Graphics Programming

Chapter 2

= Introduction:

- Our approach is programming oriented.

- Therefore, we are going to introduce you to
a simple but informative problem: the
Sierpinski Gasket

- The functionality introduced in this chapter
is sufficient to allow you to write
sophisticated two-dimensional programs
that do not require user interaction.

Cs 480/680 Chapter 2 -- Graphics Programming 2

1. The Sierpinski Gasket

- This problem has a long history and is of
interest in areas such as fractal geometry.

« It can be defined recursively and randomly; in
the limit, however, it has properties that are not
at all random.

- Assume that we start with 3 points on the
plane (a triangle)

CS 480/680 Chapter 2 -- Graphics Programming

= The construction proceeds
as follows:

« 1. Pick an initial point at Yz
random inside the triangle

« 2. Select one of the three .
vertices at random d

« 3. Find the point halfway
between the point and the
vertex

« 4. Mark/Draw that half-way
point

« 5. Replace the initial point with
this new point

* 6. Gotostep 2

Cs 480/680 Chapter 2 -- Graphics Programming 4

- So, what would our code look like?
— initialize()
— for(some_number_of_points)
-{
— pt=generate_a_point();
— display_the_point(pt);
-1
— cleanup();
- Although our OpenGL code might look
slightly different, it will almost be this

simple.
- So, let's look at generating and displaying
points.
CS 480/680 Chapter 2 -- Graphics Programming

m 1.1 The Pen-Plotter Model

- Historically, most early graphics systems
were two-dimensional systems. The
conceptual model that they used is now
referred to as the pen-plotter model.

SN

- Various API's - LOGO, GKS, and
PostScript -- all have their origins in this
model.

CS 480/680 Chapter 2 - Graphics Programming 6

- The user works on a two-dimensional
surface of some size
« The following code could generate the first
figure:
— moveto(0,0);
— lineto(1,0);
— lineto(1,1);
— lineto(0,1);
— lineto(0,0) .
- For certain applications, such as page
layout in the printing industry, systems built
on this model work well.

- We are more interested, however, in the

three-dimensional world.
CS 480/680 Chapter 2 -- Graphics Programming 7

- As we saw in Chapter 1 we could do
projections of the 3D points onto the 2D
plane and plot with a pen.

We prefer, however, to use an API that
allows users to work directly in the domain
of their problem, and have the computer
carry out this projection process
automatically.

For two-dimensional applications, such as
the Sierpinski gasket, we can start with a

three-dimensional world, and regard two-

dimensional systems as special cases.

Cs 480/680 Chapter 2 -- Graphics Programming 8

- OpenGL has multiple forms for many
functions.

* The variety of forms allows the user to select
the one best suited for their problem.
 For a vertex function, we can write the general
form
— glVertex*
— where * can be interpreted as two or three characters
of the form nt or ntv
« n signifies the number of dimensions (2, 3, or 4)
« tdenotes the data type (I for integer, f for float, d
for double)
« and v if present, indicates the variables are
specified through a pointer to an array rather
than through the argument list.

CS 480/680 Chapter 2 -- Graphics Programming 9

- In OpenGL, we often use basic OpenGL
types, such as
« Glfloat and Glint
« rather than C types float and int
- So, in our application, the following are
appropriate
« glVertex2i(Glint xi, Glint yi)
* GLVertex3f(Glfloat x, Glfloat y, Glfloat z)
- And if we use an array to store the
information
« Glfloat vertex[3];
 glVertex3fv(vertex);

Cs 480/680 Chapter 2 -- Graphics Programming 10

- Vertices can define a variety of geometric
objects

« Aline segment can be defined as follows:
« glBegin(GL_LINES)
« glVertex2f(x1,yl1);
« glVertex2f(x2,y2);
* glEnd();

« A pair of points could be defined by:
* glBegin(GL_POINTS)
* glVertex2f(x1,yl);
« glVertex2f(x2,y2);
* glEnd();

* Now on to the gasket.

