
Chapter 8

Memory Use

Chapter 8 -- Memory Use 2

■ In this chapter we will consider memory use
during compilation and run time.

■ During compilation, the principal memory-use
problem is the management of the symbol
table.

■ But the compiler must also lay the groundwork
for how data will be stored and accessed
during program execution.

Chapter 8 -- Memory Use 3

1. The Symbol Table

■ The symbol table is consulted at almost every
point in the compilation process.

■ The main issue in symbol table design is
organization

■ We will consider the gross organization of the
table and then questions of how the structure of
the source program influences the structure of
the symbol table.

Chapter 8 -- Memory Use 4

1.1 Organization

■ A symbol table can be organized as a simple
array, a linked list, a binary search tree, or an
array accessed by hashing.
◆ The choice of structure is a trade-off between

memory requirements and access speed.

◆ Since the symbol table will t ypically be
consulted thousands of times in the course of
compili ng a program, speed of access is
generally given first priority.

Chapter 8 -- Memory Use 5

■ The simplest organization is the array.

◆ The advantages of using an array are:
✦ simplicity

✦ and economy of storage.

◆ The disadvantages are:
✦ the limited size of the table

✦ and the time it takes to search the table.

Chapter 8 -- Memory Use 6

■ A linked list offers only two advantages over
an array.
◆ First, it is expandable

◆ Second, using self-organizing storage can speed
search considerably.

✦ Self-organizing storage is described in Sedgwick’s
texts

✦ Basically, you move accessed members to the front
of the list, since their access wil l probably come
again soon.

Chapter 8 -- Memory Use 7

■ A binary search tree offers quicker access to
data items.
◆ It offers the minor subsidiary advantage that if

the table is to be listed at the end of
compilation, it can be displayed in alphabetical
order by a simple ignored traversal.

◆ Its main drawback is increased memory
consumption (2 pointers), and the fact that
deleting items tends to unbalance it and
increase search time.

Chapter 8 -- Memory Use 8

■ Most compilers use hashed storage.
◆ Usually hashing with chaining.

◆ The array size is limited, but the linked-lists can
be any length.

◆ The search time is O(k), where k is the length
of the list

◆ k is also the number of items stored in the table
divided by the size of the array, so you can set a
bound on it.

Chapter 8 -- Memory Use 9

1.2 Storing Identifiers

■ Storing variable names can present special
difficulties.
◆ In FORTRAN, variable names are generally

limited to eight characters, and it is no great
problem to provide an eight character field in
the symbol-table record.

◆ BUT, many modern languages support very
long variable names (31 is a frequent limit), and
that can waste space in an array implementation
if you have i, j, and k used.

Chapter 8 -- Memory Use 10

■ One compromise is to allow very long
identifiers but recognize only the first six or
eight characters.

■ Or, if you must store the entire name,
◆ Use dynamic memory

◆ or have a big array for names, and have the
symbol table point to the start of the name, with
some marker at the end.

✦ This represents a cheap and optimal way of storing
them.

Chapter 8 -- Memory Use 11 Chapter 8 -- Memory Use 12

1.3 Record Formats

■ Symbol-table records must include either the
identifier name or a pointer to the name, and a
code indicating the data type of the object to
which the entry refers. Beyond that, the
contents of the record may vary widely.

■ It follows that it is probably not a good idea to
use a uniform format for all symbol-table
entries.

Chapter 8 -- Memory Use 13

1.4 Special Problems

■ In a language like FORTRAN, this is virtually
all there is to symbol-table management.
◆ Find a suitable organization,

◆ Decide on record formats

◆ Perhaps concoct a hashing function

◆ -- and you are done

■ But other languages present additional
problems.

Chapter 8 -- Memory Use 14

■ Block-structured languages with static scope
rules, like Algol, Pascal, PL/I, and C, have to
model the scope rules in the symbol table.

■ In addition, these languages permit records,
and again the symbol table must be designed to
facilitate the handling of these structures.

Chapter 8 -- Memory Use 15

■ Scope Rules:
◆ There are two basic approaches to

implementing scope rules in the symbol table.
✦ You can have a separate table for each scope

✦ You can have a global table in which each identifier
is marked with the scope to which it belongs.

