
- -

- -1

Input and Interaction

Chapter 3

CS 480/680 Chapter 3 -- Input and Interaction 2

■ Introduction:
- We now turn to the development of interactive

graphics programs.

- Our discussion has three main parts
• First, we consider the variety of devices available for

interaction
• We then consider client-server networks and client-

server graphics
• Finally we develop a paint program that demonstrates

the important features of interactive graphics
programming.

CS 480/680 Chapter 3 -- Input and Interaction 3

1. Interaction

• One of the most important advances in
computer technology was enabling users to
interact with computer displays

• Ivan Sutherland’s Project Sketchpad launched
the present era of interactive computer
graphics

– Since 1963 when this work was published there have
been many advances in both hardware and software,
but the viewpoint ideas he introduced still dominate
computer graphics.

CS 480/680 Chapter 3 -- Input and Interaction 4

• OpenGL does not support interaction directly
– windowing and input functions were left out of the

API for portability reasons.

• We can avoid potential difficulties by using a
simple library, or toolkit, as we did in Chapter 2.

– Our use of the GLUT toolkit will enable us to avoid
the complexities inherent in the interactions among
the windowing system

• Our outline for this chapter looks like this:
– We start by describing several interactive devices

and how to interact with them
– We then put these devices in the setting of a client-

server network.
– Then, we introduce an API for minimal interaction.
– Finally, we shall generate sample programs.

CS 480/680 Chapter 3 -- Input and Interaction 5

2. Input Devices

- From the physical perspective, each device
has properties that make it more suitable
for certain tasks than for others.

- There are two primary types of physical
devices:

• Pointing Devices
• Keyboard Devices

CS 480/680 Chapter 3 -- Input and Interaction 6

■ 2.1 Physical Input Devices

• The pointing device allows the user to indicate
a position on the screen,

– and almost always incorporates one or more buttons

• The keyboard device is almost always a
physical keyboard,

– but can be generalized to include any device that
returns character codes to a program

- -

- -2

CS 480/680 Chapter 3 -- Input and Interaction 7

• Pointing devices can be broken into two
subcategories

– relative-position devices

– absolute- position devices

CS 480/680 Chapter 3 -- Input and Interaction 8

• Other Pointing Devices
– Joystick

– SpaceBalls

CS 480/680 Chapter 3 -- Input and Interaction 9

■ 2.2 Logical Devices
• Two major characteristics describe the logical

behavior of an input device
– What measurements the device returns to the user

program
– When the device returns those measurements.

• Some API’s such as PHIGS and GKS consider
six classes of logical input devices.

– OpenGL does not follow this approach, but we will
look at these classes briefly and see how OpenGL
provides similar functionality

CS 480/680 Chapter 3 -- Input and Interaction 10

- 1. String
• a device that provides ASCII strings to the user

program.
• Most windowing systems and OpenGL do not

distinguish between a logical string device and
the keyboard.

- 2. Locator
• a device that provides a position in world

coordinates to the user program.
– It is usually implemented via a pointing device, such

as a mouse or a trackball.

• In OpenGL we usually have to do the
conversion from screen coordinates to world
coordinates within our own programs

CS 480/680 Chapter 3 -- Input and Interaction 11

- 3. Pick
• a device that returns the identifier of an object

to the user program.
– It is usually implemented with the same device as

the locator, but has a separate software interface

• In OpenGL, we can use a process called
selection to accomplish picking.

- 4. Choice
• a device that allows the user to select one of a

discrete number of options.
• In OpenGL we can use various widgets

provided by the windowing system.

CS 480/680 Chapter 3 -- Input and Interaction 12

- 5. Dial
• Dials provide analog input to the user program
• Here again widgets provide this facility through

graphical devices, such as slidebars

- 6. Stroke
• A device that returns an array of locations.
• Although we can think of a stroke as similar to

multiple locators, it is often implemented such
that an action, such as pushing down a mouse
button, starts the transfer of data into the
specified array, and a second action, such as
the releasing of the button, ends the transfer

- -

- -3

CS 480/680 Chapter 3 -- Input and Interaction 13

■ 2.3 Measure and Trigger
- The manner by which physical and logical

input devices provide input to an
application program can be described in
terms of two entities:

• Measure -- what is returned
• Trigger -- when it is returned

• Measure can also include status information

CS 480/680 Chapter 3 -- Input and Interaction 14

■ 2.4 Input Modes
- We can obtain the measure of a device in

three distinct modes.
• Each mode is defined by the relationship

between the measure process and the trigger.

