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Graphics Programming

Chapter 2
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■ Introduction:
- Our approach is programming oriented.
- Therefore, we are going to introduce you to

a simple but informative problem: the
Sierpinski Gasket

- The functionality introduced in this chapter
is sufficient to allow you to write
sophisticated two-dimensional programs
that do not require user interaction.
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1. The Sierpinski Gasket

- This problem has a long history and is of
interest in areas such as fractal geometry.

• It can be defined recursively and randomly;  in
the limit, however, it has properties that are not
at all random.

- Assume that we start with 3 points on the
plane (a triangle)
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■ The construction proceeds
as follows:

• 1. Pick an initial point at
random inside the triangle

• 2. Select one of the three
vertices at random

• 3. Find the point halfway
between the point and the
vertex

• 4. Mark/Draw  that half-way
point

• 5. Replace the initial point with
this new point

• 6. Go to step 2
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- So, what would our code look like?
– initialize()

– for(some_number_of_points)
– {
–    pt=generate_a_point();
–    display_the_point(pt);

– }
– cleanup();

- Although our OpenGL code might look
slightly different, it will almost be this
simple.

- So, let’s look at generating and displaying
points.

CS 480/680 Chapter 2 -- Graphics Programming 6

■ 1.1 The Pen-Plotter Model
- Historically, most early graphics systems

were two-dimensional systems.  The
conceptual model that they used is now
referred to as the pen-plotter model.

- Various API’s - LOGO, GKS, and
PostScript  -- all have their origins in this
model.
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- The user works on a two-dimensional
surface of some size

• The following code could generate the first
figure:

– moveto(0,0);
– lineto(1,0);

– lineto(1,1);
– lineto(0,1);
– lineto(0,0)

- For certain applications, such as page
layout in the printing industry, systems built
on this model work well.

- We are more interested, however, in the
three-dimensional world.
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- As we saw in Chapter 1 we could do
projections of the 3D points onto the 2D
plane and plot with a pen.

- We prefer, however, to use an API that
allows users to work directly in the domain
of their problem, and have the computer
carry out this projection process
automatically.

- For two-dimensional applications, such as
the Sierpinski gasket, we can start with a
three-dimensional world, and regard two-
dimensional systems as special cases.
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- OpenGL has multiple forms for many
functions.

• The variety of forms allows the user to select
the one best suited for their problem.

• For a vertex function, we can write the general
form

– glVertex*
– where * can be interpreted as two or three characters

of the form nt or ntv
• n signifies the number of dimensions (2, 3, or 4)
• t denotes the data type (I for integer, f for float, d

for double)
• and v if present, indicates the variables are

specified through a pointer to an array rather
than through the argument list.
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- In OpenGL, we often use basic OpenGL
types, such as

• Glfloat and Glint
• rather than C types float and int

- So, in our application, the following are
appropriate

• glVertex2i(Glint xi, Glint yi)
• GLVertex3f(Glfloat x, Glfloat y, Glfloat z)

- And if we use an array to store the
information

• Glfloat vertex[3];
• glVertex3fv(vertex);
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- Vertices can define a variety of geometric
objects

• A line segment can be defined as follows:
• glBegin(GL_LINES)
•    glVertex2f(x1,y1);
•    glVertex2f(x2,y2);

• glEnd();

• A pair of points could be defined by:
• glBegin(GL_POINTS)
•    glVertex2f(x1,y1);

•    glVertex2f(x2,y2);
• glEnd();

• Now on to the gasket.
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• void display(void)

• {
•    point2 vertices[3] = {{0.0,0.0}, {250.0,500}, {500.0, 0.0}};
•    static point2 p={75.0, 50.0};

•    int j,k;
•    for(k=0; k<5000;k++)
•    {
•       j=rand()%3;

•       p[0]=(p[0]+triangle[j][0])/2;
•       p[1]=(p[1]+triangle[j][1])/2;
•       glBegin(GLPOINTS);
•          glVertex2fv(p);

•       glEnd();
•    }
•    glFlush();
• }
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- We have now written the core of the
program.  But we still have to worry about
issues such as:

• 1. In what color are we drawing?
• 2. Where on the screen does our image appear?
• 3. How large will the image be?
• 4. How do we create an area on the screen - a

window - for our image?
• 5. How much of our infinite pad will appear on

the screen?
• 6. How long will the image remain on the screen?
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■ 1.2 Coordinate Systems
• Originally, graphics systems required the user

to specify all information, such as vertex
locations, directly in units of the display device

• The advent of device independent graphics
freed application programmers from worrying
about the details of input and output devices.

