
- -

- -1

Geometric Objects and
Transformations

Chapter 4

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 2

■ Introduction:
- We are now ready to concentrate on three-

dimensional graphics

- Much of this chapter is concerned with
matters such as

• how to represent basic geometric types
• how to convert between various

representations
• and what statements we can make about

geometric objects, independent of a particular
representation.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 3

1. Scalars, Points, and Vectors

- We need three basic types to define most
geometric objects

• scalars
• points
• and vectors

- We can define each in many ways, so we
will look at different ways and compare and
contrast them.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 4

■ 1.1 The Geometric View

- Our fundamental geometric object is a
point.

• In a three-dimensional geometric system, a
point is a location in space

• The only attribute a point possesses is its
location in space.

- Our scalars are always real numbers.
• Scalars lack geometric properties,
• but we need scalars as units of measurement.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 5

- In computer graphics, we often connect
points with directed line segments

• These line segments are our vectors.
• A vector does not have a fixed position

– hence these segments are identical because their
orientation and magnitude are identical.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 6

• Directed line segments can have their lengths
and directions changed by real numbers or by
combining vectors

- -

- -2

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 7

■ 1.2 The Mathematical View: Vector and
Affine Spaces

• We can regard scalars, points and vectors as
members of mathematical sets;

• Then look at a variety of abstract spaces for
representing and manipulating these sets of
objets.

• The formal definitions of interest to us -- vector
spaces, affine spaces, and Euclidean spaces --
are given in Appendix B

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 8

- Perhaps the most important mathematical
space is the vector space

• A vector space contains two distinct entities:
vectors and scalars.

• There are rules for combining scalars through
two operations: addition and multiplication, to
form a scalar field

• Examples of scalar are:
– real numbers, complex numbers, and rational

functions

• You can combine scalars and vectors to forma
new vector through

– scalar-vector multiplication and vector-vector addition

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 9

• An affine space is an extension of the vector
space that includes an additional type of object:

– The point

• A Euclidean space is an extension that adds a
measure of size or distance

• In these spaces, objects can be defined
independently of any particular representation

– But representation provides a tie between abstract
objects and their implementation

– And conversion between representations leads us to
geometric transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 10

■ 1.3 The Computer Science View
• We prefer to see these objects as ADTs

• Def: ADT

• So, first we define our objects
• Then we look to certain abstract mathematical

spaces to help us with the operations among
them

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 11

■ 1.4 Geometric ADTs
• Our next step is to show how we can use our

types to perform geometrical operations and to
form new objects.

• Notation
– Scalars will be denoted α, β, γ
– Points will be denoted P, Q, R, ...

– Vectors will be denoted u, v, w, ...

• The magnitude of a vector v is the real number
that is denoted by |v|

• The operation of vector-scalar multiplication
has the property that |αv| = |α||v|

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 12

• The direction of αv is the same as the direction
of v if α is positive.

• We have two equivalent operations that relate
points and vectors:

– First there is the subtraction of two points P and Q.
This is an operation that yields a vector

• v = P - Q
• or P = v + Q

- -

- -3

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 13

– Second there is the head-to-tail rule that gives us a
convenient way of visualizing vector-vector addition.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 14

■ 1.5 Lines
- The sum of a point and a vector leads to

the notion of a line in an affine space
• Consider all points of the form

– P(α) = P0+αd
• P0 is an arbitrary point

• d is an arbitrary vector
• α is a scalar

• This form is sometimes called the parametric
form, because we generate pints by varying the
parameter α.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 15

■ 1.7 Convexity
- Def: Convex object
- Def: Convex Hull

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 16

■ 1.8 Dot and Cross Products
- Dot product

• the dot product of u and v is written u•v
• If u•v=0, then u and v are orthogonal
• In euclidean space, |u|2 = u•u
• The angle between two vectors is given by

– cos θ = (u•v)/(|u| |v|)

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 17

- Cross product
• We can use two non parallel vectors u and v to

determine a third vector n that is orthogonal to
them n=u x v

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 18

■ 1.9 Planes
- Def: Plane

- Def: normal to the plane

- -

- -4

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 19

2. Three-Dimensional Primitives

- In a three-dimensional world, we can have
a far greater variety of geometric objects
than we could in two-dimensions.