• The three modes are:
– Request Mode
– Sample-Mode
– Event Mode

CS 480/680 Chapter 3 -- Input and Interaction 15

- Request Mode:
• The measure of the device is not returned to

the program until the device is triggered.

• This mode is standard in non-graphical
applications such as typical C programs

– input is buffered until the trigger is hit
– for scanf() the trigger is the “enter” key.

CS 480/680 Chapter 3 -- Input and Interaction 16

- Sample Mode:
– The input is immediate

– As soon as the function call in the user program is
encountered, the measure is returned.

– Both request mode and sample mode are useful for
situations where the program guides the user, but
are not useful in applications where the user controls
the flow of the program. (Flight Simulator)

CS 480/680 Chapter 3 -- Input and Interaction 17

- Event Mode:
– Each time a device is triggered, an event is

generated and placed into an event queue. From
here there are two approaches

• 1) The program can then get events off the
queue, and “service” them.

• 2) associate a “callback” function with a specific
type of event and when that event comes to the
front of the queue, that function is automatically
executed.

CS 480/680 Chapter 3 -- Input and Interaction 18

3. Clients and Servers

■ Def: Server
- A Server is something that

can perform tasks for
clients.

■ Clients and Servers can
be distributed over a
network, or contained
entirely within a
computational unit.
- OpenGL programs are

clients that use the graphics
server

- -

- -4

CS 480/680 Chapter 3 -- Input and Interaction 19

4. Display Lists

- We saw in Chapter 1 the history of
graphics hardware

CS 480/680 Chapter 3 -- Input and Interaction 20

- Today:
• The display processor has become the

graphics server, and the user program has
become a client.

• The issue is not the refresh rate, but the
amount of traffic between the client and the
server

• Now we can send graphical entities to a display
in one of two ways:

– immediate mode
– retained-mode

CS 480/680 Chapter 3 -- Input and Interaction 21

- Immediate Mode:
• As soon as the program executes a statement

that defines a primitive, that primitive is sent to
the server for display and no memory of it is
retained.

• To redisplay it, you must redefine it and resend
it

• For complex objects in highly interactive
applications, this process can cause
considerable quantity of data to pass from the
client to the server

CS 480/680 Chapter 3 -- Input and Interaction 22

- Retained Mode:
• We define an object once,

– then put its description into a display list

• The display list is stored in the server and
redisplayed by a simple function call issued
from the client to the server.

• Advantages:
– makes good use of hardware

• (compute and graphics)

• Disadvantages:
– memory on the server
– overhead of creating the lists

CS 480/680 Chapter 3 -- Input and Interaction 23

■ 4.1 Definition and Execution of Display Lists

- Display lists have much in common with ordinary
files.

• There must be a mechanism to define/create them as
well as and add-to/manipulate them.

• OpenGL has a small set of functions to manipulate
display lists and placed only a few restrictions on display-
list contents.

• We will look at several examples to show their use.

CS 480/680 Chapter 3 -- Input and Interaction 24

- Display lists are defined similarly to
geometric primitives

• Each display list must have a unique identifier

• #define BOX 1
• // GL_COMPILE says

• glNewList(BOX, GL_COMPILE); // send to server
• glBegin(GL_POLYGON); // but don’t display
• glColor3f(1.0,0.0,0.0);
• glVertex2f(-1.0, -1.0);

• glVertex2f(-1.0, -1.0);
• glVertex2f(-1.0, -1.0);
• glVertex2f(-1.0, -1.0);
• glEnd();

• glEndList();

- -

- -5

CS 480/680 Chapter 3 -- Input and Interaction 25

• If we want an immediate display of the contents, we can
use the flag

– GL_COMPIL_AND_EXECUTE

• Each time that we wish to draw the box on the server, we
execute the following:

– glCallList(BOX);

• Because the call to set the drawing color to Red will still
be in effect, you usually see display lists with the
following at the beginning:

• glPushAttrib(GL_ALL_ATTRIB_BITS);
• glPushMatrix();

– and the following at the end
• glPopAttrib();

• glPopMatrix();

CS 480/680 Chapter 3 -- Input and Interaction 26

5. Programming Event-Driven Input

• In this section, we develop event-driven input
through a number of simple examples that use
the callback mechanism we introduced earlier.