CS 480/680 Chapter 2 - Graphics Programming 11

« void display(void)

 {

« point2 vertices[3] = {{0.0,0.0}, {250.0,500}, {500.0, 0.0}};
« static point2 p={75.0, 50.0}
o intjk;

o for(k=0; k<5000;k++)

< {

. j=rand()%3;

+ plo]=(p[O]+triangle[j][0])/2;
* plil=(p[1]+triangle[j][1])/2;
. g/Begin(GLPOINTS);

. glVertex2fv(p);
* gIEnd();
3
« glFlush();
+}
CS 480/680 Chapter 2 -- Graphics Programming 12

CS 480/680 Chapter 2 -- Graphics Programming 13

- We have now written the core of the
program. But we still have to worry about
issues such as:

¢ 1. In what color are we drawing?
« 2. Where on the screen does our image appear?
« 3. How large will the image be?

« 4. How do we create an area on the screen - a
window - for our image?

« 5. How much of our infinite pad will appear on
the screen?

« 6. How long will the image remain on the screen?

Cs 480/680 Chapter 2 -- Graphics Programming 14

m 1.2 Coordinate Systems

« Originally, graphics systems required the user
to specify all information, such as vertex
locations, directly in units of the display device

» The advent of device independent graphics
freed application programmers from worrying
about the details of input and output devices.

« At some point the values in the world
coordinates must be mapped into device
coordinates. But the graphics system, rather
than the user, is responsible for this task.

Conr Vimax)

/_\1(\?

()

Ty Srnas)

CS 480/680 Cyins Yrmin) 15
World coordinates Raster coordinates

2. The OpenGL API

- Before completing our program, we
describe the OpenGL API in more detail.
- In this chapter, we concentrate on how we
specify primitives to be displayed;
« We leave interaction to Chapter 3
- Note:
« Our goal is to study computer graphics; we are
using an API to help us attain that goal.
« Consequently, we do not present all OpenGL

functions
CS 480/680 Chapter 2 -- Graphics Programming 16

» 2.1 Graphics Functions

- We can divide the functions in the API into
groups based upon their functionality:

« 1. The primitive functions,

« 2. Attribute functions,

« 3. Viewing functions,

* 4. Transformation functions,
« 5. Input functions,

6. Control functions.

CS 480/680 Chapter 2 - Graphics Programming 17

= 2.2 The OpenGL Interface

* OpenGL function names begin with the letters
gl and are stored in a library usually referred to
as GL

« There are a few related libraries that we also
use:

— graphics utility library (GLU)
— GL Utility Toolkit (GLUT)
GLU

OpenGL
application
program

Frame
buffer

GLUT ——= Xlib, Xtk {—

GLX

CS 480/680 Chapter 2 - Graphics Programming 18

3. Primitives and Attributes

- Within the graphics community, there has
been an ongoing debate:
« API's should contain a small set of primitives
(minimalist position) that ALL hardware can be
expected to support.

* API's should have everything hardware can
support.

CS 480/680 Chapter 2 -- Graphics Programming 19

* OpenGL takes an intermediate position
— The basic library has a small set of primitives.
— GLU contains a richer set of objects (derived)

* The basic OpenGL primitives are specified via
points in space. Thus, the programmer defined
their objects with sequences of the form:

* glBegin(type);
« glVertex*(...);
« glVertex*(...);
* glEnd();

— The value of type specifies how OpenGL interprets
the vertices

Cs 480/680 Chapter 2 -- Graphics Programming 20

« If we wish to display line segments, we have a
few choices in OpenGL.
» The primitives and their type specifications
include:
— Line Segments
+ GL_LINES
— Polylines
+ GL_LINE_STRIP
+ GL_LINE_LOOP

[N [P, [%
Pie * oPs Py, Py P Py Py Py
Pre Py Py / / Py Py Py Py Py
Pi® . *Pg P~ 'ps P: Py P; Py
Ps P Ps Ps
GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP
CS 480/680 Chapter 2 - Graphics Programming 21

= 3.1 Polygon Basics

« Def: Polygon I

« Polygons play a special role in computer
graphics because:

— we can display them rapidly and
— we can use them to approximate curved surfaces.

