - Memory Use 16
= Records:
0 A new record isin many ways like anew
scope.

0 ldentifier namesin areard may be duplicates of
other identifier names used ouside the record, just
as they may in scopes.

o var

a,
b: integer;
c: record
a,
b: integer
end;

Chapter 8 - Memory Use 17

0 Therefore, you have the choice
0 creating a subtable for the record, just aswe would
for anew scope and hangit off the record’s node
0 add the record’ s fields to the symbol-table with a
flag/pointer to the record to whom they belong.

o = a,0
b b,0
v c,0 s
- : :C'Z)) a,1 (c.a)
o
b,1 (c.b)
Figqre 8.3(a) B ()

Chapter 8 -- Memory Use 18

2. Run-Time Memory Management

= We can classify the use of memory
management during execution as gatic or
dynamic.
= |n static memory management, storage for all
variablesis allocated at compile time.
0 FORTRAN, COBOL
0 alowsno reaursion, bu iseasy to do.

Chapter 8 - Memory Use 19

= |n dynamic memory management, storage is
found for the variables at run time asit is
needed.

= Themain issuesin dynamic memory
management are

0 using a stack for variable storage

0 and supparting dynamic memory all ocation for
statements like new and delete

Chapter 8 - Memory Use 20

2.1 Static Memory Management

» Thisisthe oldest and simplest scheme.

0 every variable is assigned an address when the
program is trandated.

0 Advantage: It is Smple, and reguires minimal
overhead.

0 Disadvantage: No recursion.

Chapter 8 -- Memory Use 21

= Addresses for variables may be spedfied as
0 absolute memory locétions,
0 or they may be given as off sets from some
reference aldress.

» |f you specify the addressesrelative to a
reference aldress, the program can go
anywhere in memory -- it is relocatable.

0 Architedures with segmented memory usually
require relative addresses.

= Many programming languages allow amix of
static and dynamic dlocation.

Chapter 8 - Memory Use 22

2.2 Dynamic Memory Management:

Recursion

= |n dynamic memory management, memory
addresses are nat fixed (bound) until run time.

= We use this approach to support reaursive
subprograms and to permit dynamic dlocation
of memory.

Chapter 8 - Memory Use 23

= Recursive Subprograms:

0 A recursive subprogram is one that cdlsitself,
either diredly or indirealy.

0 When recursive subprograms are used, we refer
to each call asan instantiation, or activation.

0 If the subprogram haslocd variables, the old
values of these variables must be saved before
therecursive cdl so that the new activation
won't wipe them out.

Chapter 8 -- Memory Use 24

0 Saving these variables means that memory must
be dlocaed for each adivation.

0 And when each activation terminates, its locd
variables must be jettisoned so that the
variables for the previous adivation will bein
effect again.

0 We manage this by means of astadk. Thething
pushed on the stack is cdled an activation
record

o it provides storage for &l the locd variables

o it usually includes other things aswell, such as:
 parameters being passed.
« the return addressof the subprogram that called it.

Chapter 8 - Memory Use 25

0 Any time a subprogram needs to access a
variable, it looksin the topmost activation
record onthe stack. If itisaloca variableit
will bethere.

0 If it needs anontlocal variable, orethat is
“scoped in” from some other procedure, then it
must find that in the activation record for the
block that owns the variable.

0 Let'slook at example of thiswith areaursive
function to compute factorial values.

Chapter 8 - Memory Use 26

Program FACTORIAL;
var :
£, n, lim: word;

(1) function FACT(n: word): word;

2) begin

3 if n > lim then
@ fact := 0

(5) else if n = O then
6) fact i="1

(0} else -
(8) fact :=n * fact(n - 1);
9 end; { Fact }

(1) begin { Main }

) lim := 9;

(3) Tepeat

(4) write (’n: ’);
(5) readln (n);

(6) £ := fact(n);
(¢p) vriteln (£);
(8 until n = 0;

(9) end.

Chapter 8 -- Memory Use 27

0 Suppose we cdl fact(2). The stadk of
adivation records looks like this before the all.

addr(Fact)
1lim = 9

£

Stack
Figure 8.4(a)

Chapter 8 - Memory Use 28

= When we cdl fact, an activation record for that
call goes onthe stack:

FACT’s

activation record
format
result
parameter
fact = 7 return addr.
n =2 e
main(6) 2D
/
addr (Fact)
lim = 9
n=2
f=7
Stack
Figure 8.4(b)
Chapter 8 - Memory Use 29

O In order to aacess lim, Fad usesthe s.c.p or
Static Chain Pointer to know where the
enclosing scopeis, no matter how deep the
direct recursion has gone.