• We will examine various events that are
recognized by the window system and write
callback functions that govern how the
application responds to those events.

CS 480/680 Chapter 3 -- Input and Interaction 27

■ 5.1 Using the Pointing Device
- Two types of events are associated with

the pointing device
• A move event

– this is generated if the mouse is moved with on of the
buttons depressed

• A passive event
– this is generated if the mouse is moved without a

button being held down.

- A mouse event occurs when one of the
mouse buttons is either depressed or
released

CS 480/680 Chapter 3 -- Input and Interaction 28

- We specify the mouse callback function in main with
the GLUT call

• glutMouseFunc(mouse_callback_func);

- The mouse callback function must have the form
• void mouse_callback_func(int button, int state, int x, int y);

- The code for this would look like
• void mouse_callback_function(int button, int state, int x, int y)
• {
• if(button==GLUT_LEFT_BUTTON &&
• state==GLUT_DOWN)

• exit();
• }

CS 480/680 Chapter 3 -- Input and Interaction 29

- Note:
• with this code, if any other mouse event had

occurred, no response action would occur because
no callbacks corresponding to the events has been
defined (or registered).

- Our next example
• is going to draw a box at the mouse location when

the left button is pushed
• and terminate when the middle button is pushed.

CS 480/680 Chapter 3 -- Input and Interaction 30

• int main(int argc, char **argv)
• {
• glutInit(&argc, argv);
• glutInitDisplay(GLUT_SINGLE | GLUT_RGB);
• glutCreateWindow(“square”);
• myinit();
• glutReshapeFunc(myReshape);
• glutMouseFunc(mouse);
• glutDisplayFunc(display);
• glutMainLoop();
• }

- -

- -6

CS 480/680 Chapter 3 -- Input and Interaction 31

- Reshape event
• is generated whenever the window is resized.
• This is typically from user interaction.
• We will discuss this later.

- Display
• we don’t need the display function since things are

only drawn when the mouse button is pushed,
• but it is required by GLUT, so our code will be:

– void display () { }

CS 480/680 Chapter 3 -- Input and Interaction 32

- Mouse

• void mouse(int btn, int state, int x, int y)
• {
• if(btn==GLUT_LEFT_BUTTON &&

• state=GLUT_DOWN)
• draw_square(x,y);
• if(btn==GLUT_MIDDLE_BUTTON &&

• state==GLUT_DOWN)
• exit();
• }

CS 480/680 Chapter 3 -- Input and Interaction 33

• Glsizei wh = 500, ww = 500;

• Glfloat size = 3.0;

• void myinit(void)

• {
• glViewport(0,0,ww,wh);
• glMatrixMode(GL_PROJECTION);
• glLoadIdentity();

• gluOrtho2D(0.0, (Gldouble)ww, 0.0, (Gldouble)wh);
• glMatrixMode(GL_MODELVIEW);
• glClearColor(0.0,0.0,0.0,0.0);
• glClear(GL_COLOR_BUFFER_BIT);

• glFlush();
• }

CS 480/680 Chapter 3 -- Input and Interaction 34

• void drawSquare(int x, int y)

• {
• y=wh-y;
• glColor3ub((char)rand()%256, (char)rand()%256,

• (char)rand()%256);
• glBegin(GL_POLYGON);
• glVertex2f(x+size, y+size);
• glVertex2f(x-size, y+size);

• glVertex2f(x-size, y-size);
• glVertex2f(x+size, y-size);
• glEnd();
• glFlush();

• }

• Note: The position returned by the mouse is in the window’s
system (origin is in the top left), hence we have to flip it

CS 480/680 Chapter 3 -- Input and Interaction 35

■ 5.2 Window Events
- If the window size changes, we have to

consider three questions:
• 1. Do we redraw all the objects that were in the

window before it was resized?

• 2. What do we do if the aspect ratio of the new
window is different from that of the old
window?

• 3. Do we change the size or attributes of new
primitives if the size of the new window is
different from that of the old?

CS 480/680 Chapter 3 -- Input and Interaction 36

- In our example:
• We ensure that squares of the same size are

drawn, regardless of the size or shape of the
window.

– Therefore, we clear the screen each time it is
resized and use the entire new window as our
drawing area.