• In 2D we had curves,
• Now we can have curves in space

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 20

- In 2D we had objects
with interiors, such as
polygons,

- Now we have surfaces
in space

- In addition, now we can
have objects that have
volume

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 21

• We face two issues when moving from 2D to
3D.

– First, the mathematical definitions of these objects
becomes complex

– Second, we are interested in only those objects that
lead to efficient implementations in graphic systems

• Three features characterize 3D objects that fit
well with existing graphics hardware and
software:

– 1. The objects are described by their surfaces and
can be thought of as hollow.

– 2. The objects can be specified through a s set of
vertices in 3D

– 3. The objects either are composed of or can be
approximated by flat convex polygons.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 22

• We can understand why we set these
conditions if we consider what most modern
graphics systems do best:

– They render triangles

• Def: tesselate

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 23

3. Coordinate Systems and Frames

• In a three-dimensional vector
space, we can represent any
vector w uniquely in terms of any
three linearly independent
vectors v1, v2, and v3, as

– w = α1v1+α2v2+α3v3

• The scalars α1, α2, and α3 are
the components of w with
respect to the basis functions

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 24

• We can write the
representation of w
with respect to this
basis as the column
matrix

• We usually think of
basis vectors
defining a
coordinate system

1

2

3

a

α
α
α

 
 =  
  

- -

- -5

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 25

• However, vectors have no
position, so this would also
be appropriate

– But a little more confusing.

• Once we fix a reference
point (the origin), we will feel
more comfortable,

– because the usual convention
for drawing the coordinate
axes as emerging from the
origin

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 26

• This representation that requires both the
reference point and the basis vectors is called a
frame.

– Loosely, this extension fixes the origin of the vector
coordinate system at some point P0.

– So, every vector is defined in terms of the basis
vectors

– and every point is defined in terms of the origin and
the basis vectors.

– Thus the representation of either just requires three
scalars, so we can use matrix representations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 27

■ 3.1 Changes in Coordinate Systems
• Frequently, we are required to find how the

representation of a vector changes when we
change the basis vectors.

– Suppose {v1, v2, v3} and {u1, u2, u3} are two bases
– Each basis vector in the second can be represented

in terms of the first basis (and vice versa)
– Hence:

• u1 = γ11v1+γ12v2+γ13v3

• u2 = γ21v1+γ22v2+γ23v3

• u3 = γ31v1+γ32v2+γ33v3

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 28

• The 3x3 matrix is

– is defined by the scalars and

– and M tells us how to go one way, and the inverse of
M tells us how to go the other way.

11 12 13

21 22 23

31 32 33

M

γ γ γ
γ γ γ
γ γ γ

 
 =  
  

1 1

2 2

3 3

u v

u M v

u v

   
   =   
      

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 29

• These change in basis leave the origin
unchanged

• However, a simple translation of the origin, or
change of frame, cannot be represented in this
way

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 30

■ 3.2 Example of Change of
Representation

- -

- -6

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 31

■ 3.3 Homogeneous Coordinates

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 32

■ 3.4 Example of Change in Frames

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 33

■ 3.5 Frames and ADTs
• Thus far, our discussion has been

mathematical.
• Now we begin to address the question of what

this has to do with programming

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 34

■ 3.6 Frames in OpenGL
• In OpenGL we use two frames:

– The camera frame
– The world frame.

• We can regard the camera frame as fixed
– (or the world frame if we wish)

– The model-view matrix positions the world frame
relative to the camera frame.

• Thus, the model-view matrix converts the
homogeneous-coordinate representations of
points and vectors to their representations in
the camera frame.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 35

• Because the model-view matrix is part of the
state of the system there is always a camera
frame and a present-world frame.

• OpenGL provides matrix stacks, so we can
store model-view matrices

– (or equivalently, frames)

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 36

• As we saw in Chapter 2, the camera is at the
origin of its frame

– The three basis vectors correspond to:
• The up direction of the camera (y)
• The direction the camera is pointing (-z)
• and a third orthogonal direction

– We obtain the other frames (in which to place
objects) by performing homogeneous coordinate
transformations

• We will learn how to do this in Section 4.5
• In Section 5.2 we use them to position the

camera relative to our objects.