— The performance of graphics systems is measured
in the number o polygons per second that can be
displayed

Cs 480/680 Chapter 2 -- Graphics Programming 22

- We can display a polygon in a variety of
ways.
« Only its edges,
« Fill its interior with a solid color
« Fill its interior with a pattern.
» We can display or not display the edges

)
N\

CS 480/680 Chapter 2 - Graphics Programming 23

/

9

- Def: Simple Polygon

(a)

- Def: Convexity

CS 480/680 Chapter 2 - Graphics Programming 24

« In three dimensions polygons present a few
more difficulties because they are not
necessarily flat.

— 3 non-collinear points define a triangle ad a plane

2 /N

— Often we are almost forced to use triangles

because typical rendering algorithms are

guaranteed to be correct only if the vertices form a

flat convex polygon.

« In addition, hardware and software often
support a triangle type that is rendered much
faster than a polygon with three vertices.
CS 480/680 Chapter 2 - Graphics Programming 25

= 3.2 Polygon Types in OpenGL
— Polygons
¢ GL_POLYGON
— Triangles and Quadrilaterals
* GL_TRIANGLES

« GL_QUADS
O 2
: w w .

— Strips and Fans
¢ GL_TRIANGLE_STRIP
« GL_QUAD_STRIP
« GL_TRIANGLE_FAN

PR T NN
LI DT D
aL_poms GLTWANGLESTRP GLQUAD STRIP

Cs 480/680 Chapter 2 -- Graphics Programming 2

m 3.3 Text

* Stroke Text
— Postscript -- font is defined by polynomial curves
— Requires processing power and memory
« so printer typically has a CPU and memory

Computer

Graphics

CS 480/680 Chapter 2 -- Graphics Programming 27

» Raster Text e H
— Simple and Fast]

|NEE - .

— You can increase the size by replicating pixels

aaA

Cs 480/680 Chapter 2 -- Graphics Programming 28

* OpenGL
— Because stroke and bitmap characters can be created
from other primitives, OpenGL does not have a text
primitive
— However, GLUT provides a few bitmap and stroke
character sets that are defined in software.
« glutBitmapCharacter(GLUT_BITMAP_8_BY_13, c)

— We will return to text in Chapter 3.

— There we shall see that both stroke and raster texts
can be implemented most efficiently through display
lists.

CS 480/680 Chapter 2 - Graphics Programming 29

= 3.4 Curved Objects

« The primitives in our basic set have all been
defined through vertices.

« We can take two approaches to creating a
richer set of objects.

— 1. We can use the primitives that we have to
approximate curves and surfaces.

« If we want a circle, we can use a regular polygon
of n surfaces.

« If we want a sphere, we can approximate it with a
regular polyhedron

« More generally, we approximate a curved surface
by a mesh of convex polygons (a tessellation).

CS 480/680 Chapter 2 - Graphics Programming 30

— 2. The other approach, which we explore in Chapter
10, is to start with the mathematical definitions of
curved objects, and then to build graphic functions to
implement those objects.

— Most graphics systems provide aspects of both
approaches.
« We can use GLU for a collection of
approximations to common curved surfaces.
» And, we can write functions to define more of our
own.

CS 480/680 Chapter 2 -- Graphics Programming 31

= 3.5 Attributes

« In a modern graphics system, there is a
distinction between what type of a primitive is
and how that primitive is displayed

« Ared solid line and a green dashed line are the
same geometric type, but each is displayed
differently.

« An attribute is any property that determines
how a geometric primitive is rendered.

— Color, thickness, pattern

——————————— |
ZZ—_—_—
@ ®)
Cs 480/680 Chapter 2 -- Graphics Programming 32

« Attributes may be associates with, or bound to,
primitives at various points in the modeling
rendering pipeline.

+ Bindings may not be permanent.