• At some point the values in the world
coordinates must be mapped into device
coordinates.  But the graphics system, rather
than the user, is responsible for this task.
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2. The OpenGL API

- Before completing our program, we
describe the OpenGL API in more detail.

- In this chapter, we concentrate on how we
specify primitives to be displayed;

• We leave interaction to Chapter 3

- Note:
• Our goal is to study computer graphics; we are

using an API to help us attain that goal.
• Consequently, we do not present all OpenGL

functions
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■ 2.1 Graphics Functions
- We can divide the functions in the API into

groups based upon their functionality:

• 1. The primitive functions,
• 2. Attribute functions,
• 3. Viewing functions,
• 4. Transformation functions,
• 5. Input functions,
• 6. Control functions.
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■ 2.2 The OpenGL Interface
• OpenGL function names begin with the letters

gl and are stored in a library usually referred to
as GL

• There are a few related libraries that we also
use:

– graphics utility library (GLU)

– GL Utility Toolkit (GLUT)
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3. Primitives and Attributes

- Within the graphics community, there has
been an ongoing debate:

• API’s should contain a small set of primitives
(minimalist position) that ALL hardware can be
expected to support.

• API’s should have everything hardware can
support.
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• OpenGL takes an intermediate position
– The basic library has a small set of primitives.

– GLU contains a richer set of objects (derived)

• The basic OpenGL primitives are specified via
points in space.  Thus, the programmer defined
their objects with sequences of the form:

• glBegin(type);
•    glVertex*(...);

•    ...
•    glVertex*(...);
• glEnd();

– The value of type specifies how OpenGL interprets
the vertices

CS 480/680 Chapter 2 -- Graphics Programming 21

• If we wish to display line segments, we have a
few choices in OpenGL.

• The primitives and their type specifications
include:

– Line Segments
• GL_LINES

– Polylines
• GL_LINE_STRIP
• GL_LINE_LOOP
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■ 3.1 Polygon Basics
• Def: Polygon

• Polygons play a special role in computer
graphics because:

– we can display them rapidly and
– we can use them to approximate curved surfaces.

– The performance of graphics systems is measured
in the number o polygons per second that can be
displayed
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- We can display a polygon in a variety of
ways.

• Only its edges,
• Fill its interior with a solid color
• Fill its interior with a pattern.
• We can display or not display the edges

CS 480/680 Chapter 2 -- Graphics Programming 24

- Def: Simple Polygon

- Def: Convexity
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• In three dimensions polygons present a few
more difficulties because they are not
necessarily flat.

– 3 non-collinear points define a triangle ad a plane
the triangle lies in.

– Often we are almost forced to use triangles
because typical rendering algorithms are
guaranteed to be correct only if the vertices form a
flat convex polygon.

• In addition, hardware and software often
support a triangle type that is rendered much
faster than a polygon with three vertices.
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■ 3.2 Polygon Types in OpenGL
– Polygons

• GL_POLYGON
– Triangles and Quadrilaterals

• GL_TRIANGLES
• GL_QUADS

– Strips and Fans
• GL_TRIANGLE_STRIP

• GL_QUAD_STRIP
• GL_TRIANGLE_FAN
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■ 3.3 Text
• Stroke Text

– Postscript -- font is defined by polynomial curves
– Requires processing power and memory

• so printer typically has a CPU and memory
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• Raster Text
– Simple and Fast

– You can increase the size by replicating pixels
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• OpenGL
– Because stroke and bitmap characters can be created

from other primitives, OpenGL does not have a text
primitive

– However, GLUT provides a few bitmap and stroke
character sets that are defined in software.

• glutBitmapCharacter(GLUT_BITMAP_8_BY_13, c)

– We will return to text in Chapter 3.

– There we shall see that both stroke and raster texts
can be implemented most efficiently through display
lists.
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■ 3.4 Curved Objects
• The primitives in our basic set have all been

defined through vertices.
• We can take two approaches to creating a

richer set of objects.
– 1. We can use the primitives that we have to

approximate curves and surfaces.
• If we want a circle, we can use a regular polygon

of n surfaces.
• If we want a sphere, we can approximate it with a

regular polyhedron
• More generally, we approximate a curved surface

by a mesh of convex polygons (a tessellation).
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– 2. The other approach, which we explore in Chapter
10, is to start with the mathematical definitions of
curved objects, and then to build graphic functions to
implement those objects.