• The reshape event returns the height and
width of the new window

– We use these to create a new OpenGL clipping
window using gluOrtho2D,

– As well as a new viewport with the same aspect
ratio,

– We then clear the window to black.

- -

- -7

CS 480/680 Chapter 3 -- Input and Interaction 37

• void myReshape(Glsizei w, Glsizei h)
• {
• glMatrixMode(GL_PROJECTION);

• glLoadIdentity();
• gluOrtho2D(0.0, (Gldouble)ww, 0.0, (Gldouble)wh);
• glMatrixMode(GL_MODELVIEW);
• glLoadIdentity();

• glViewport(0,0,w,h);
• glClearColor(0.0,0.0,0.0,0.0);
• glClear(GL_COLOR_BUFFER_BIT);

• glFlush();
• }

CS 480/680 Chapter 3 -- Input and Interaction 38

■ 5.3 Keyboard Events
• Keyboard events are generated when the

mouse is in the window and one of the keys is
depressed.

• GLUT ignores key releases

– All the keyboard callbacks are registered in a single
callback function such as:

• glutKeyboardFunc(keyboard);

– For example:
• void keyboard(unsigned char key, int x, int y)
• {

• if(key==‘q’ || key ==‘Q’) exit();
• }

CS 480/680 Chapter 3 -- Input and Interaction 39

■ 5.4 The Display and Idle Callbacks
• glutDisplayFunc(display);

– display is invoked when GLUT determines that the
window should be redisplayed

• window initially opened,
– We can also tell GLUT to call it with

• glutPostDisplay();

• idle
– The idle callback is invoked when there are no other

events.
– Its default is the null function.

CS 480/680 Chapter 3 -- Input and Interaction 40

■ 5.5 Window Management
• GLUT also supports both multiple windows and

subwindows

– We can open a second top-level window by
• id=glutCreateWindow(“second window”);

– The id allows us to select which window to work in by

• glutSetWindow(id);

– We can make this window have different properties
by invoking the glutInitDisplayMode before
glutCreateWindow.

– And each window can have its own set of callback
functions, because callback specifications refer to
the present window.

CS 480/680 Chapter 3 -- Input and Interaction 41

6. Menus

- GLUT provides pop-up menus that we can
use with the mouse to create sophisticated
interactive applications.

- Using the menus involves taking a few
simple steps

• define the entries
• link the menu to a mouse button
• define a callback for each menu entry.

CS 480/680 Chapter 3 -- Input and Interaction 42

• glutCreateMenu(demo_menu);

• glutAddMenuEntry(“quit”,1);
• glutAddMenuEntry(“increase square size”,2);
• glutAddMenuEntry(“decrease square size”,3);

• glutAttachMenu(GLUT_RIGHT_BUTTON);

- Our callback function is:
• void demo_menu(int id)

• {
• if(id==1) exit();
• else if(id==2)size = 2*size;
• else if (size>1) size = size/2;

• glutPostRedisplay();
• }

- -

- -8

CS 480/680 Chapter 3 -- Input and Interaction 43

- GLUT also supports hierarchical menus

• sub_menu = glutCreateMenu(size_menu);
• glutAddMenuEntry(“increase square size”,2);
• glutAddMenuEntry(“decrease square size”,3);

• glutCreateMenu(top_menu);
• glutAddMenuEntry(“quit”,1);

• glutAddSubMenu(“Resize”, sub_menu);
• glutAttachMenu(GLUTRIGHTBUTTON);

CS 480/680 Chapter 3 -- Input and Interaction 44

7. Picking

- Picking is an input operation that allows the
user to identify an object on the display.

• Although the action uses the pointing device,
the information the user wants is not a position.

• A pick device is considerably more difficult to
implement on a modern system than is a
locator

– The text gives some ideas

CS 480/680 Chapter 3 -- Input and Interaction 45

8. A Simple Paint Program

- Any paint program should demonstrate
most of the following features:

• ability to work with geometric objects
• ability to manipulate pixels
• provide control of attributes (color, ...)
• include menus for controlling the application
• behave correctly when the window is moved or

resized.

CS 480/680 Chapter 3 -- Input and Interaction 46

CS 480/680 Chapter 3 -- Input and Interaction 47

9. Animating Interactive
Programs

- So far our programs have been static
• Once a primitive was placed on the display its

image did not change until the screen was
cleared.