- -

- -7

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 37

• Let’s look at a simple example:
– In the default settings, the camera and the world

frame coincide with the camera pointing in the
negative z direction

– In many applications it is natural to define objects
near the origin.

• If we regard the camera frame as fixed, then
the model-view matrix:

– moves a point (x,y,z) in the world frame to the point
(x,y,z-d) in the camera frame.

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

A
d

 
 
 =
 −
 
  

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 38

– Thus by making d a suitably large positive number,
we move the objets in front of the camera

– Figure 4.21

– Note that, as far as the user - who is working in world
coordinates - is concerned, they are positioning
objects as before

– The model-view matrix takes care of the relative
positioning of the frames

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 39

4. Modeling a Colored Cube

- We now have the tools we need to build a
3D graphical application.

- Consider the problem of drawing a rotating
cube on the screen

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 40

■ 4.1 Modeling of a Cube

• typedef Glfloat point3[3];
• point3 vertices[8] = {{-1.0,-1.0,-1.0}, {1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-
1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

• glBegin(GL_POLYGON);
• glVertex3fv(vertices[0]);

• glVertex3fv(vertices[3]);
• glVertex3fv(vertices[2]);
• glVertex3fv(vertices[1]);
• glEnd();

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 41

■ 4.2 Inward- and Outward-Pointing
Faces

• We have to be careful about the order in which
we specify our vertices when we are defining a
three-dimensional polygon

• We call a face outward facing if the vertices
are traversed in a counterclockwise order when
the face is viewed from the outside.

– This is also known as the right-hand rule

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 42

■ 4.3 Data Structures for Object Representation
• We could describe our cube

– glBegin(GL_POLYGON)

• six times, each followed by four vertices
– glBegin(GL_QUADS)

• followed by 24 vertices

• But these repeat data....
• Let’s separate the topology from the geometry.

- -

- -8

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 43

■ 4.4 The Color Cube
• typedef Glfloat point3[3];

• point3 vertices[8] = {{-1.0,-1.0,-1.0}, {1.0,-1.0,-1.0}, {1.0,1.0,-
1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-1.0,1.0}, {1.0,1.0,1.0},
{-1.0,1.0,1.0}};

• Glfloat colors[8][3]={0.0,0.0,0.0}, {1.0,0.0,0.0}, {1.0, 1.0, 0.0},
{0.0,1.0,0.0}, 0.0,0.0,1.0}, {1.0,0.0,1.0}, {1.0,1.0,1.0},
{0.0,1.0,1.0}};

• void quad(int a, int b, int c, int d)
• {

• glBegin(GL_POLYGON);
• glColor3fv(colors[a]); glVertex3fv(vertices[a]);

• glColor3fv(colors[a]); glVertex3fv(vertices[b]);
• glColor3fv(colors[a]); glVertex3fv(vertices[c]);

• glColor3fv(colors[a]); glVertex3fv(vertices[d]);
• glEnd();

• }
CS 480/680 Chapter 4 -- Geometric Objects and Transformations 44

■ 4.5 Bilinear Interpolation
• Although we have specified colors for the

vertices of the cube, the graphics system must
decide how to use this information to assign
colors to points inside the polygon.

• Probably the most common method is bilinear
interpolation.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 45

• Another method is Scan-line interpolation
– pushes the decision off until rasterization.

– OpenGL uses this method for this as well as other
values.

– First you project the polygon

– Then convert the colors with each scan line

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 46

■ 4.6 Vertex Arrays
• Vertex arrays provide a method for

encapsulating the information in our data
structure such that we could draw polyhedral
objects with only a few function calls.

– Rather than the 60 OpenGL calls:
• six faces, each of which needs a glBegin, a

glEnd, four calls to glColor, and four calls to
glVertex.

• There are 3 steps in using vertex arrays
– First, enable the functionality of vertex arrays.