– Most graphics systems provide aspects of both
approaches.

• We can use GLU for a collection of
approximations to common curved surfaces.

• And, we can write functions to define more of our
own.
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■ 3.5 Attributes
• In a modern graphics system, there is a

distinction between what type of a primitive is
and how that primitive is displayed

• A red solid line and a green dashed line are the
same geometric type, but each is displayed
differently.

• An attribute is any property that determines
how a geometric primitive is rendered.

– Color, thickness, pattern
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• Attributes may be associates with, or bound to,
primitives at various points in the modeling
rendering pipeline.

• Bindings may not be permanent.

• In immediate mode, primitives are not stored in
the system, but rather are passed through the
system for possible display as soon as they
are defined.

• They are not stored in memory, and once
erased from the screen, they are gone.
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4. Color

- Color is one of the most interesting aspects
of both human perception and computer
graphics

- Color in computer graphics is based on
what has become known as the three-color
theory
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- A good analogy is to consider three
colored spotlights.

• We can attempt to match any color by adjusting
the intensities of the individual spotlights.

• Although we might not be able to match all
colors in this way, if we use red green and blue
we can come close.
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- The three colors stems from our eyes.
• The color receptors in our eyes - the cones -

are three different types.
• Thus the brain perceives the color through a

triplet, rather than a continuous distribution.

- The basic tenet of three-color theory:
• if two colors produce the same tristimulus

values, then they are visually indistinguishable.
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- We can view a color as a point in a color
solid as shown here:
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• We are looking at additive color systems
because of the way computer display systems
work.

– There is also a subtractive color model which is
typically used in commercial printing and painting.

– In subtractive systems, the primaries are usually the
complementary colors: cyan magenta, and yellow
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■ 4.1 RGB Color
- Now we can look at how color is handled in

a graphics system from the programmer’s
perspective -- that is, through the API

• In the three-primary-color, additive-color RGB
systems, there are conceptually separate frame
buffers for red, green, and blue
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- Because the API should be independent of
the particulars of the hardware, we will use
the color cube, and specify numbers
between 0.0 and 1.0

- In OpenGL, we use the color cube as
follows.

• To draw in red, we issue the function call

– glColor3f(1.0, 0.0, 0.0);
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• Later, we shall be interested in a four-color
(RGBA) system.

– In Chapter 9, we shall see various uses of the Alpha
channel, such as for creating fog effects or for
combining images.

– The alpha value will be treated by OpenGL as an
opacity or transparency value.

• For now we can use it to clear our drawing
window.

• glClearColor(1.0, 1.0, 1.0, 1.0);
– We can then use the function glClear to make the

window solid and white.
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■ 4.2 Indexed Color
- Many systems have frame buffers that are

limited in depth.
• If we choose a limited number of colors from a

large selection, we should be able to create
good quality images most of the time.

– Historically color-index mode was important because it
required less memory for the frame buffer.

– For most of our code we will use a standard RGB model.
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■ 4.3 Setting of Color Attributes
• The first color to set is teh clear clolr

• glClearColor(1.0,1.0,1.0,1.0);

– We can select the rendering color for our points by
setting the color variable

• glColor3f(1.0,0.0,0.0);

– We can set the size of our rendered points to be 2
pixels wide, by using

• glPointSize(2.0);

• Note that attributes such as point size and line
width are specified in terms of the pixel size.
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5. Viewing

- Just as the casual photographer does not
need to worry about how the shutter works
or what are the details of the
photochemical interaction of light and film
is,

- So the application programmer only needs
to worry about the specifications of the
objects and the camera.
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■ 5.1 Two-Dimensional Viewing
• taking a rectangular area of our two-

dimensional world and transferring its contents
to the display as shown:
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• Remember that two-dimensional graphics is a
special case of three-dimensional graphics.

• Our viewing rectangle is the plane z=0 within a
three-dimensional viewing volume.

• If we do not specify a viewing volume, OpenGL
uses its default, a 2x2x2 cube with the origin at
the center.
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■ 5.2 The Orthographic View
• This two-dimensional view is a special case of

the orthographic projection (discussed more in
Chapter 5)

– points at (x,y,z) are projected to (x,y,0)
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• In OpenGL, an orthographic projection is
specified via

• void glOrtho(Gldouble left, Gldouble right,
Gldouble bottom, Gldouble top, Gldouble near,
Gldouble far);

– Unlike a real camera, the orthographic projection can
include objects behind the camera

• void glOrtho2D(Gldouble left, Gldouble right,
Gldouble bottom, Gldouble top);

– In Chapters 4 and 5 we will discuss moving the
camera and creating more complex views.
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■ 5.3 Matrix Modes
– The two most important matrices are

• the model-view and
• projection matrices.