« In immediate mode, primitives are not stored in
the system, but rather are passed through the
system for possible display as soon as they
are defined.

» They are not stored in memory, and once
erased from the screen, they are gone.

CS 480/680 Chapter 2 - Graphics Programming 33

4. Color

- Color is one of the most interesting aspects
of both human perception and computer
graphics

- Color in computer graphics is based on
what has become known as the three-color
theory

Cs 480/680 Chapter 2 -- Graphics Programming 34

- A good analogy is to consider three
colored spotlights.

» We can attempt to match any color by adjusting
the intensities of the individual spotlights.

« Although we might not be able to match all
colors in this way, if we use red green and blue
we can come close.

CS 480/680 Chapter 2 -- Graphics Programming 35

- The three colors stems from our eyes.

« The color receptors in our eyes - the cones -
are three different types.

« Thus the brain perceives the color through a
triplet, rather than a continuous distribution.

- The basic tenet of three-color theory:

« if two colors produce the same tristimulus
values, then they are visually indistinguishable.

CS 480/680 Chapter 2 - Graphics Programming 36

- We can view a color as a point in a color
solid as shown here:
G

Green| Yellow

Cyan

K Red

Blug)

Magenta

CS 480/680 Chapter 2 -- Graphics Programming 37

« We are looking at additive color systems
because of the way computer display systems
work.

— There is also a subtractive color model which is
typically used in commercial printing and painting.
— In subtractive systems, the primaries are usually the
complementary colors: cyan magenta, and yellow

Blue Yellow

Magenta\a Green
Red Cyan Cyan Red

W/ \White A Black
Yello Blue

Green Magenta

(a) ®)
CS 480/680 Chapter 2 - Graphics Programming 38

= 4.1 RGB Color

- Now we can look at how color is handled in
a graphics system from the programmer’s
perspective -- that is, through the API

« In the three-primary-color, additive-color RGB
systems, there are conceptually separate frame
buffers for red, green, and blue

Red

Green

Al

Frame bulfer

CS 480/680 Chapter 2 - Graphics Programming 39

- Because the API should be independent of
the particulars of the hardware, we will use
the color cube, and specify numbers
between 0.0 and 1.0

- In OpenGL, we use the color cube as
follows.
« To draw in red, we issue the function call

— gIColor3f(1.0, 0.0, 0.0);

Cs 480/680 Chapter 2 -- Graphics Programming 40

» Later, we shall be interested in a four-color
(RGBA) system.

— In Chapter 9, we shall see various uses of the Alpha
channel, such as for creating fog effects or for
combining images.

— The alpha value will be treated by OpenGL as an
opacity or transparency value.

» For now we can use it to clear our drawing
window.
« glClearColor(1.0, 1.0, 1.0, 1.0);

— We can then use the function glClear to make the
window solid and white.

CS 480/680 Chapter 2 - Graphics Programming a1

= 4.2 Indexed Color
- Many systems have frame buffers that are
limited in depth.

« If we choose a limited number of colors from a
large selection, we should be able to create
good quality images most of the time.

Tnput Red Green Blue
0 0 0 0
1 221 0 o
o 2m21 o
221
m bils m bils mbils

— Historically color-index mode was important because it
required less memory for the frame buffer.

— For most of our code we will use a standard RGB model.

CS 480/680 Chapter 2 - Graphics Programming 42

m 4.3 Setting of Color Attributes

* The first color to set is teh clear clolr
« glClearColor(1.0,1.0,1.0,1.0);

— We can select the rendering color for our points by
setting the color variable

« glColor3f(1.0,0.0,0.0);
— We can set the size of our rendered points to be 2
pixels wide, by using

« glPointSize(2.0);

« Note that attributes such as point size and line
width are specified in terms of the pixel size.

CS 480/680 Chapter 2 -- Graphics Programming 43

5. Viewing

- Just as the casual photographer does not
need to worry about how the shutter works
or what are the details of the
photochemical interaction of light and film
is,

- So the application programmer only needs
to worry about the specifications of the
objects and the camera.

