
- -

- -1

Graphics Programming

Chapter 2

CS 480/680 Chapter 2 -- Graphics Programming 2

■ Introduction:
- Our approach is programming oriented.
- Therefore, we are going to introduce you to

a simple but informative problem: the
Sierpinski Gasket

- The functionality introduced in this chapter
is sufficient to allow you to write
sophisticated two-dimensional programs
that do not require user interaction.

CS 480/680 Chapter 2 -- Graphics Programming 3

1. The Sierpinski Gasket

- This problem has a long history and is of
interest in areas such as fractal geometry.

• It can be defined recursively and randomly; in
the limit, however, it has properties that are not
at all random.

- Assume that we start with 3 points on the
plane (a triangle)

CS 480/680 Chapter 2 -- Graphics Programming 4

■ The construction proceeds
as follows:

• 1. Pick an initial point at
random inside the triangle

• 2. Select one of the three
vertices at random

• 3. Find the point halfway
between the point and the
vertex

• 4. Mark/Draw that half-way
point

• 5. Replace the initial point with
this new point

• 6. Go to step 2

CS 480/680 Chapter 2 -- Graphics Programming 5

- So, what would our code look like?
– initialize()

– for(some_number_of_points)
– {
– pt=generate_a_point();
– display_the_point(pt);

– }
– cleanup();

- Although our OpenGL code might look
slightly different, it will almost be this
simple.

- So, let’s look at generating and displaying
points.

CS 480/680 Chapter 2 -- Graphics Programming 6

■ 1.1 The Pen-Plotter Model
- Historically, most early graphics systems

were two-dimensional systems. The
conceptual model that they used is now
referred to as the pen-plotter model.

- Various API’s - LOGO, GKS, and
PostScript -- all have their origins in this
model.

- -

- -2

CS 480/680 Chapter 2 -- Graphics Programming 7

- The user works on a two-dimensional
surface of some size

• The following code could generate the first
figure:

– moveto(0,0);
– lineto(1,0);

– lineto(1,1);
– lineto(0,1);
– lineto(0,0)

- For certain applications, such as page
layout in the printing industry, systems built
on this model work well.

- We are more interested, however, in the
three-dimensional world.

CS 480/680 Chapter 2 -- Graphics Programming 8

- As we saw in Chapter 1 we could do
projections of the 3D points onto the 2D
plane and plot with a pen.

- We prefer, however, to use an API that
allows users to work directly in the domain
of their problem, and have the computer
carry out this projection process
automatically.

- For two-dimensional applications, such as
the Sierpinski gasket, we can start with a
three-dimensional world, and regard two-
dimensional systems as special cases.

CS 480/680 Chapter 2 -- Graphics Programming 9

- OpenGL has multiple forms for many
functions.

• The variety of forms allows the user to select
the one best suited for their problem.

• For a vertex function, we can write the general
form

– glVertex*
– where * can be interpreted as two or three characters

of the form nt or ntv
• n signifies the number of dimensions (2, 3, or 4)
• t denotes the data type (I for integer, f for float, d

for double)
• and v if present, indicates the variables are

specified through a pointer to an array rather
than through the argument list.

CS 480/680 Chapter 2 -- Graphics Programming 10

- In OpenGL, we often use basic OpenGL
types, such as

• Glfloat and Glint
• rather than C types float and int

- So, in our application, the following are
appropriate

• glVertex2i(Glint xi, Glint yi)
• GLVertex3f(Glfloat x, Glfloat y, Glfloat z)

- And if we use an array to store the
information

• Glfloat vertex[3];
• glVertex3fv(vertex);

CS 480/680 Chapter 2 -- Graphics Programming 11

- Vertices can define a variety of geometric
objects

• A line segment can be defined as follows:
• glBegin(GL_LINES)
• glVertex2f(x1,y1);
• glVertex2f(x2,y2);

• glEnd();

• A pair of points could be defined by:
• glBegin(GL_POINTS)
• glVertex2f(x1,y1);

• glVertex2f(x2,y2);
• glEnd();

• Now on to the gasket.

