
Appendix B.1 -- Lex 1

Appendix B.1

Lex

Appendix B.1 -- Lex 2

■ Input specification file is in 3 parts
◆ Definitions

◆ Token Descriptions and actions

◆ User-Written code

■ Parts are separated by %%

■ In the first part we define patterns, in the third
part we define actions, in the second part we
put them together.

Appendix B.1 -- Lex 3

1. Token Definitions

■ Elementary Operations
◆ single characters

✦ except . $ ^ [] - ? * + | () / { } < >

◆ concatenation (put characters together)

◆ alternation (a|b|c)
✦ [ab] == a|b

✦ [a-k] == a|b|c|...|i|j|k

✦ [a-z0-9] == any letter or digit

Appendix B.1 -- Lex 4

■ Elementary Operations (cont.)
◆ NOTE: . matches any character except the

newline

◆ * -- Kleene Closure

◆ + -- Positive Closure

■ Examples:
◆ [0-9]+"."[0-9]+

✦ note: without the quotes it could be any character

◆ [\t]+ -- is whitespace
✦ (except CR).

✦ Yes there is a space inside the box before the \t

Appendix B.1 -- Lex 5

■ Special Characters:
◆ . -- matches any single character

(except newline)

◆ \t -- tab

◆ \n -- newline

◆ \" -- double quote

◆ \\ -- \

◆ ? -- this means the preceding was optional
✦ ab? == a|ab

✦ (ab)? == ab|ε

Appendix B.1 -- Lex 6

■ Special Characters (cont.)
◆ ^ -- means at the beginning of the line

(unless it is inside of a [])

◆ $ means at the end of the line

◆ [^] -- means anything except
✦ \"[^\"]*\" is a double quoted string

■ Lex always chooses the longest matching
substring for its tokens.

Appendix B.1 -- Lex 7

2. Definitions

■ NAME REG_EXPR
◆ digs [0-9]+

◆ integer {digs}

◆ plain_real {digs}"."{digs}

◆ expreal {digs}"."{digs}[Ee][+-]?{digs}

◆ real {plainreal}|{expreal}

Appendix B.1 -- Lex 8

■ The definitions can also contain variables and
other declarations used by the Code generated
by Lex.
◆ These usually go at the start of this section,

marked by %{ at the beginning and %} at the
end.

◆ Includes usually go here.

◆ It is usually convenient to maintain a line
counter so that error messages can be keyed to
the lines in which the errors are found.

✦ %{

✦ int linecount = 1;

✦ %}

Appendix B.1 -- Lex 9

3. Tokens and Actions

■ Example:
◆ {real} return FLOAT;

◆ begin return BEGIN;

◆ {newline} linecount++;

◆ {integer} {
✦ printf("I found an integer\n");

✦ return INTEGER;

✦ }

Appendix B.1 -- Lex 10

■ identifiers used by Lex and Yacc begin with yy
◆ yytext -- a string containing the lexeme

◆ yyleng -- the length of the lexeme

◆ yylval -- holds the lexical value of the token.

■ Example:
◆ {integer} {

✦ printf("I found an integer\n");

✦ sscanf(yytext,"%d", &yylval);

✦ return INTEGER;

✦ }

◆ C++ Comments -- //
✦ //.* ;

Appendix B.1 -- Lex 11

4. User Written Code

■ The actions associated with any given token
are normally specified using statements in C.
But occasionally the actions are complicated
enough that it is better to describe them with a
function call, and define the function
elsewhere.

■ Definitions of this sort go in the last section of
the Lex input.

Appendix B.1 -- Lex 12

5. A Sample Lex Specification

■ Note: If 2 rules match the same pattern, Lex
will use the first rule.