Cs 480/680 Chapter 2 -- Graphics Programming 44

= 5.1 Two-Dimensional Viewing
« taking a rectangular area of our two-
dimensional world and transferring its contents
to the display as shown:

(a) ()

CS 480/680 Chapter 2 -- Graphics Programming 45

« Remember that two-dimensional graphics is a
special case of three-dimensional graphics.

« Our viewing rectangle is the plane z=0 within a
three-dimensional viewing volume.

y

Viewing rectangle

74

« If we do not specify a viewing volume, OpenGL
uses its default, a 2x2x2 cube with the origin at
the center.

Cs 480/680 Chapter 2 -- Graphics Programming 46

= 5.2 The Orthographic View

« This two-dimensional view is a special case of
the orthographic projection (discussed more in
Chapter 5)

— points at (x,y,z) are projected to (x,y,0)

¥y

250
(x, , 0)
z
(x,y,2)
CS 480/680 Chapter 2 - Graphics Programming a7

« In OpenGL, an orthographic projection is
specified via
« void glOrtho(Gldouble left, Gldouble right,
Gldouble bottom, Gldouble top, Gldouble near,
Gldouble far);

— Unlike a real camera, the orthographic projection can
include objects behind the camera
« void glOrtho2D(Gldouble left, Gldouble right,
Gldouble bottom, Gldouble top);
— In Chapters 4 and 5 we will discuss moving the
camera and creating more complex views.
CS 480/680 Chapter 2 -- Graphics Programming 48

= 5.3 Matrix Modes

— The two most important matrices are
* the model-view and
« projection matrices.

— In Chapter 4 we will study functions to manipulate
these matrices

— The following is common for setting a two-
dimensional viewing rectangle:
 glMatrixMode(GL_PROJECTION);
« glLoadldentity();
+ gluOrtho2D(0.0,500.0, 0.0, 500.0);
« glMatrixMode(GL_MODELVIEW);

« This defines a 500x500 viewing rectangle, with
the lower-left corner as the origin.
CS 480/680 Chapter 2 - Graphics Programming 49

6. Control Functions

- We are almost done with our first program,

¢ but we must still discuss interaction with the
window and operating systems.

« Rather than deal with these issues in detail we
will look at the simple interface GLUT provides.

— Applications produced using GLUT should run under
multiple window systems.

Cs 480/680 Chapter 2 -- Graphics Programming 50

= 6.1 Interaction with the Window System

— Before we can open a window, there must be
interaction between the windowing system and
OpenGL.

« glutlnit(int *argcp, char **argv)

« glutCreateWindow(char *title)

« glutinitDisplayMode(GLUT_RGB |
GLUT_DEPTH | GLUT_DOUBLE);

« glutlnitWindowSize(480, 640);

« glutinitWindowPosition(0,0);

CS 480/680 Chapter 2 -- Graphics Programming 51

= 6.2 Aspect Ratio and Viewports
« Def: Aspect Ratio
« If the ratio of the viewing rectangle (specified by
glOrtho) is not the same as the aspect ratio
specified by glutinitWindowSize, you can end
up with distortion on the screen.

O

]

Cs 480/680 Chapter 2 -- Graphics Programming 52

- A viewport is a rectangular area of the display
window.
« By default, it is the entire window, but it can be set
to any smaller size.
« Void glViewport(Glint x, Glint y, Glsizei w, Glsizei h)

Viewport

Graphics window

O
O

Clipping window

« We will see further uses of the viewport in Chapter
3, where we consider interactive changes in the size
and shape of the window

CS 480/680 Chapter 2 - Graphics Programming 53

= 6.3 The main, display, and myinit
Functions
« In Chapter 3 we will discuss event processing,
which will give us tremendous control in our
programs. For now, we can use the GLUT
function
« void glutMainLoop(void);

« Graphics are sent to the screen through a
function called a display callback.
— This function is specified through the GLUT function
« void glutDisplayFunc(void (*func)(void));