CS 480/680 Chapter 2 -- Graphics Programming 12

• void display(void)

• {
• point2 vertices[3] = {{0.0,0.0}, {250.0,500}, {500.0, 0.0}};
• static point2 p={75.0, 50.0};

• int j,k;
• for(k=0; k<5000;k++)
• {
• j=rand()%3;

• p[0]=(p[0]+triangle[j][0])/2;
• p[1]=(p[1]+triangle[j][1])/2;
• glBegin(GLPOINTS);
• glVertex2fv(p);

• glEnd();
• }
• glFlush();
• }

- -

- -3

CS 480/680 Chapter 2 -- Graphics Programming 13 CS 480/680 Chapter 2 -- Graphics Programming 14

- We have now written the core of the
program. But we still have to worry about
issues such as:

• 1. In what color are we drawing?
• 2. Where on the screen does our image appear?
• 3. How large will the image be?
• 4. How do we create an area on the screen - a

window - for our image?
• 5. How much of our infinite pad will appear on

the screen?
• 6. How long will the image remain on the screen?

CS 480/680 Chapter 2 -- Graphics Programming 15

■ 1.2 Coordinate Systems
• Originally, graphics systems required the user

to specify all information, such as vertex
locations, directly in units of the display device

• The advent of device independent graphics
freed application programmers from worrying
about the details of input and output devices.

• At some point the values in the world
coordinates must be mapped into device
coordinates. But the graphics system, rather
than the user, is responsible for this task.

CS 480/680 Chapter 2 -- Graphics Programming 16

2. The OpenGL API

- Before completing our program, we
describe the OpenGL API in more detail.

- In this chapter, we concentrate on how we
specify primitives to be displayed;

• We leave interaction to Chapter 3

- Note:
• Our goal is to study computer graphics; we are

using an API to help us attain that goal.
• Consequently, we do not present all OpenGL

functions

CS 480/680 Chapter 2 -- Graphics Programming 17

■ 2.1 Graphics Functions
- We can divide the functions in the API into

groups based upon their functionality:

• 1. The primitive functions,
• 2. Attribute functions,
• 3. Viewing functions,
• 4. Transformation functions,
• 5. Input functions,
• 6. Control functions.

CS 480/680 Chapter 2 -- Graphics Programming 18

■ 2.2 The OpenGL Interface
• OpenGL function names begin with the letters

gl and are stored in a library usually referred to
as GL

• There are a few related libraries that we also
use:

– graphics utility library (GLU)

– GL Utility Toolkit (GLUT)

- -

- -4

CS 480/680 Chapter 2 -- Graphics Programming 19

3. Primitives and Attributes

- Within the graphics community, there has
been an ongoing debate:

• API’s should contain a small set of primitives
(minimalist position) that ALL hardware can be
expected to support.

• API’s should have everything hardware can
support.

CS 480/680 Chapter 2 -- Graphics Programming 20

• OpenGL takes an intermediate position
– The basic library has a small set of primitives.

– GLU contains a richer set of objects (derived)

• The basic OpenGL primitives are specified via
points in space. Thus, the programmer defined
their objects with sequences of the form:

• glBegin(type);
• glVertex*(...);

• ...
• glVertex*(...);
• glEnd();

– The value of type specifies how OpenGL interprets
the vertices

CS 480/680 Chapter 2 -- Graphics Programming 21

• If we wish to display line segments, we have a
few choices in OpenGL.

• The primitives and their type specifications
include:

– Line Segments
• GL_LINES

– Polylines
• GL_LINE_STRIP
• GL_LINE_LOOP

CS 480/680 Chapter 2 -- Graphics Programming 22

■ 3.1 Polygon Basics
• Def: Polygon

• Polygons play a special role in computer
graphics because:

– we can display them rapidly and
– we can use them to approximate curved surfaces.

– The performance of graphics systems is measured
in the number o polygons per second that can be
displayed

CS 480/680 Chapter 2 -- Graphics Programming 23

- We can display a polygon in a variety of
ways.

• Only its edges,
• Fill its interior with a solid color
• Fill its interior with a pattern.
• We can display or not display the edges

CS 480/680 Chapter 2 -- Graphics Programming 24

- Def: Simple Polygon

- Def: Convexity

- -

- -5

CS 480/680 Chapter 2 -- Graphics Programming 25

• In three dimensions polygons present a few
more difficulties because they are not
necessarily flat.

– 3 non-collinear points define a triangle ad a plane
the triangle lies in.

– Often we are almost forced to use triangles
because typical rendering algorithms are
guaranteed to be correct only if the vertices form a
flat convex polygon.

• In addition, hardware and software often
support a triangle type that is rendered much
faster than a polygon with three vertices.

