Appendix B.2

Yacc

Appendix B.2 - Yacc

» Yacc takesadescription o agrammar asits
input and generates the table and code for a
LALR parser.

= Input spedficationfileisin 3 parts
0 Declarations and Definitions
0 Grammar and Actions

0 User-Written code

» Parts are separated by %%

Appendix B.2 - Yacc 2

1. Grammar

= Wewill start with the grammar sedion, since
thisisthe easiest to relate to what you are
leaningin Chapters 3 and 4
= Productions
0 Grammars are defined in nea-BNF form. The
diff erences can be summarized as foll ows:
0 1. Singe charaders used asterminas are put
into single quate, bu nonterminal's are written
out by name.

Appendix B.2 - Yacc

0 2. Terminals that are keywords, or tokenslike
id are dedared as guch in the declarations
sedion.

0 3. Instead of ——> in the production, Yaccuses a
colon, bu aternatives are separated by a | as
usual.

0 4. Yacc uses ablank to represent an epsilon
production.

Appendix B.2 - Yacc 4

= Thusagrammar like
DE->E+T|ET|T
oT->T*F|T/IF|F
0F->(E) |l

= can bewritten as:
0 expr : expr '+ term

O | expr '-' term
O | term
o ;

Appendix B.2 -- Yacc

O term : term ™' fact

O | term '/* fact
] | faat
0 ;

0 fad :'("expr")
] |ID
u]

= [nthisexample, ID will have been declared a
token in the declarations part.

Appendix B.2 -- Yacc 6

= Semantic Actions
O Insideof {} youcan have @mde segments.

0 Eadch item in the production hes a semantic
vaue.
0 $$istheleft hand side,
o things on the RHS are numbered from $1 an.

m Thus
O expr: expr'+ term { $$=$1 + $3; }

» |f the &tributes are structs we an have
Oexpr:ID { $$loc = $l.loc; }

Appendix B.2 - Yacc 7

2. Declarations and Definitions

= Inthe dedarations :dionwe identify all
tokens except the single-charader operators
(unlessthey are dso returned as a token).

m To declare atoken we write:

0 %token ID
0 %token NUMBER

Appendix B.2 - Yacc 8

= Yacc assigns anumericd code to each token,
and expeds these adesto be returned to it by
thelexicd analyzer.
0 Thisassignment is placed in yytab.h
0 you can get Lex to use these by padng
#include "yytab.h'
inside the %{ %} at the beginning d your Lex
spedficdion.
= Noticeyou do rot have to dedare non-
terminals. Their appearances on the left-hand
side of productions in the grammar section
declares them automaticaly.

Appendix B.2 - Yacc 9

= You can dedare precedence, and associativity.

0 Most of thetime thisis unnecessary, since
precedence and associativity are built i nto the
grammar |F it is unambiguous.

= Finally we must identify the starting symbol of

the grammar.
0 Y%start statement

Appendix B.2 - Yacc 10

= The datatype for attributes has the predefined
name YY STY PE, and we must define what it
means.

0 %

0 #include <stdio.h>

0 #typedef int YYSTY PE;
0 %)}

= Note: this alows you to change what
YY STYPE isby dedaring astruct and wsing it.

Appendix B.2 -- Yacc 11

3. User Written Code

= The user written code mntains (at a minimum)

the main program (that invokes the parser) and
an error handler.

0 main(){

0 yyparse();

o}

0 void yyerror(char * msg){

0 printf("%s\n", msg);

o}

Appendix B.2 -- Yacc 12

4. A Sample Y acc Spedfication

= Examples...

Appendix B.2 - Yacc