– Second, we tell OpenGL where and in what format
the arrays are.

– Third, we render the object

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 47

• glEnableClientState(GL_COLOR_ARRAY);

• glEnableClientState(GL_VERTEX_ARRAY);
• glVertexPointer(3, GL_FLOAT, 0, vertices);
• glColorPointer(3, GL_FLOAT, 0, colors);

• Glubyte cubeIndices[24]={0,3,2,1,2,3,7,6,0,4,7,3,1,2,6,5,
4,5,6,7,0,1,5,4};

• We now have a few options regarding how to draw the
arrays

– for(i=0;i<6;i++)
– glDrawElements(GL_POLYGON, 4,

GL_UNSIGNED_BYTE, &cubeIndeces[4*i]);

– glDrawElements(GL_QUADS, 24,
GL_UNSIGNED_BYTE, cubeIndeces);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 48

5. Affine Transformations

- A transformation is a function that takes a
point (or vector) and maps it into another .

- -

- -9

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 49

• We can represent this as:
– Q=T(P) and v=R(u)

• If we write both the points and vectors in
homogeneous coordinates, then we can
represent both vectors and points in 4-D
column matrices and define a single function

– q=f(p) and v=f(u)

• This is too general, but if we restrict it to linear
functions, then we can always write it as

– v = Au
– where v and u are column vectors (or points) and A

is a square matrix.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 50

• Therefore,
– we need only to transform the homogeneous

coordinate representation of the endpoints of a line
segment to determine completely a transformed line.

– Thus, we can implement our graphics systems as a
pipeline that passes endpoints through affine
transformation units, and finally generate the line at
rasterization stage.

• Fortunately, most of the transformations that
we need in computer graphics are affine.

– These transformations include rotation, translation,
and scaling.

– With slight modifications, we can also use these
results to describe the standard and parallel
projections.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 51

6. Rotation, Translation, and
Scaling

- In this section,
• First, we show how we can describe the most

important affine transformations independently
of any representation.

• Then we find matrices that describe these
transformations

- In section 4.8 we shall see how these
transformations are implemented in
OpenGL

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 52

■ 6.1 Translation
- Translation is an operation that displaces

points by a fixed distance in a given
direction

- To specify a translation, we need only to
specify a displacement vector d

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 53

■ 6.2 Rotation
• Rotation is more difficult to specify than

translation, because more parameters are
involved

• Let’s start with 2D rotation about the origin

– These equations can be written in matrix form as:

cos sin

sin cos

x x

y y

θ θ
θ θ

′ −     =     ′     

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 54

• We expand this to 3D in Section 4.7
• Note that there are three features of this

transformation that extend to other rotations.
– 1) There is one point - the origin - that is unchanged

by the rotation. This is called a fixed point.

– 2) We can define positive rotations about other axes

– 3) 2D rotation in the plane is equivalent to 3D
rotation about the x axis.

- -

- -10

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 55

• We can use these observations to define a
general 3D rotation that is independent of the
frame.

– To do this we must specify:
• a fixed point: Pf

• a rotation angle: θ
• a line or vector about which to rotate:

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 56

• Rotations and translation are known as rigid-
body transformations.

– No combination can alter the shape of an object,
– They can alter only the object’s location and

orientation

• The transformation given in this figure are
affine, but they are not rigid-body
transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 57

■ 6.3 Scaling
• Scaling is an affine non-rigid body

transformation.

• Scaling transformations have a fixed point

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 58

• Hence, to specify a scaling,
– we can specify a fixed point,

– a direction in which we wish to scale,

– and a scale factor α.
• For α > 1, the object gets longer
• for 0 <= α < 1 the object get smaller
• Negative values of α give us reflection

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 59

7. Transformations in
Homogeneous Coordinates

- In most graphics APIs we work with a
representation in homogeneous
coordinates.