CS 480/680 Chapter 2 -- Graphics Programming 26

■ 3.2 Polygon Types in OpenGL
– Polygons

• GL_POLYGON
– Triangles and Quadrilaterals

• GL_TRIANGLES
• GL_QUADS

– Strips and Fans
• GL_TRIANGLE_STRIP

• GL_QUAD_STRIP
• GL_TRIANGLE_FAN

CS 480/680 Chapter 2 -- Graphics Programming 27

■ 3.3 Text
• Stroke Text

– Postscript -- font is defined by polynomial curves
– Requires processing power and memory

• so printer typically has a CPU and memory

CS 480/680 Chapter 2 -- Graphics Programming 28

• Raster Text
– Simple and Fast

– You can increase the size by replicating pixels

CS 480/680 Chapter 2 -- Graphics Programming 29

• OpenGL
– Because stroke and bitmap characters can be created

from other primitives, OpenGL does not have a text
primitive

– However, GLUT provides a few bitmap and stroke
character sets that are defined in software.

• glutBitmapCharacter(GLUT_BITMAP_8_BY_13, c)

– We will return to text in Chapter 3.

– There we shall see that both stroke and raster texts
can be implemented most efficiently through display
lists.

CS 480/680 Chapter 2 -- Graphics Programming 30

■ 3.4 Curved Objects
• The primitives in our basic set have all been

defined through vertices.
• We can take two approaches to creating a

richer set of objects.
– 1. We can use the primitives that we have to

approximate curves and surfaces.
• If we want a circle, we can use a regular polygon

of n surfaces.
• If we want a sphere, we can approximate it with a

regular polyhedron
• More generally, we approximate a curved surface

by a mesh of convex polygons (a tessellation).

- -

- -6

CS 480/680 Chapter 2 -- Graphics Programming 31

– 2. The other approach, which we explore in Chapter
10, is to start with the mathematical definitions of
curved objects, and then to build graphic functions to
implement those objects.

– Most graphics systems provide aspects of both
approaches.

• We can use GLU for a collection of
approximations to common curved surfaces.

• And, we can write functions to define more of our
own.

CS 480/680 Chapter 2 -- Graphics Programming 32

■ 3.5 Attributes
• In a modern graphics system, there is a

distinction between what type of a primitive is
and how that primitive is displayed

• A red solid line and a green dashed line are the
same geometric type, but each is displayed
differently.

• An attribute is any property that determines
how a geometric primitive is rendered.

– Color, thickness, pattern

CS 480/680 Chapter 2 -- Graphics Programming 33

• Attributes may be associates with, or bound to,
primitives at various points in the modeling
rendering pipeline.

• Bindings may not be permanent.

• In immediate mode, primitives are not stored in
the system, but rather are passed through the
system for possible display as soon as they
are defined.

• They are not stored in memory, and once
erased from the screen, they are gone.

CS 480/680 Chapter 2 -- Graphics Programming 34

4. Color

- Color is one of the most interesting aspects
of both human perception and computer
graphics

- Color in computer graphics is based on
what has become known as the three-color
theory

CS 480/680 Chapter 2 -- Graphics Programming 35

- A good analogy is to consider three
colored spotlights.

• We can attempt to match any color by adjusting
the intensities of the individual spotlights.

• Although we might not be able to match all
colors in this way, if we use red green and blue
we can come close.

CS 480/680 Chapter 2 -- Graphics Programming 36

- The three colors stems from our eyes.
• The color receptors in our eyes - the cones -

are three different types.
• Thus the brain perceives the color through a

triplet, rather than a continuous distribution.

- The basic tenet of three-color theory:
• if two colors produce the same tristimulus

values, then they are visually indistinguishable.

- -

- -7

CS 480/680 Chapter 2 -- Graphics Programming 37

- We can view a color as a point in a color
solid as shown here:

CS 480/680 Chapter 2 -- Graphics Programming 38

• We are looking at additive color systems
because of the way computer display systems
work.

– There is also a subtractive color model which is
typically used in commercial printing and painting.

– In subtractive systems, the primaries are usually the
complementary colors: cyan magenta, and yellow

CS 480/680 Chapter 2 -- Graphics Programming 39

■ 4.1 RGB Color
- Now we can look at how color is handled in

a graphics system from the programmer’s
perspective -- that is, through the API

• In the three-primary-color, additive-color RGB
systems, there are conceptually separate frame
buffers for red, green, and blue

CS 480/680 Chapter 2 -- Graphics Programming 40

- Because the API should be independent of
the particulars of the hardware, we will use
the color cube, and specify numbers
between 0.0 and 1.0

- In OpenGL, we use the color cube as
follows.