CS 480/680 Chapter 2 - Graphics Programming 54

« #include <GL/glut.h>

« void main(int argc, char **argv)

< {

« glutinit(&argc, argv);

¢ glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
« glutinitWindowSize(500,500);

« glutinitWindowPosition(0,0);

* glutCreateWindow(“simple OpeGL example);

* glutDisplayFunc(display);

e myinit();
* glutMainLoop();
°}
CS 480/680 Chapter 2 -- Graphics Programming 55

» 6.4 Program Structure

« Every program we write will have the same
structure as our gasket program.
— We will always use the GLUT toolkit
— The main function will then consist of calls to GLUT
functions to set up our window(s)

— The main function will also name the required
callbacks

« every program must have a display callback

« most will have other callbacks to set up
interaction.

— The myinit will set up user options
 (usually calls to GL and GLU library functions.)

Cs 480/680 Chapter 2 -- Graphics Programming 56

7. The Gasket Program

- Using the previous program as our base

« We can now write the myinit function and the
display function for our Sierpinski gasket

» We will draw red points on a white background
« all within a 500x500 square.

CS 480/680 Chapter 2 -- Graphics Programming 57

« void myinit(void)

 {

« glClearColor(1.0,1.0,1.0,0.0;

* glColor3f(1.0,0.0,0.0);

« gIMatrixMode(GL_PROJECTION);
« gluLoadldentity();

« gluOrtho2D(0.0,500.0,0.0,500.0);

« gIMatrixMode(GL_MODELVIEW);

Cs 480/680 Chapter 2 -- Graphics Programming 58

« void display(void)

< {

« typedef Glfoat point2[2];

« point2 vertices[3]={{0.0,0.0},{250.0,500.0},{500.0,0.0}};
e intijk;

« point2 p={75.0,50.0};

+ glClear(GL_COLOR_BUFFER_BIT);
o for(k=0;k<5000;k++){

. j=rand()%3;

. p[0]=(p[O]+vertices[j][0])/2.0;

. p[1]=(p[1]+vertices[j][1])/2.0;

. glBegin(GL_POINTS)

. glVertex2fv(p);
* gIEnd();
¢}
* glFlush();
CS 480/680 Chapter 2 -- Graphics Programming 59

8. Polygons and Recursion

« We can generate the gasket a different way
bisecting the edges of the triangle

« and doing this over recursively until we reach
the desired subdivision level

CS 480/680 Chapter 2 - Graphics Programming 60

-10

- Let us start our code with a simple function that
draws a single triangular polygon with three
arbitrary vertices.

« void triangle(point2 a, point2 b, point2 c)
< {

* gIBegin(GL_TRIANGLES);

. glVertex2fv(a);

. glVertex2fv(b);

. glVertex2fv(c);

* gIEnd();

°}

CS 480/680 Chapter 2 -- Graphics Programming 61

« void divide_triangle(point2 a, point2 b, point2 c, int k)

 {

« point2 ab, ac bc;
¢ intj

o if(k>0){

. /I compute the midpoints of the sides
+ for(=0;j<2jj++) abj]=(a[j]+b[])/2;
. for(j=0;j<2;j++) ac[j]=(a[j]+c[j])/2;
. for(j=0;j<2;j++) be[j]=(b[j]+c[j])/2;

. /I subdivide all but the inner triangle
. divide_triangle(a,ab,ac,k-1);

. divide_triangle(c,ac,bc k-1);

. divide_triangel(b,bc,ab,k-1);

c 1

« else triangle(a,b,c);

Cs 480/680 Chapter 2 -- Graphics Programming 62

- The display function is now almost trivial. It uses
global value of n determined by the main program
to fix the number of subdivisional steps.

« void display(void)
< {
+ glClear(GL_COLOR_BUFFER_BIT);
« divide_triangle(v[0], v[1], V[2], n);
« glFlush();
°}
- Note:
« often we have no convenient way to pass variables to

OpenGL functions and callbacks other than through
global parameters.

« Although we prefer not to pass values in such a manner,
because the form of these functions is fixed, we have no
good alternative.