- And each affine transformation is
represented by a 4x4 matrix of the form:

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1

M

α α α α
α α α α
α α α α

 
 
 =
 
 
  

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 60

■ 7.1 Translation
• Translation displaces points to a new position

defined by a displacement vector.
– If we move p to p’ by displacing by a distance d then

• p’ = p + d
• or p’ = Tp
• where

• T is called the translation matrix

1 0 0

0 1 0
1

0 0 1

0 0 0 1

x

y

z

T

α
α
α

 
 
 =  
 
  

- -

- -11

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 61

■ 7.2 Scaling
• A scaling matrix with a fixed point at the origin

allows for independent scaling along the
coordinate axes.

– X’=βxx

– y’=βyy
– z’=βzz

• These tree can be combined in homogeneous
for as

– p’=Sp

, ,

0 0 0

0 0 0
() 1

0 0 0

0 0 0 1

x

y
x y z

z

S S

β
β

β β β
β

 
 
 = =  
 
  

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 62

■ 7.3 Rotation
• We first look at rotation with a fixed point at the

origin.
– We can find the matrices for rotation about the

individual axes directly from the results of the 2D
rotation developed earlier.

– Thus,

• x’=x cos θ - y sin θ
• y’=x sin θ + y cos θ
• z’ = z
• of p’ = Rzp cos sin 0 0

sin cos 0 0
()

0 0 1 0

0 0 0 1

z zR R

θ θ
θ θ

θ

− 
 
 = =
 
 
  

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 63

• We can derive the matrices for rotation about
the x and y axes through an identical argument.

– And we can come up with:

1 0 0 0

0 cos sin 0
()

0 sin cos 0

0 0 0 1

x xR R
θ θ

θ
θ θ

 
 − = =
 
 
  

cos 0 sin 0

0 1 0 0
()

sin 0 cos 0

0 0 0 1

y yR R

θ θ

θ
θ θ

 
 
 = =
 −
 
  

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 64

■ 7.4 Shear
• Although we can construct any affine

transformation from a sequence of rotations,
translations, and scaling, there is one more
affine transformation that is of such importance
that we regard it as a basic type, rather than
deriving it from others.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 65

• Using simple trigonometry, we can see that
each shear is characterized by a single θ

• The equation for this shear is:
– x’= x + y cot θ, y’= y, z’= z

• Leading to the shear matrix :
1 cot 0 0

0 1 0 0
()

0 0 1 0

0 0 0 1

xH

θ

θ

 
 
 =
 
 
  

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 66

8. Concatenation of
Transformations

- In this section, we create examples of
affine transformations by multiplying
together, or concatenating, sequences of
basic transformations that we just
introduced.

• This approach fits well with our pipeline
architectures for implementing graphics
systems.

- -

- -12

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 67

■ 8.1 Rotation About a Fixed Point
• In order to do this:

• You do this:

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 68

■ 8.2 General Rotation
• An arbitrary rotation

about the origin can be
composed of three
successive rotations
about the tree axes.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 69

■ 8.3 The Instance
Transformation

• Objects are usually defined in
their own frames, with the origin
at the center of mass, and the
sides aligned with the axes.

• The instance transformation is
applied as follows:

– First we scale
– Then we orient it with a rotation

matrix
– Finally we translate it to the desired

orientation.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 70

■ 8.4 Rotation About an Arbitrary Axis
• In order to do this:

• We move the fixed point to the origin

• Do the rotations

• Translate back

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 71

9. OpenGL Transformation
Matrices

- In OpenGL there are three matrices that
are part of the state.

• We shall use only the model-view matrix in this
chapter.

• All three can be manipulated by a common set
of functions,

• And we use glMatrixMode to select the matrix
to which the operations apply.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 72

■ 9.1 The Current Transformation Matrix
• This is the matrix that is applied to any vertex

that is defined subsequent to its setting.
• If we change the CTM we change the state of

the system.
• The CTM is part of the pipeline

– Thus, if p is a vertex, the pipeline produces Cp

• The functions that alter the CTM are:
– Initialization (C ← I)
– Post-Multiplication (C ← CT)

- -

- -13

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 73

■ 9.2 Rotation, Translation, and Scaling
• In OpenGL,

– the matrix that is applied to all primitives is the
product of the model-view matrix (GL_MODELVIEW)
and the projection matrix (GL_PROJECTION)

– We can think of the CTM as the product of these two.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 74

• We can load a matrix with
– glLoadMatrixf(pointer_to_matrix);

• or set it to the identity with
– glLoadIdentity();

• Rotation, translation, and scaling are provided
through three functions:

– glRotate(angle, vx, vy, vz);
• angle is in degrees

• vx, vy, and vz are the components of a vector
about which we wish to rotate.