• To draw in red, we issue the function call

– glColor3f(1.0, 0.0, 0.0);

CS 480/680 Chapter 2 -- Graphics Programming 41

• Later, we shall be interested in a four-color
(RGBA) system.

– In Chapter 9, we shall see various uses of the Alpha
channel, such as for creating fog effects or for
combining images.

– The alpha value will be treated by OpenGL as an
opacity or transparency value.

• For now we can use it to clear our drawing
window.

• glClearColor(1.0, 1.0, 1.0, 1.0);
– We can then use the function glClear to make the

window solid and white.

CS 480/680 Chapter 2 -- Graphics Programming 42

■ 4.2 Indexed Color
- Many systems have frame buffers that are

limited in depth.
• If we choose a limited number of colors from a

large selection, we should be able to create
good quality images most of the time.

– Historically color-index mode was important because it
required less memory for the frame buffer.

– For most of our code we will use a standard RGB model.

- -

- -8

CS 480/680 Chapter 2 -- Graphics Programming 43

■ 4.3 Setting of Color Attributes
• The first color to set is teh clear clolr

• glClearColor(1.0,1.0,1.0,1.0);

– We can select the rendering color for our points by
setting the color variable

• glColor3f(1.0,0.0,0.0);

– We can set the size of our rendered points to be 2
pixels wide, by using

• glPointSize(2.0);

• Note that attributes such as point size and line
width are specified in terms of the pixel size.

CS 480/680 Chapter 2 -- Graphics Programming 44

5. Viewing

- Just as the casual photographer does not
need to worry about how the shutter works
or what are the details of the
photochemical interaction of light and film
is,

- So the application programmer only needs
to worry about the specifications of the
objects and the camera.

CS 480/680 Chapter 2 -- Graphics Programming 45

■ 5.1 Two-Dimensional Viewing
• taking a rectangular area of our two-

dimensional world and transferring its contents
to the display as shown:

CS 480/680 Chapter 2 -- Graphics Programming 46

• Remember that two-dimensional graphics is a
special case of three-dimensional graphics.

• Our viewing rectangle is the plane z=0 within a
three-dimensional viewing volume.

• If we do not specify a viewing volume, OpenGL
uses its default, a 2x2x2 cube with the origin at
the center.

CS 480/680 Chapter 2 -- Graphics Programming 47

■ 5.2 The Orthographic View
• This two-dimensional view is a special case of

the orthographic projection (discussed more in
Chapter 5)

– points at (x,y,z) are projected to (x,y,0)

CS 480/680 Chapter 2 -- Graphics Programming 48

• In OpenGL, an orthographic projection is
specified via

• void glOrtho(Gldouble left, Gldouble right,
Gldouble bottom, Gldouble top, Gldouble near,
Gldouble far);

– Unlike a real camera, the orthographic projection can
include objects behind the camera

• void glOrtho2D(Gldouble left, Gldouble right,
Gldouble bottom, Gldouble top);

– In Chapters 4 and 5 we will discuss moving the
camera and creating more complex views.

- -

- -9

CS 480/680 Chapter 2 -- Graphics Programming 49

■ 5.3 Matrix Modes
– The two most important matrices are

• the model-view and
• projection matrices.

– In Chapter 4 we will study functions to manipulate
these matrices

– The following is common for setting a two-
dimensional viewing rectangle:

• glMatrixMode(GL_PROJECTION);
• glLoadIdentity();
• gluOrtho2D(0.0,500.0, 0.0, 500.0);

• glMatrixMode(GL_MODELVIEW);

• This defines a 500x500 viewing rectangle, with
the lower-left corner as the origin.

CS 480/680 Chapter 2 -- Graphics Programming 50

6. Control Functions

- We are almost done with our first program,
• but we must still discuss interaction with the

window and operating systems.

• Rather than deal with these issues in detail we
will look at the simple interface GLUT provides.

– Applications produced using GLUT should run under
multiple window systems.

CS 480/680 Chapter 2 -- Graphics Programming 51

■ 6.1 Interaction with the Window System
– Before we can open a window, there must be

interaction between the windowing system and
OpenGL.

• glutInit(int *argcp, char **argv)
• glutCreateWindow(char *title)
• glutInitDisplayMode(GLUT_RGB |

GLUT_DEPTH | GLUT_DOUBLE);
• glutInitWindowSize(480, 640);
• glutInitWindowPosition(0,0);

CS 480/680 Chapter 2 -- Graphics Programming 52

■ 6.2 Aspect Ratio and Viewports
• Def: Aspect Ratio
• If the ratio of the viewing rectangle (specified by

glOrtho) is not the same as the aspect ratio
specified by glutInitWindowSize, you can end
up with distortion on the screen.

