Appendix B.1

Lex

Appendix B.1 - Lex

= [nput specification fileisin 3 parts
0 Definitions
0 Token Descriptions and actions
0 User-Written code

n Parts are separated by %%

= Inthefirst part we define patterns, in the third
part we define actions, in the second part we
put them together.

Appendix B.1 - Lex

1. Token Definitions

= Elementary Operations
0 single characters
oexcept. $M[]-?2*+[()/{} <>
0 concatenation (put characters together)
0 alternation (alblc)
o [ab] == ab
o [ak] == ablc]...Jiljk
0 [az0-9] == any letter or digit

Appendix B.1 -~ Lex

= Elementary Operations (cont.)

0 NOTE: . matches any character except the
newline

0 * -- Kleene Closure
O + -- Positive Closure

= Examples:
o [0-9]+"."[0-9]+
o note: without the quotes it could be any character
O [\t]+ -- iswhitespace
0 (except CR).

0 Yesthere is a space inside the box before the \t
Appendix B.1 - Lex 4

m Special Characters:

o. -- matches any single character
(except newline)
o\t -- tab
o\n -- newline
o\" -- double quote
o\ -\
o? -- this means the preceding was optional
o ab?==gab
0 (ab)?==able
i Appendix B.1 - Lex 5

m Special Characters (cont.)

on -- means at the beginning of theline
(unlessitisinsideof a[])

0 $ means at the end of theline
0[] -- means anything except
o \"[M\"]*\" isa double quoted string

= Lex aways chooses the longest matching
substring for its tokens.

Appendix B.1 -~ Lex 6

2. Definitions

= NAME REG_EXPR
o digs [0-9]+
O integer {digs}
oplain_rea {digs}"."{digs}
0 expreal {digs}"."{digs}[Ee][+-]?{ digs}
O real {plainreal} { expreal}

Appendix B.1 - Lex

= The definitions can also contain variables and
other declarations used by the Code generated
by Lex.

0 These usually go at the start of this section,
marked by %({ at the beginning and %} at the
end.

O Includes usually go here.

O It isusually convenient to maintain aline
counter so that error messages can be keyed to
the linesin which the errors are found.

0 %{
o intlinecount = 1;
0 %}

Appendix B.1 - Lex

3. Tokens and Actions

= Example:
o{rea} return FLOAT,;
Obegin return BEGIN;
0 {newline} linecount++;
o{integer} {
o printf("l found an integer\n");
o return INTEGER;
o}

Appendix B.1 -~ Lex

n identifiersused by Lex and Y acc begin with yy
0 yytext -- astring containing the lexeme
0 yyleng -- the length of the lexeme
o yylva -- holds the lexical value of the token.

= Example:

o {integer} {
ul printf("1 found an integer\n");
sscanf(yytext,"%d", &yylval);
return INTEGER,;

}
0 C++ Comments-- //
oll*

Appendix B.1-- Lex 10

4, User Written Code

= The actions associated with any given token
are normally specified using statementsin C.
But occasionally the actions are complicated
enough that it is better to describe them with a
function call, and define the function
elsewhere.

= Definitions of this sort go in the last section of
the Lex input.

Appendix B.1-- Lex 11

5. A Sample Lex Specification

= Note: If 2 rules match the same pattern, Lex
will use thefirst rule.

Appendix B.1 -~ Lex 12