– glTranslate(dx, dy, dz);
– glScale(sx, sy, sz);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 75

■ 9.3 Rotation About a Fixed Point in
OpenGL

• In Section 4.8 we showed that we can perform
a rotation about a fixed point other than the
origin.

– (translate, rotate, and translate back)
– Here is how you do it in OpenGL

• glMatrixMode(GL_MODELVIEW);

• glLoadIdentity();
• glTranslatef(4.0, 5.0, 6.0);
• glRotatef(45.0, 1.0, 2.0, 3.0);
• glTranslatef(-4.0, -5.0, -6.0);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 76

■ 9.4 Order of Transformations
• You might be bothered by the apparent

reversal of the function calls.

• The rule in OpenGL is this:
– The transformation specified most recently is the one

applied first.

• C ← I
• C ← CT
• C ← CR
• C ← CT

– each vertex that is specified after the model-view
matrix has been set will be multiplied by C thus
forming the new vertex

• q = Cp

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 77

■ 9.5 Spinning of the Cube

- void display(void)
- {

- glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
- glLoadIdentity();
- glRotatef(theta[0], 1.0, 0.0, 0.0);
- glRotatef(theta[1], 0.0, 1.0, 0.0);

- glRotatef(theta[2], 0.0, 0.0, 1.0);
- colorcube();
- glutSwapBuffers();

- }

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 78

- void mouse(int btn, int state, int x, int y)
- {
- if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

- axis = 0;
- if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
- axis = 1;
- if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

- axis = 2;
- }

- -

- -14

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 79

- void spinCube()
- {
- theta[axis] += 2.0;

- if (theta[axis] > 360.0) theta[axis] -= 360.0’
- glutPostRedisplay();
- }

- void mkey(char key, int mousex, int mousey)
- {
- if(key==‘q’ || key==‘Q’)
- exit();

- }

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 80

■ 9.6 Loading, Pushing, and Popping
Matrices

• For most purposes, we can use rotation,
translation , and scaling to form a desired
transformation matrix.

• In some circumstances, however, such as
forming a shear matrix, it is easier to set up the
matrix directly.

– glLoadMatrixf(myarray)

• We can also multiply on the right of the current
matrix by using

– glMultMatrixf(myarray);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 81

• Sometimes we want to perform a
transformation and then return to the same
state as before its execution.

• We can push the current transformation matrix
on a stack and recover it later.

• Thus we often see the sequence
– glPushMatrix();
– glTransletef(. . .);
– glRotatef(. . .);

– glScalef(. . .);
– // draw object here
– glPopMatrix();

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 82

11. Summary

- In this chapter, we have presented two different-but
ultimately complementary-points of view regarding the
mathematics of Computer Graphics.

• One is the mathematical abstraction of the objects with
which we work in computer graphics is necessary if we
are to understand the operations that we carry out in our
programs

• The other is that transformations (and homogeneous
coordinates) are the basis for implementations of
graphics systems

- Finally we provided the set of affine transformations
supported by OpenGL, and discussed ways that we could
concatenate them to provide all affine transformations.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 83

12. Suggested Readings

• Homogeneous coordinates arose in Geometry(51) and
were alter discovered by the graphics community(81)

– Their use in hardware started with the SGI Geometry
Engine (82)

– Modern hardware architectures use Application Specific
Integrated Circuits (ASIC’s) that include homogeneous
coordinate transformations

• Quaternions were introduced to computer graphics by
Shoemaker(85) for use in animation

• Software tools such as Mathematica(91) and Matlab(95)
are excellent aids for learning to manipulate
transformation matrices

CS 480/680 Chapter 4 -- Geometric Objects and Transformations 84

Exercises -- Due next Monday

- 4.5
- 4.8

- 4.13

- 4.17