◆ It is probably easier to have a separate table for
each scope. Then you treat it li ke a stack.

Chapter 8 -- Memory Use 16

◆ Problems with using a stack
✦ If you have a multi-pass compiler

✦ If you need to generate cross-reference tables
• where a variable was defined

• every place it was used

✦ Such tables are typically generated at the end of
compilation, but at that time all the stack entries
have been deleted. So it may be necessary to save
these symbol tables for later use when they are
“popped” off the stack.

Chapter 8 -- Memory Use 17

■ Records:
◆ A new record is in many ways like a new

scope.
✦ Identifier names in a record may be duplicates of

other identifier names used outside the record, just
as they may in scopes.

✦ (Code pg 286)

Chapter 8 -- Memory Use 18

◆ Therefore, you have the choice
✦ creating a subtable for the record, just as we would

for a new scope and hang it off the record’s node

✦ add the record’s fields to the symbol-table with a
flag/pointer to the record to whom they belong.

✦ 8.3a & 8.3b

Chapter 8 -- Memory Use 19

2. Run-Time Memory Management

■ We can classify the use of memory
management during execution as static or
dynamic.

■ In static memory management, storage for all
variables is allocated at compile time.
◆ FORTRAN, COBOL

◆ allows no recursion, but is easy to do.

Chapter 8 -- Memory Use 20

■ In dynamic memory management, storage is
found for the variables at run time as it is
needed.

■ The main issues in dynamic memory
management are
◆ using a stack for variable storage

◆ and supporting dynamic memory allocation for
statements like new and delete

Chapter 8 -- Memory Use 21

2.1 Static Memory Management

■ This is the oldest and simplest scheme.
◆ every variable is assigned an address when the

program is translated.

◆ Advantage: It is simple, and requires minimal
overhead.

◆ Disadvantage: No recursion.

Chapter 8 -- Memory Use 22

■ Addresses for variables may be specified as
◆ absolute memory locations,

◆ or they may be given as offsets from some
reference address.

■ If you specify the addresses relative to a
reference address, the program can go
anywhere in memory -- it is relocatable.
◆ Architectures with segmented memory usually

require relative addresses.

■ Many programming languages allow a mix of
static and dynamic allocation.

Chapter 8 -- Memory Use 23

2.2 Dynamic Memory Management:
Recursion
■ In dynamic memory management, memory

addresses are not fixed (bound) until run time.

■ We use this approach to support recursive
subprograms and to permit dynamic allocation
of memory.

Chapter 8 -- Memory Use 24

■ Recursive Subprograms:
◆ A recursive subprogram is one that calls itself,

either directly or indirectly.

◆ When recursive subprograms are used, we refer
to each call as an instantiation, or activation.

◆ If the subprogram has local variables, the old
values of these variables must be saved before
the recursive call so that the new activation
won’ t wipe them out.

Chapter 8 -- Memory Use 25

◆ Saving these variables means that memory must
be allocated for each activation.

◆ And when each activation terminates, its local
variables must be jettisoned so that the
variables for the previous activation will be in
effect again.

◆ We manage this by means of a stack. The thing
pushed on the stack is called an activation
record

✦ it provides storage for all the local variables

✦ it usually includes other things as well , such as:
• parameters being passed.

• the return address of the subprogram that called it.

Chapter 8 -- Memory Use 26

◆ Any time a subprogram needs to access a
variable, it looks in the topmost activation
record on the stack. If it is a local variable it
will be there.

◆ If it needs a non-local variable, one that is
“scoped in” from some other procedure, then it
must find that in the activation record for the
block that owns the variable.

◆ Let’s look at example of this with a recursive
function to compute factorial values.

Chapter 8 -- Memory Use 27 Chapter 8 -- Memory Use 28

◆ Suppose we call fact(2). The stack of
activation records looks like this before the call .

Chapter 8 -- Memory Use 29

■ When we call fact, an activation record for that
call goes on the stack:

Chapter 8 -- Memory Use 30

◆ In order to access lim, Fact uses the s.c.p or
Static Chain Pointer to know where the
enclosing scope is, no matter how deep the
direct recursion has gone.

◆ It is called static, because it is used to
implement the static scope rules of a language
like Pascal, or C.