– In Chapter 4 we will study functions to manipulate
these matrices

– The following is common for setting a two-
dimensional viewing rectangle:

• glMatrixMode(GL_PROJECTION);
• glLoadIdentity();
• gluOrtho2D(0.0,500.0, 0.0, 500.0);

• glMatrixMode(GL_MODELVIEW);

• This defines a 500x500 viewing rectangle, with
the lower-left corner as the origin.
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6. Control Functions

- We are almost done with our first program,
•  but we must still discuss interaction with the

window and operating systems.

• Rather than deal with these issues in detail we
will look at the simple interface GLUT provides.

– Applications produced using GLUT should run under
multiple window systems.
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■ 6.1 Interaction with the Window System
– Before we can open a window, there must be

interaction between the windowing system and
OpenGL.

• glutInit(int *argcp, char **argv)
• glutCreateWindow(char *title)
• glutInitDisplayMode(GLUT_RGB |

GLUT_DEPTH | GLUT_DOUBLE);
• glutInitWindowSize(480, 640);
• glutInitWindowPosition(0,0);
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■ 6.2 Aspect Ratio and Viewports
• Def: Aspect Ratio
• If the ratio of the viewing rectangle (specified by

glOrtho) is not the same as the aspect ratio
specified by glutInitWindowSize, you can end
up with distortion on the screen.
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- A viewport is a rectangular area of the display
window.

• By default, it is the entire window, but it can be set
to any smaller size.

• Void glViewport(Glint x, Glint y, Glsizei w, Glsizei h)

• We will see further uses of the viewport in Chapter
3, where we consider interactive changes in the size
and shape of the window
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■ 6.3 The main, display, and myinit
Functions

• In Chapter 3 we will discuss event processing,
which will give us tremendous control in our
programs.  For now, we can use the GLUT
function

• void glutMainLoop(void);

• Graphics are sent to the screen through a
function called a display callback.

– This function is specified through the GLUT function
• void glutDisplayFunc(void (*func)(void));
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• #include <GL/glut.h>

•
• void main(int argc, char **argv)
• {

•    glutInit(&argc, argv);
•    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
•    glutInitWindowSize(500,500);
•    glutInitWindowPosition(0,0);

•    glutCreateWindow(“simple OpeGL example);
•    glutDisplayFunc(display);
•    myinit();
•    glutMainLoop();

• }

CS 480/680 Chapter 2 -- Graphics Programming 56

■ 6.4 Program Structure
• Every program we write will have the same

structure as our gasket program.
– We will always use the GLUT toolkit

– The main function will then consist of calls to GLUT
functions to set up our window(s)

– The main function will also name the required
callbacks

• every program must have a display callback
• most will have other callbacks to set up

interaction.

– The myinit will set up user options
• (usually calls to GL and GLU library functions.)
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7. The Gasket Program

- Using the previous program as our base
• We can now write the myinit function and the

display function for our Sierpinski gasket
• We will draw red points on a white background
• all within a 500x500 square.
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• void myinit(void)

• {
•    glClearColor(1.0,1.0,1.0,0.0;
•    glColor3f(1.0,0.0,0.0);

•    glMatrixMode(GL_PROJECTION);
•    gluLoadIdentity();
•    gluOrtho2D(0.0,500.0,0.0,500.0);
•    glMatrixMode(GL_MODELVIEW);

• }
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• void display(void)
• {
•    typedef Glfoat point2[2];

•    point2 vertices[3]={{0.0,0.0},{250.0,500.0},{500.0,0.0}};
•    int i,j,k;
•    point2 p={75.0,50.0};
•    glClear(GL_COLOR_BUFFER_BIT);

•    for(k=0;k<5000;k++){
•       j=rand()%3;
•       p[0]=(p[0]+vertices[j][0])/2.0;
•       p[1]=(p[1]+vertices[j][1])/2.0;

•       glBegin(GL_POINTS)
•          glVertex2fv(p);
•       glEnd();

•    }
•    glFlush();
• }
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8. Polygons and Recursion

• We can generate the gasket a different way
bisecting the edges of the triangle

• and doing this over recursively until we reach
the desired subdivision level
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- Let us start our code with a simple function that
draws a single triangular polygon with three
arbitrary vertices.

