
Appendix B.2 -- Yacc 1

Appendix B.2

Yacc

Appendix B.2 -- Yacc 2

■ Yacc takes a description of a grammar as its
input and generates the table and code for a
LALR parser.

■ Input specification file is in 3 parts
◆ Declarations and Definitions

◆ Grammar and Actions

◆ User-Written code

■ Parts are separated by %%

Appendix B.2 -- Yacc 3

1. Grammar

■ We will start with the grammar section, since
this is the easiest to relate to what you are
learning in Chapters 3 and 4.

■ Productions
◆ Grammars are defined in near-BNF form. The

differences can be summarized as follows:

◆ 1. Single characters used as terminals are put
into single quote, but nonterminals are written
out by name.

Appendix B.2 -- Yacc 4

◆ 2. Terminals that are keywords, or tokens like
id are declared as such in the declarations
section.

◆ 3. Instead of −−> in the production, Yacc uses a
colon, but alternatives are separated by a | as
usual.

◆ 4. Yacc uses a blank to represent an epsilon
production.

Appendix B.2 -- Yacc 5

■ Thus a grammar like
◆ E -> E+T | E-T | T

◆ T -> T*F | T/F | F

◆ F -> (E) | I

■ can be written as:
◆ expr : expr '+' term

◆ | expr '-' term

◆ | term

◆ ;

Appendix B.2 -- Yacc 6

◆ term : term '* ' fact

◆ | term '/' fact

◆ | fact

◆ ;

◆ fact : '(' expr ')'

◆ | ID

◆ ;

■ In this example, ID will have been declared a
token in the declarations part.

Appendix B.2 -- Yacc 7

■ Semantic Actions
◆ Inside of { } you can have code segments.

◆ Each item in the production has a semantic
value.

✦ $$ is the left hand side,

✦ things on the RHS are numbered from $1 on.

■ Thus
◆ expr : expr '+' term { $$ = $1 + $3; }

■ If the attributes are structs we can have
◆ expr : ID { $$.loc = $1.loc; }

Appendix B.2 -- Yacc 8

2. Declarations and Definitions

■ In the declarations section we identify all
tokens except the single-character operators
(unless they are also returned as a token).

■ To declare a token we write:
◆ %token ID

◆ %token NUMBER

Appendix B.2 -- Yacc 9

■ Yacc assigns a numerical code to each token,
and expects these codes to be returned to it by
the lexical analyzer.
◆ This assignment is placed in yytab.h

◆ you can get Lex to use these by placing
#include "yytab.h"

inside the %{ %} at the beginning of your Lex
specification.

■ Notice you do not have to declare non-
terminals. Their appearances on the left-hand
side of productions in the grammar section
declares them automatically.

Appendix B.2 -- Yacc 10

■ You can declare precedence, and associativity.
◆ Most of the time this is unnecessary, since

precedence and associativity are built i nto the
grammar IF it is unambiguous.

■ Finally we must identify the starting symbol of
the grammar.
◆ %start statement

Appendix B.2 -- Yacc 11

■ The data type for attributes has the predefined
name YYSTYPE, and we must define what it
means.
◆ %{

◆ #include <stdio.h>

◆ #typedef int YYSTYPE;

◆ %}

■ Note: this allows you to change what
YYSTYPE is by declaring a struct and using it.

Appendix B.2 -- Yacc 12

3. User Written Code

■ The user written code contains (at a minimum)
the main program (that invokes the parser) and
an error handler.
◆ main(){

◆ yyparse();

◆ }

◆ void yyerror(char * msg){

◆ printf("%s\n", msg);

◆ }

Appendix B.2 -- Yacc 13

4. A Sample Yacc Specification

■ Examples...