Chapter 8 -- Memory Use 31

◆ So after the second call to Fact, the stack (with
the s.c.p’s drawn in would look like this:

Chapter 8 -- Memory Use 32

◆ Now to access a variable one level down in the
Symbol Table Stack, we go down one level of
the s.c.p.

◆ So, in general, accessing a nonlocal variable is
simple. We know the nesting level at compile
time; that gives us the number of links in the
chain.

◆ From this we can see that each variable can be
identified as two numbers:

✦ how many links in the static chain are needed to take
us to the correct activation record,

✦ and how far up from the start of that activation the
desired variable is.

Chapter 8 -- Memory Use 33

◆ There are a couple of ways the static chain
pointer can be set.

✦ When a function calls another, it can copy the base
of its own activation record into the s.c.p of the
function it calls.

• This happens if a sub-scope is entered.

✦ If the function called has the same scope as the one
being called, the s.c.p is just copied.

✦ In our language, where you can have functions
inside of functions, you can have function A call
function B, where B is at a lower level of scope.

• In this case, you have to go find the right s.c.p. by going
back through the s.c.p. chain and copying the right one in.

• You do this by checking how many ST stack levels you
went through to find the name of the function.

Chapter 8 -- Memory Use 34

Chapter 8 -- Memory Use 35

■ The Display.
◆ Most programs have only a modest number of

levels of nesting, and traversing the chain of
pointers is not excessively time consuming.

◆ But there is a faster way to access nonlocal
variables.

◆ We can have an array of pointer to activation
records as shown on the next slide.

◆ Such an array is called a display.

Chapter 8 -- Memory Use 36

Chapter 8 -- Memory Use 37

◆ The display offers quicker access to activation
records because we require only a change of
subscript to find the right activation pointer.

◆ We have shown the display as a separate array
here, but it could be included as a part of the
activation record.

◆ Notice that we need as many pointers as levels
of nesting, and each pointer is aimed at the
most recent activation of that level

✦ The question is, how many levels of nesting are
there?

✦ When do you know that number?

Chapter 8 -- Memory Use 38

◆ So, when there is a call to someone at the same
level (recursion for example) the old pointer
needs to be saved, and the new pointer placed
in the display.

Chapter 8 -- Memory Use 39

■ The creation of a new activation record is a
shared responsibility.
◆ The calli ng program will push the things it

knows about onto the stack
✦ parameters,

✦ chain pointer,

✦ return address

◆ The subprogram, knowing how many local
variables it requires, will t ake care of the rest.

Chapter 8 -- Memory Use 40

■ When translating the called subprogram,
◆ the compiler generates code for accessing local

variables via references to the stack,

◆ and it must generate special code for each
access to a nonlocal variable,

✦ either by traversing the chain pointers,

✦ or by consulting the display.

Chapter 8 -- Memory Use 41

2.3 Dynamic Memory Management:
Run-Time Allocation
■ Procedures like new or malloc allocate a

block of memory and return a pointer to the
block.

■ We must now consider where this memory
comes from and how the allocation (and the
de-allocation) are managed.

Chapter 8 -- Memory Use 42

■ The blocks come from an area of unused
memory known as the heap.

■ The size of the heap depends upon the amount
of available memory, the size of the program
and its static data.

■ In many cases, all unused memory is shared
between the heap and the stack.
◆ The stack grows downward from the top,

◆ and the heap grows upward from the bottom.

■ If memory demands are so great that we run
out of space, we get a heap-stack collision and
the program crashes.

Chapter 8 -- Memory Use 43

■ The run-time support software has access to
the heap and has information about what parts
of it are in use and what parts are available.

■ When a request for memory comes, it must
somehow specify the amount of memory
required.

■ There are a number of ways of managing the
heap, and over the next few slides we wil l
discuss one of them.

Chapter 8 -- Memory Use 44

■ Initially, the entire
heap is free

■ As blocks are
requested, they are
allocated
sequentially starting
from the bottom of
the heap; a heap
pointer marks the
boundary between
the blocks that are in
use (active blocks)
and the free area.

Chapter 8 -- Memory Use 45

■ Eventually, the heap
pointer may reach the
top of the heap (or
the bottom of the
stack).