CS 480/680 Chapter 2 -- Graphics Programming 63

- Here is the triangle when there are 5 subdivisions.

Lda

A A A A

AL AA AAAAA

A A FAA A‘A A A
AA AUA AA ACA

Cs 480/680 Chapter 2 -- Graphics Programming 64

9. The Three-Dimensional
Gasket

* We have argued:

— that two-dimensional graphics is a special case of
three-dimensional graphics

— But we have not yet seen a true three-dimensional
program.
* So, lets convert the Gasket program to three-
dimensions.

— We start by replacing the initial triangle with a
tetrahedron

CS 480/680 Chapter 2 - Graphics Programming 65

= 9.1 Use of Three-Dimensional Points

« The required changes are primarily in the
function display

« typedef Glfloat point3[3];

« point3 vertices[4]{{0.0,0.0,0.0},
{250.0,500.0,100.0}, {500.0,250.0,250.0},
{250.0,100.0,150.0)}};

« point3 p={250.0, 100.0, 250.0};

— We will also color the points to help visualize its
location.

CS 480/680 Chapter 2 - Graphics Programming 66

-11

CS 480/680 Chapter 2 -- Graphics Programming 67

= 9.2 Use of Polygons in Three Dimensions

« Following our second approach, we note that the
faces of a tetrahedron are the four triangles
determined by its four vertices.

« Our triangle function changes to:

« void triangle(point3 a, point3 b, point3 c)
 {

« glBegin(GL_POLYGON);

. glVertex3fv(a);

. glVertex3fv(b);

. glVertex3fv(c);

* 9gIEnd();

*}

Cs 480/680 Chapter 2 - Graphics Programming 68

- Our divide triangle function just changes from point2
to point3 parameters.
- We then generate our subdivided tetrahedron
« void tetrahedron(int n)
* {
+ glColor3f(1.0,0.0,0.0);
« divide_triangle(v[0],v[1],v[2] k);
« glColor3f(0.0,1.0,0.0);
« divide_triangle(v[3],v[2],V[1] k);
+ glColor3f(0.0,0.0,1.0);
« divide_triangle(v[0],v[3],V[1].);
+ glColor3f(0.0,0.0,0.0);
« divide_triangle(v[0],v[2],V[3].);

CS 480/680 Chapter 2 - Graphics Programming 69

= 9.3 Hidden-Surface Removal
« If you execute the code we just wrote, you
might be confused
— the program draws the triangles in the order

specified by the recursion, not by the geometric
relationship between the triangles.

— Each triangle is drawn (filled) in a solid color and is
drawn over those triangles already on the display.

« The issue is hidden surface removal

N

Cs 480/680 Chapter 2 -- Graphics Programming 70

« For now, we can use the z-buffer algorithm
supported by OpenGL

« glutinitDisplayMode(GLUT_SINGLE |
GLUT_RGB | GLUT_DEPTH);

+ glEnable(GL_DEPTH_TEST);

— we must also clear the Depth Buffer in the display
function:

« void display()

|

+ glIClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

« tetrahedron(n);

« glFlush();

°}

CS 480/680 Chapter 2 - Graphics Programming 71

CS 480/680 Chapter 2 - Graphics Programming 72

-12

10. Summary

- In this chapter, we introduced the OpenGL
API

- The Sierpinski gasket provides a nontrivial
beginning application

» more details abut Fractal Geometry are given in
Chapter 11.

- The historical development of graphics
API's and graphical models illustrates the
importance of starting in three dimensions.

CS 480/680 Chapter 2 -- Graphics Programming 73

11. Suggested Readings

- Pen Plotter API of Postscript and LOGO

- GKS, GKS-3D, PHIGS, and PHIGS+ API's

- The X Window System

- Renderman interface

- OpenGL Programming Guide, OpenGL
Reference Manual

Cs 480/680 Chapter 2 -- Graphics Programming 74

Exercises -- Due next class

CS 480/680 Chapter 2 -- Graphics Programming 75

-13