- Suppose that we want to create a picture in
which one or more objects are changing or
moving, and thus their images must
change.

CS 480/680 Chapter 3 -- Input and Interaction 48

■ 9.1 The Rotating Square
• Consider the rotating two dimensional point

where
– x = cos θ,
– y = sin θ

- -

- -9

CS 480/680 Chapter 3 -- Input and Interaction 49

• void display()
• {
• glClear();

• glBegin(GL_POLYGON);
• thetar = theta/((2*3.14159)/360.0);
• glVertex2f(cos(thetar), sin(thetar));
• glVertex2f(sin(thetar), cos(thetar));

• glVertex2f(-cos(thetar), -sin(thetar));
• glVertex2f(sin(thetar), -cos(thetar));
• glEnd();
• }

CS 480/680 Chapter 3 -- Input and Interaction 50

- Now suppose we want to increase theta by a fixed
amount whenever nothing else is happening.

• glutIdleFunc(idle);

• void idle()

• {
• theta+=2;
• if(theta >=360.0) theta-=360.0;
• glutPostRedisplay();

• }

CS 480/680 Chapter 3 -- Input and Interaction 51

- So, what would this do?

• glutMouseFunc(mouse);

• void mouse(int button, int state, int x, int y)
• {
• if(button==GLUT_LEFT && state==GLUT_DOWN)
• glutIdleFunc(idle);

• if(button==GLUT_MIDDLE && state==GLUT_DOWN)
• glutIdleFunc(NULL);
• }

CS 480/680 Chapter 3 -- Input and Interaction 52

■ 9.2 Double Buffering

- Why do we want double buffering?

- In main we request a double buffered display by:
• glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE)

- After we have finished drawing, we call
• glutSwapBuffers();

CS 480/680 Chapter 3 -- Input and Interaction 53

■ 9.3 Other Buffering
Problems
- Suppose we want to

add an elapsed time
clock

• single buffer causes
clock to flicker

• double buffer causes
drawing to flicker

• answer is to draw the
items to both buffers

– See Chapter 9 for
details

CS 480/680 Chapter 3 -- Input and Interaction 54

10. Design of Interactive
Programs

- A good interactive program should have:
• A smooth display (no flicker or artifacts of refresh)
• A variety of interactive devices on the display
• A variety of methods for entering and displaying

information
• An easy to use interface that does not require substantial

effort to learn.
• Feedback to the user.
• Tolerance for user errors
• A design that incorporates consideration of both visual

and motor properties of humans.

- -

- -10

CS 480/680 Chapter 3 -- Input and Interaction 55

■ 10.1 Toolkits, Widgets, and the Frame Buffer
• The paint program used interactive tools, such

as pop-up menus that were provided by GLUT.
• There are many more possibilities, such as

slide-bars, dials, hot areas on the screen,
sound, and icons

– Usually these tools are supplied with various toolkits,
although there is nothing to prevent you from writing
your own.

– Designing our own widget set will be much easier
after pixel operations are introduced in Chapter 9

– most of these operations are described in terms of
the contents of the frame buffer

• bit-block transfer operations (bitblt)

CS 480/680 Chapter 3 -- Input and Interaction 56

- Rubberbanding is one of
those techniques

• Note that before each
new line segment is
drawn, the previous line
segment must be erased.

• Usually the
rubberbanding begins
when the mouse button is
depressed and continues
until the button is
released.

• Other objects that are
drawn interactively with
rubberbanding include
rectangles and circles.

CS 480/680 Chapter 3 -- Input and Interaction 57

11. Summary

• In this chapter, we have touched on a number
of topics related to interactive computer
graphics

– These interactive aspects make the field exciting and
fun.

• We handled simple interaction using GLUT
• We have been heavily influenced by the client-

server perspective
– This will be crucial in Chapter 8
– The overhead of setting up a program to run in this

environment is small. Each program is structured
the same.

CS 480/680 Chapter 3 -- Input and Interaction 58

12. Suggested Readings

- Sutherland’s Project Sketchpad
- Xerox PARC Research of the 70’s

• windows-icons-menus-pointing interfaces

- Human Computer Interface
• Foley, Van Dam, et.al

- UI Toolkits
• GLUT,
• Scripting ones -- tcl/tk
• ...