■ If no blocks have
been freed by this
time, we are dead;
but this rarely
happens. Instead, we
have a picture like
this:

Chapter 8 -- Memory Use 46

■ There is now free space scattered in little
chunks through the heap; this situation is
called fragmentation.

■ If we are to make use of this free space that is
available, we must know where it is.

■ The most common way to keep track of free
blocks is to form them into a linked list known
as the free-space list.

Chapter 8 -- Memory Use 47

■ A small amount of
space is borrowed
from each free block
and used to hold its
size and a pointer to
the next free block.

Chapter 8 -- Memory Use 48

■ We continue allocating blocks from the free-
space list.

■ Searching for a big enough block takes a
number of forms; two of the more common
are
◆ first fit -- select the first block it finds that is big

enough.

◆ best fit -- traverse the entire free list and pick
the smallest block that is just big enough.

✦ This saves large blocks for large requests

✦ But it can lead to lots of slivers of free memory and
therefore to extreme fragmentation.

Chapter 8 -- Memory Use 49

■ The general solution
to the fragmentation
problem is a procedure
known as compaction.

■ This is a laborious
undertaking that slides
all the blocks that are
in use down to the
bottom of the heap so
that the free space
moves up to the top
and forms one big
block again.

Chapter 8 -- Memory Use 50

■ There are four basic steps for this algorithm:
◆ Finding the pointers

✦ This is the hard job.

✦ make a list of all the pointers in the user’s program.

◆ Dress rehearsal
✦ don’ t actually move the blocks, but figure out where

to move them

◆ Pointer Updating
✦ Use the list you found in step 1, and update pointers

with their new value.

◆ Moving.
✦ Now that pointers are correct, move the blocks.

Chapter 8 -- Memory Use 51

■ Garbage and Dangling References.
◆ If a programmer loses the only pointer to an

allocated block of memory, that block is termed
garbage.

◆ There are a few ways in which the system can
help the programmer avoid the creation of
garbage.

✦ One method is to provide each block with a
reference count (the number of pointers pointing to
the block)

• It is invisible to the programmer

• It is managed by code inserted into pointer assignments by
the compiler.

Chapter 8 -- Memory Use 52

◆ If the count ever goes to zero, the block is
returned to the free-space list, whether the user
disposed of it or not.

◆ This works most of the time, but not always.

Chapter 8 -- Memory Use 53

■ Garbage Collection.
◆ Some languages, most notably LISP, provide

no explicit disposal mechanism, and hence no
opportunity to create dangling references.

◆ You are free to create garbage with wild
abandon, and at intervals the support system
cleans up your mess for you.

◆ This process is known as garbage collection.

◆ Garbage collection achieves the seemingly
impossible: it locates garbage (which we
though was by definition impossible to locate)
and returns it to the free-space list.

Chapter 8 -- Memory Use 54

◆ The trick is that we don’ t locate the set of all
garbage; we locate its complement.

◆ Here is the basic procedure:
✦ Go sequentially through the heap and unmark every

block.

✦ Starting with all the pointers in the user’s code,
follow the chains of pointers and mark all the blocks
encountered. (At this point we have marked
everything that isn’ t garbage)

✦ Now go sequentially through the heap again and
identify all unmarked blocks and return them to the
free-space list.

Chapter 8 -- Memory Use 55

■ It should be obvious that while garbage
collection (or compaction) is going on, the
execution of the user’s program must be
suspended.

■ Hence you may wish to provide for some
notification that garbage collection is going on.

■ Otherwise when the program stops running,
the user may suspect a bug, and panic.

Chapter 8 -- Memory Use 56

3. Summary
■ The topics discussed in this chapter are the

basics of memory management at compile time
and at run time.

■ Some languages may create special problems:
◆ unlabeled and labeled COMMON blocks in

FORTRAN require some special handling.

◆ Languages like PL/I, in which subprograms are
separately compiled, require that the calli ng
program have enough information to create
activation records properly.

Chapter 8 -- Memory Use 57

■ Garbage collection and compaction are not
always available.
◆ Garbage collection is normally associated with

languages in which there is no explicit de-
allocation of variables.

■ Many languages do the best they can with the
heap, and if you run out of space because of
fragmentation, you’re dead.