CS 480/680 Chapter 2 -- Graphics Programming 53

- A viewport is a rectangular area of the display
window.

• By default, it is the entire window, but it can be set
to any smaller size.

• Void glViewport(Glint x, Glint y, Glsizei w, Glsizei h)

• We will see further uses of the viewport in Chapter
3, where we consider interactive changes in the size
and shape of the window

CS 480/680 Chapter 2 -- Graphics Programming 54

■ 6.3 The main, display, and myinit
Functions

• In Chapter 3 we will discuss event processing,
which will give us tremendous control in our
programs. For now, we can use the GLUT
function

• void glutMainLoop(void);

• Graphics are sent to the screen through a
function called a display callback.

– This function is specified through the GLUT function
• void glutDisplayFunc(void (*func)(void));

- -

- -10

CS 480/680 Chapter 2 -- Graphics Programming 55

• #include <GL/glut.h>

•
• void main(int argc, char **argv)
• {

• glutInit(&argc, argv);
• glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
• glutInitWindowSize(500,500);
• glutInitWindowPosition(0,0);

• glutCreateWindow(“simple OpeGL example);
• glutDisplayFunc(display);
• myinit();
• glutMainLoop();

• }

CS 480/680 Chapter 2 -- Graphics Programming 56

■ 6.4 Program Structure
• Every program we write will have the same

structure as our gasket program.
– We will always use the GLUT toolkit

– The main function will then consist of calls to GLUT
functions to set up our window(s)

– The main function will also name the required
callbacks

• every program must have a display callback
• most will have other callbacks to set up

interaction.

– The myinit will set up user options
• (usually calls to GL and GLU library functions.)

CS 480/680 Chapter 2 -- Graphics Programming 57

7. The Gasket Program

- Using the previous program as our base
• We can now write the myinit function and the

display function for our Sierpinski gasket
• We will draw red points on a white background
• all within a 500x500 square.

CS 480/680 Chapter 2 -- Graphics Programming 58

• void myinit(void)

• {
• glClearColor(1.0,1.0,1.0,0.0;
• glColor3f(1.0,0.0,0.0);

• glMatrixMode(GL_PROJECTION);
• gluLoadIdentity();
• gluOrtho2D(0.0,500.0,0.0,500.0);
• glMatrixMode(GL_MODELVIEW);

• }

CS 480/680 Chapter 2 -- Graphics Programming 59

• void display(void)
• {
• typedef Glfoat point2[2];

• point2 vertices[3]={{0.0,0.0},{250.0,500.0},{500.0,0.0}};
• int i,j,k;
• point2 p={75.0,50.0};
• glClear(GL_COLOR_BUFFER_BIT);

• for(k=0;k<5000;k++){
• j=rand()%3;
• p[0]=(p[0]+vertices[j][0])/2.0;
• p[1]=(p[1]+vertices[j][1])/2.0;

• glBegin(GL_POINTS)
• glVertex2fv(p);
• glEnd();

• }
• glFlush();
• }

CS 480/680 Chapter 2 -- Graphics Programming 60

8. Polygons and Recursion

• We can generate the gasket a different way
bisecting the edges of the triangle

• and doing this over recursively until we reach
the desired subdivision level

- -

- -11

CS 480/680 Chapter 2 -- Graphics Programming 61

- Let us start our code with a simple function that
draws a single triangular polygon with three
arbitrary vertices.

• void triangle(point2 a, point2 b, point2 c)
• {
• glBegin(GL_TRIANGLES);
• glVertex2fv(a);

• glVertex2fv(b);
• glVertex2fv(c);
• glEnd();
• }

CS 480/680 Chapter 2 -- Graphics Programming 62

• void divide_triangle(point2 a, point2 b, point2 c, int k)
• {
• point2 ab, ac bc;

• int j
• if(k>0){
• // compute the midpoints of the sides
• for(j=0;j<2;j++) ab[j]=(a[j]+b[j])/2;

• for(j=0;j<2;j++) ac[j]=(a[j]+c[j])/2;
• for(j=0;j<2;j++) bc[j]=(b[j]+c[j])/2;

• // subdivide all but the inner triangle

• divide_triangle(a,ab,ac,k-1);
• divide_triangle(c,ac,bc,k-1);
• divide_triangel(b,bc,ab,k-1);

• }
• else triangle(a,b,c);
• }

CS 480/680 Chapter 2 -- Graphics Programming 63

- The display function is now almost trivial. It uses
global value of n determined by the main program
to fix the number of subdivisional steps.