• void triangle(point2 a, point2 b, point2 c)
• {
•    glBegin(GL_TRIANGLES);
•       glVertex2fv(a);

•       glVertex2fv(b);
•       glVertex2fv(c);
•    glEnd();
• }
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• void divide_triangle(point2 a, point2 b, point2 c, int k)
• {
•    point2 ab, ac bc;

•    int j
•    if(k>0){
•       // compute the midpoints of the sides
•       for(j=0;j<2;j++) ab[j]=(a[j]+b[j])/2;

•       for(j=0;j<2;j++) ac[j]=(a[j]+c[j])/2;
•       for(j=0;j<2;j++) bc[j]=(b[j]+c[j])/2;

•       // subdivide all but the inner triangle

•       divide_triangle(a,ab,ac,k-1);
•       divide_triangle(c,ac,bc,k-1);
•       divide_triangel(b,bc,ab,k-1);

•    }
•    else triangle(a,b,c);
• }
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- The display function is now almost trivial.  It uses
global value of n determined by the main program
to fix the number of subdivisional steps.

• void display(void)
• {
•    glClear(GL_COLOR_BUFFER_BIT);
•    divide_triangle(v[0], v[1], v[2], n);

•    glFlush();
• }

- Note:
• often we have no convenient way to pass variables to

OpenGL functions and callbacks other than through
global parameters.

• Although we prefer not to pass values in such a manner,
because the form of these functions is fixed, we have no
good alternative.
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- Here is the triangle when there are 5 subdivisions.
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9. The Three-Dimensional
Gasket

• We have argued:
–  that two-dimensional graphics is a special case of

three-dimensional graphics

– But we have not yet seen a true three-dimensional
program.

• So, lets convert the Gasket program to three-
dimensions.

– We start by replacing the initial triangle with a
tetrahedron
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■ 9.1 Use of Three-Dimensional Points
• The required changes are primarily in the

function display
• typedef Glfloat point3[3];

• point3 vertices[4]{{0.0,0.0,0.0},
{250.0,500.0,100.0}, {500.0,250.0,250.0},
{250.0,100.0,150.0)}};

• point3 p={250.0, 100.0, 250.0};

– We will also color the points to help visualize its
location.
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■ 9.2 Use of Polygons in Three Dimensions
• Following our second approach, we note that the

faces of  a tetrahedron are the four triangles
determined by its four vertices.

• Our triangle function changes to:

• void triangle(point3 a, point3 b, point3 c)

• {
•    glBegin(GL_POLYGON);
•       glVertex3fv(a);
•       glVertex3fv(b);

•       glVertex3fv(c);
•    glEnd();
• }
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- Our divide triangle function just changes from point2
to point3  parameters.

- We then generate our subdivided tetrahedron
• void tetrahedron(int n)
• {
•    glColor3f(1.0,0.0,0.0);

•    divide_triangle(v[0],v[1],v[2],k);
•    glColor3f(0.0,1.0,0.0);
•    divide_triangle(v[3],v[2],v[1],k);

•    glColor3f(0.0,0.0,1.0);
•    divide_triangle(v[0],v[3],v[1],k);
•    glColor3f(0.0,0.0,0.0);
•    divide_triangle(v[0],v[2],v[3],k);

• }
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■ 9.3 Hidden-Surface Removal
• If you execute the code we just wrote, you

might be confused
– the program draws the triangles in the order

specified by the recursion, not by the geometric
relationship between the triangles.

– Each triangle is drawn (filled) in a solid color and is
drawn over those triangles already on the display.

• The issue is hidden surface removal
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• For now, we can use the z-buffer algorithm
supported by OpenGL

• glutInitDisplayMode(GLUT_SINGLE |
GLUT_RGB | GLUT_DEPTH);

• glEnable(GL_DEPTH_TEST);

– we must also clear the Depth Buffer in the display
function:

• void display()
• {

•    glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

•    tetrahedron(n);

•    glFlush();
• }
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10. Summary

- In this chapter, we introduced the OpenGL
API

- The Sierpinski gasket provides a nontrivial
beginning application

• more details abut Fractal Geometry are given in
Chapter 11.

- The historical development of graphics
API’s and graphical models illustrates the
importance of starting in three dimensions.
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11. Suggested Readings

- Pen Plotter API of Postscript and LOGO
- GKS, GKS-3D, PHIGS, and PHIGS+ API’s

- The X Window System

- Renderman interface
- OpenGL Programming Guide, OpenGL

Reference Manual
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Exercises -- Due next class