0 It iscaled static, because it is used to
implement the static scope rules of alanguage
like Pascal, or C.

Chapter 8 -- Memory Use 30

0 So after the seaond call to Fad, the stadk (with
the s.c.p’sdrawn in would look like this:

fact = ?
n=1

fact(8)

fact = 7
n=2

main(6)

—e

addr (Fact)
lim = 9
n=2
f=°

Stack
Figure 8.4(d)

Chapter 8 - Memory Use 31

0 Now to accessavariable one level down in the
Symba Table Stadk, we go dowvn ore level of
thes.c.p.

0 So, in general, accessing anonocd variableis
simple. We know the nestinglevel at compile
time; that gives us the number of linksin the
chain.

0 From thiswe @n see that each variable can be
identified as two numbers:

o how many linksin the static chain are needed to take
usto the crrect adivation record,

o and how far up from the start of that adivation the
desired variableis.

Chapter 8 - Memory Use 32

0 There ae acoupe of waysthe static chain
pointer can be set.

o When afunction cdl s anather, it can copy the base
of itsown adivation record into the s.c.p of the
functionit cdls.

* This happensif a sub-scopeis entered.

o If the function cdled has the same scope @ the one
being cdled, thes.c.pisjust copied.

o In ou language, where you can have functions
inside of functions, you can have function A cal
function B, where B is at alower level of scope.

« Inthiscase, you haveto go find the right s.c.p. by going
badk through the s.c.p. chain and copying the right onein.
« You dothis by chedking hav many ST stad levelsyou
went through to find the name of the function.
Chapter 8 -- Memory Use 33

s ’ (el
T
—a
s (&
b
——e
s (]
1
——o
q B
P
o
¥y A
3
e
w Main
v
Figure 8.5
Chapter 8 - Memory Use 34

= The Display.
0 Most programs have only a modest number of
levels of nesting, and traversing the chain of
pointersis not excessively time consuming.

0 But thereis afaster way to acess noniocd
variables.

0 We can have an array of pointer to adivation
records as shown onthe next dide.

0 Such an array is cdled adisplay.

Chapter 8 - Memory Use 35

cII =
r
r
Y s
r
B q
P
A v \ d[4]
- L2
Main % = gg
v ——————1 d -1-
Stack Display
Figure 8.6

Chapter 8 -- Memory Use 36

0 Thedisplay offers quicker acaess to activation
records becaise we require only a change of
subscript to find the right activation pointer.

0 We have shown the display as a separate array
here, but it could be included as a part of the
adivation record.

0 Noticethat we need as many pointers as levels
of nesting, and each pointer is aimed at the
most recent adivation o that level

0 The questionis, how many levels of nesting are
there?

o When do yai know that number?

Chapter 8 - Memory Use 37

0 So, when thereis acall to someone & the same
level (recursion for example) the old pointer
needs to be saved, and the new pointer placed
inthe display.

o EONGT
s
T
{ d[4] (older) |
c s
r
cilfE e
r
Bl i dge e s ot
P
AEsaays o
%
Madn |5 s ows ion o] {df2] |
v
Stack Display
Figure 8.7(c)
Chapter 8 - Memory Use 38

= The aeation of anew adivation record isa

shared responsibility.
0 The calling program will push the things it
knows about onto the stack
0 parameters,
o chain pointer,
o return address
0 The subprogram, knowing howv many loca
variablesit requires, will take are of therest.

Chapter 8 -- Memory Use 39

= When trandating the called subprogram,
0 the compil er generates code for accessing local
variables viareferences to the stack,
0 and it must generate spedal code for eah
aaessto anorlocd variable,
0 either by traversing the chain panters,
o or by consulting the display.

Chapter 8 - Memory Use 40

2.3 Dynamic Memory Management:
Run-Time Allocation

= Procedures like new or malloc allocate a
block of memory and return a pointer to the
block.

= We must now consider where this memory
comes from and how the dlocation (and the
de-alocation) are managed.

Chapter 8 - Memory Use 41

= The blocks come from an area of unused
memory known as the heap.
= Thesizeof the hegp depends upon the anount
of available memory, the size of the program
and its static data.
= In many cases, al unused memory is shared
between the heap and the stack.
0 The stadk grows downward from the top,
0 and the heap grows upward from the bottom.
= |f memory demands are so great that we run
out of space, we get a heap-stack collision and
the program crashes.

Chapter 8 -- Memory Use 42

= Therun-time support software has accessto
the heap and has information about what parts
of it arein use and what parts are available.

= When arequest for memory comes, it must
somehow spedfy the anount of memory

required.

» There ae anumber of ways of managing the
heap, and over the next few dides we will

discuss one of them.

Chapter 8 - Memory Use

= [nitialy, the entire
heap isfree

n Asblocks are
requested, they are
alocaed
sequentialy starting

the heap; ahegp
pointer marks the
boundary between
the blocks that arein
use (adive blocks)
and the free aea

Chapter 8 - Memory Use

H
from the bottom of poienatgr_’

Figure 8.8(a)

44

= Eventualy, the heap
pointer may reach the
top d the hegp (or
the bottom of the
stack).