• void display(void)
• {
• glClear(GL_COLOR_BUFFER_BIT);
• divide_triangle(v[0], v[1], v[2], n);

• glFlush();
• }

- Note:
• often we have no convenient way to pass variables to

OpenGL functions and callbacks other than through
global parameters.

• Although we prefer not to pass values in such a manner,
because the form of these functions is fixed, we have no
good alternative.

CS 480/680 Chapter 2 -- Graphics Programming 64

- Here is the triangle when there are 5 subdivisions.

CS 480/680 Chapter 2 -- Graphics Programming 65

9. The Three-Dimensional
Gasket

• We have argued:
– that two-dimensional graphics is a special case of

three-dimensional graphics

– But we have not yet seen a true three-dimensional
program.

• So, lets convert the Gasket program to three-
dimensions.

– We start by replacing the initial triangle with a
tetrahedron

CS 480/680 Chapter 2 -- Graphics Programming 66

■ 9.1 Use of Three-Dimensional Points
• The required changes are primarily in the

function display
• typedef Glfloat point3[3];

• point3 vertices[4]{{0.0,0.0,0.0},
{250.0,500.0,100.0}, {500.0,250.0,250.0},
{250.0,100.0,150.0)}};

• point3 p={250.0, 100.0, 250.0};

– We will also color the points to help visualize its
location.

- -

- -12

CS 480/680 Chapter 2 -- Graphics Programming 67 CS 480/680 Chapter 2 -- Graphics Programming 68

■ 9.2 Use of Polygons in Three Dimensions
• Following our second approach, we note that the

faces of a tetrahedron are the four triangles
determined by its four vertices.

• Our triangle function changes to:

• void triangle(point3 a, point3 b, point3 c)

• {
• glBegin(GL_POLYGON);
• glVertex3fv(a);
• glVertex3fv(b);

• glVertex3fv(c);
• glEnd();
• }

CS 480/680 Chapter 2 -- Graphics Programming 69

- Our divide triangle function just changes from point2
to point3 parameters.

- We then generate our subdivided tetrahedron
• void tetrahedron(int n)
• {
• glColor3f(1.0,0.0,0.0);

• divide_triangle(v[0],v[1],v[2],k);
• glColor3f(0.0,1.0,0.0);
• divide_triangle(v[3],v[2],v[1],k);

• glColor3f(0.0,0.0,1.0);
• divide_triangle(v[0],v[3],v[1],k);
• glColor3f(0.0,0.0,0.0);
• divide_triangle(v[0],v[2],v[3],k);

• }

CS 480/680 Chapter 2 -- Graphics Programming 70

■ 9.3 Hidden-Surface Removal
• If you execute the code we just wrote, you

might be confused
– the program draws the triangles in the order

specified by the recursion, not by the geometric
relationship between the triangles.

– Each triangle is drawn (filled) in a solid color and is
drawn over those triangles already on the display.

• The issue is hidden surface removal

CS 480/680 Chapter 2 -- Graphics Programming 71

• For now, we can use the z-buffer algorithm
supported by OpenGL

• glutInitDisplayMode(GLUT_SINGLE |
GLUT_RGB | GLUT_DEPTH);

• glEnable(GL_DEPTH_TEST);

– we must also clear the Depth Buffer in the display
function:

• void display()
• {

• glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

• tetrahedron(n);

• glFlush();
• }

CS 480/680 Chapter 2 -- Graphics Programming 72

- -

- -13

CS 480/680 Chapter 2 -- Graphics Programming 73

10. Summary

- In this chapter, we introduced the OpenGL
API

- The Sierpinski gasket provides a nontrivial
beginning application

• more details abut Fractal Geometry are given in
Chapter 11.

- The historical development of graphics
API’s and graphical models illustrates the
importance of starting in three dimensions.

CS 480/680 Chapter 2 -- Graphics Programming 74

11. Suggested Readings

- Pen Plotter API of Postscript and LOGO
- GKS, GKS-3D, PHIGS, and PHIGS+ API’s

- The X Window System

- Renderman interface
- OpenGL Programming Guide, OpenGL

Reference Manual

CS 480/680 Chapter 2 -- Graphics Programming 75

Exercises -- Due next class