= |f no blocks have
been freed by this
time, we ae dead;
but thisrarely
happens. Instead, we
have apicturelike
this:

Chapter 8 -- Memory Use

Heap

e
pointer

Figure 8.8(b)

45

= Thereis now freespace scattered in little
chunks through the hegp; this stuationis
called fragmentation.

= |f we aeto make use of thisfree spacethatis
available, we must know whereit is.

= The most common way to keep tradk of free
blocksisto form them into alinked list known
asthe freespace list.

Chapter 8 - Memory Use 46

Heap
pointer

= A small amount of
space is borrowed
from each free block Free
and used to hdd its
size and a pointer to
the next free block.

CEognad

Free | Free
space

Figure 8.8(c)

Chapter 8 - Memory Use a7

= We ontinue dlocating blocks from the free-
space list.
= Searching for abig enough Hock takesa
number of forms; two of the more common
are
o first fit -- seled the first block it finds that is big
enough.
O best fit -- traverse the entire free list and pick
the small est block that is just big enough.
0 This saves large blocks for large requests

0 But it can lea to lots of slivers of free memory and
therefore to extreme fragmentation.

Chapter 8 -- Memory Use 48

= The genera solution
to the fragmentation
problem is a proceduressite
known as compaction.

= Thisisalaborious
undertaking that dides S
al the blocks that are Free
in use down to the
bottom of the hegp so Free
that the free space
moves up to the top
and forms one big
block again.

L&

Figure 8.8(d)

Chapter 8 - Memory Use 49

» There aefour basic stepsfor this algorithm:
0 Finding the pointers
0 Thisisthe hard job.
o make alist of al the paintersin the user’s program.
0 Dress rehearsal

o don’t adually move the blocks, but figure out where
to move them

0 Pointer Updating

o Usethelist youfound in step 1, and update pointers
with their new value.

0 Moving.
o Now that pointers are crred, move the blocks.

Chapter 8 - Memory Use 50

= Garbage and Dangling References.

0 If aprogrammer loses the only pointer to an
all ocated block of memory, that block is termed
garbage.

0 There ae afew ways in which the system can
help the programmer avoid the creation of
garbage.

o One method isto provide eab block with a
reference @urt (the number of pointers pointing to
the block)

* Itisinvisible to the programmer

« Itismanaged by codeinserted into pointer assgnments by
the compiler.

Chapter 8 -- Memory Use 51

0 If the court ever goesto zero, the block is
returned to the free-spacelist, whether the user
disposed of it or nat.

0 This works most of the time, but not always.

T

Figure 8.9(a)

11; 1!

Figure 8.9(b)

Chapter 8 - Memory Use 52

= Garbage Colledion.

0 Some languages, most notably LISP, provide
no explicit disposal mechanism, and hkenceno
opportunity to creae dangling references.

0 You are free to create garbage with wild
abandon, and at intervals the support system
cleans up yaur messfor you.

0 This processis known as garbage @lledion.

0 Garbage coll edion achieves the seemingly
impossble: it locates garbage (which we
though was by definiti on impossible to locate)
and returns it to the free-spacelist.

Chapter 8 - Memory Use 53

0 Thetrick isthat we dorit locate the set of all
garbage; we locate its complement.

0 Hereis the basic procedure:

o Go sequentially through the heg and urmark every
block.

o0 Starting with all the pointersin the user’s code,
follow the dhains of painters and mark all the blocks
encountered. (At this point we have marked
everything that isn't garbage)

o Now go sequentially through the hegp again and
identify all unmarked bocks and return them to the
freespacelist.

Chapter 8 -- Memory Use 54

= |t should be obvious that while garbage
colledion (or compaction) isgoing a, the
exeadtion d the user’s program must be
suspended.

= Henceyou may wish to provide for some
notification that garbage wllection isgoing .

= Otherwise when the program stops running,
the user may susped a bug, and panic.

Chapter 8 - Memory Use 55

3. Summary

= The topics discussed in this chapter are the
basics of memory management at compile time
and at runtime.

= Some languages may create special problems:

0 unlabeled and labeled COMMON blocksin
FORTRAN require some spedal handling.

0 Languages like PL/I, in which subprograms are
separately compiled, require that the cdling
program have enoughinformationto creae
adivation records properly.

Chapter 8 - Memory Use 56

= Garbage olledion and compadion are not
aways available.
0 Garbage colledion is normally associated with
languages in which there is no explicit de-
alocation d variables.

= Many languages do the best they can with the

heap, and if you run out of space because of
fragmentation, you're dead.

Chapter 8 -- Memory Use 57

