
- -

- -1

Viewing

Chapter 5

CS 480/680 Chapter 5 -- Viewing 2

■ Introduction:
- We have completed our discussion of the first half

of the synthetic camera model
• specifying objects in three dimensions

- We now investigate the multitude of ways in which
we can describe our virtual camera.

• First, we look at the types of views we can create,
and why we need more than one type of view.

• Then we examine how an application viewer can
create a particular view in within OpenGL.

CS 480/680 Chapter 5 -- Viewing 3

1. Classical Computer Viewing

- Before looking at the interface between computer
graphics systems and application programmers for
3D viewing, we take a slight diversion to consider
classical viewing.

• There are two reasons to do this
– First, many jobs that were formerly done by hand

drawing - such as animation in movies, architectural
rendering, .. Are now done routinely with the aid of
compute graphics.

• Practitioners of these fields need to produce
classical views.

- -

- -2

CS 480/680 Chapter 5 -- Viewing 4

– Second, the relationship between classical and
computer viewing shows many advantages of, and a
few difficulties with, the approach used by most APIs.

- When we introduced the synthetic camera model
in Chapter 1, we covered some elements:

• objects, viewers, projectors, and a projection plane

• The projectors meet at the center of projection
(COP)

– this corresponds to the center of the lens in the
camera, or in the eye

CS 480/680 Chapter 5 -- Viewing 5

• Both classical and computer graphics allow the
viewer to be an infinite distance from the objects

• Note, as we move the COP to infinity, the
projectors become parallel and the COP can be
replaced with a direction of projection (DOP)

CS 480/680 Chapter 5 -- Viewing 6

• Although computer graphics systems have two
fundamental types of viewing

– (parallel and perspective),

• classical graphics appears to permit a host of
different views ranging from:

– multiview orthographic projections, one- two- and
three-point perspectives

• This seeming discrepancy arises
– in classical graphics due to the desire to show a

specific relationship among an object, the viewer,
and the projection plane

– as opposed to the computer graphics approach of
complete independence of all specifications

- -

- -3

CS 480/680 Chapter 5 -- Viewing 7

■ 1.1 Classical Viewing
- When an architect draws an image of a building,

• they know which sides they wish to display,
• and thus where they should place the viewer

- Each classical view is determined by a specific
relationship between the objects and the viewer.

CS 480/680 Chapter 5 -- Viewing 8

■ 1.2 Orthographic Projections
• The classical Orthographic projection

• Multiview Orthographic projections

CS 480/680 Chapter 5 -- Viewing 9

■ 1.3 Axonometric Projections
- If we allow the projection plane to be at any angle

(not just parallel with a face of the object) we end
up with an axonometric view.

- -

- -4

CS 480/680 Chapter 5 -- Viewing 10

■ 1.4 Oblique Projections
- These are the most general parallel views

• projectors can make an arbitrary angle with the
projection plane.

CS 480/680 Chapter 5 -- Viewing 11

■ 1.5 Perspective Viewing
- All perspective views are characterized by

diminution of size.
• (the farther away, the smaller they are)

CS 480/680 Chapter 5 -- Viewing 12

2. Positioning of the Camera

- We can now return to 3D graphics from a
computer perspective

• We now examine the API that OpenGL provides for
three-dimensional graphics, and show how other
APIs differ

• In this section we deal with positioning the camera.
• In Section 5.4 we discuss how we specify the

desired projection.

- -

- -5

CS 480/680 Chapter 5 -- Viewing 13

- In OpenGL, the model-view and projection
matrices are concatenated together to form the
matrix that applies to geometric entities such as
vertices.

• We have seen how to use the model-view matrix
– to position objects in space.

• The other is to convert from the reference frame
used for modeling to the frame of the camera

CS 480/680 Chapter 5 -- Viewing 14

■ 2.1 Positioning of the Camera Frame
- Initially the camera is at the origin

- Consider this sequence

CS 480/680 Chapter 5 -- Viewing 15

- At any given time, the state of the model-view
matrix encapsulates the relation between the
camera frame and the world frame.

- Although combining the modeling and viewing
transformations into a single matrix may initially
cause confusion, on closer examination this
approach is a good one.

- The obvious next problems are how we specify
the desired position of the camera and how we
implement camera positioning in OpenGL

- -

- -6

CS 480/680 Chapter 5 -- Viewing 16

- Here, we find it convenient to think in terms of
moving the default camera relative tot he world
frame.

- We will outline three approaches to this.

- The First Approach:
• Specify the position indirectly by applying a

sequence of rotations and translations to the model-
view matrix

• This is a direct application of the instance
transformations we presented in Chapter 4

CS 480/680 Chapter 5 -- Viewing 17

• We must be careful for two reasons:
– First, we usually want to define the camera before

we position the objects in the scene.
– Second, transformations on the camera may appear

to be backward from what we might expect.

– glMatrixMode(GL_MODELVIEW);
– glLoadIdentity();

– glTranslatef(0.0, 0.0, -d);
– glRotatef(-90.0, 0.0, 1.0, 0.0)

CS 480/680 Chapter 5 -- Viewing 18

■ 2.2 Two Viewing APIs
- We can take a different approach to positioning

the camera -- an approach used by PHIGS, ...
• We describe the camera’s position and orientation

in the world frame
– It’s desired location is centered at the view-reference

point (VRP)

– It’s orientation is specified with the view-plane normal
(VPN) and the view-up vector (VUP)

- -

- -7

CS 480/680 Chapter 5 -- Viewing 19

■ 2.3 The Look-At Function
- The use if the VRP, VPN, and VUP is but one way

to provide an API for specifying the position of a
camera.

• In many situations, a more direct method is
appropriate.

• gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz);

CS 480/680 Chapter 5 -- Viewing 20

■ 2.4 Other Viewing APIs
- In many applications, neither of the viewing

interfaces that we have presented is appropriate.

• Consider a flight simulator:
– The pilot worries about roll, pitch, and yaw

CS 480/680 Chapter 5 -- Viewing 21

- Viewing in many applications is most naturally
specified in polar coordinates -- rather than
rectilinear coordinates.

• Applications involving objects that rotate about
other objects fit this category.

- -

- -8

CS 480/680 Chapter 5 -- Viewing 22

3. Simple Projections

- With a real camera, once we position it, we still
must select a lens.

• In computer graphics we select the type of lens and
the size of the film by selecting the type of
projection and the viewing parameters.

- Most APIs distinguish between parallel and
perspective views by providing different functions
for the two cases.

• In OpenGL we can set the projection matrix with a
glLoadMatrix function, or we can other functions for
the most common viewing conditions

CS 480/680 Chapter 5 -- Viewing 23

■ 3.1 Perspective Projections
- Suppose that we are in the camera frame with the

camera located at the origin pointed in the
negative z direction.

CS 480/680 Chapter 5 -- Viewing 24

- As we saw in Chapter 2, we can place the
projection plane in front of the center of projection.
If we do so, we get the following views:

- -

- -9

CS 480/680 Chapter 5 -- Viewing 25

■ 3.2 Orthogonal Projections
- Orthogonal or orthographic projections are a

special case of parallel projections, in which the
projectors are perpendicular to the view of the
plane.

CS 480/680 Chapter 5 -- Viewing 26

4. Projections in OpenGL

- The projections we just developed did not take
into account the properties of the camera:

• the focal length of its lens,
• the size of the film plane

- View Volume

CS 480/680 Chapter 5 -- Viewing 27

- Most graphics APIs define clipping parameters
through the specification of a projection.

- The resulting view volume is a frustum -- which is
a truncated pyramid.

- -

- -10

CS 480/680 Chapter 5 -- Viewing 28

■ 4.1 Perspectives in OpenGL
- In OpenGL we have two functions for specifying

perspective views and one for specifying parallel
views.

- We can specify our camera view by:
• glFrustrum(xmin, xmax, ymin, ymax, near, far)

CS 480/680 Chapter 5 -- Viewing 29

- Because the projection matrix determined by
these specifications multiplies the present matrix,
we must first select the matrix mode.

-
• A typical sequence is

– glMatrixMode(GL_PROJECTION);
– glLoadIdentity();
– glFrustrum(xmin, xmax, ymin, ymax, near, far);

CS 480/680 Chapter 5 -- Viewing 30

• In many applications, it is natural to specify the
angle or field of view

• gluPerspective(fovy, aspect, near, far);

- -

- -11

CS 480/680 Chapter 5 -- Viewing 31

■ 4.2 Parallel Viewing in OpenGL
- The only parallel-viewing function provided by

OpenGL is the orthographic viewing function
• glOrtho(xmin, xmax, ymin, ymax, near, far)

CS 480/680 Chapter 5 -- Viewing 32

5. Hidden-Surface Removal

- Hidden surface removal algorithms can be divided
into two broad classes:

• Object-space algorithms
– attempt to order the surfaces of the objects in the

scene such that drawing surfaces in a particular
order provides the correct image.

• Image-space algorithms
– work as part of the projection process and seek to

determine the relationship among object points on
each projector

– z-buffer fits into this category.

CS 480/680 Chapter 5 -- Viewing 33

- The major advantage of z-buffer is
• that its worst case complexity is proportional to the

number of polygons.
• It can be implemented with a small number of

additional calculations over what we have to do
anyway.

• Typically you use these functions:
– glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |

GLUT_DEPTH);
– glEnable(GL_DEPTH_TEST);

– glClear(GL_DEPTH_BUFFER_BIT);

- -

- -12

CS 480/680 Chapter 5 -- Viewing 34

6. Walking Through a Scene

- Let us modify the version of our color-cube
program from Chapter 4

• Old Version:
– the cube rotated about the origin.
– Orthographic projection

• In this version
– perspective projection
– allow the camera to move.

CS 480/680 Chapter 5 -- Viewing 35

• void keys(unsigned char key, int x, int y)
• {
• if(key == ‘x’) viewer[0] -= 1.0;

• if(key == ‘X’) viewer[0] += 1.0;
• if(key == ‘y’) viewer[1] -= 1.0;
• if(key == ‘Y’) viewer[1] += 1.0;
• if(key == ‘z’) viewer[2] -= 1.0;

• if(key == ‘Z’) viewer[2] += 1.0;
• }

CS 480/680 Chapter 5 -- Viewing 36

■ void display(void)

■ {

■ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

■ glLoadIdentity();

■ gluLookAt(viewer[0], viewer[1], viewer[2],

■ 0.0, 0.0, 0.0, 0.0, 1.0 , 0.0);

■ glRotatef(theta[0], 1.0, 0.0, 0.0);

■ glRotatef(theta[1], 0.0, 1.0, 0.0);

■ glRotatef(theta[2], 0.0, 0.0, 1.0);

■ colorcube();

■ glFlush();

■ glutSwapBuffers();

■ }

- -

- -13

CS 480/680 Chapter 5 -- Viewing 37

■ void myReshape(int w, int h)

■ {

■ glViewport(0,0,w,h);

■ glLoadMatrix(GL_PROJECTION);

■ glLoadIdentity();

■ if(w<=h)

■ glFrustrum(-2.0, 2.0, -2.0 * (Glfloat)h/(Glfloat)w,

■ 2.0*(Glfloat(h)/(Glfloat)w, 2.0, 20.0);

■ else

■ glFrustrum(-2.0, 2.0, -2.0 * (Glfloat)w/(Glfloat)h,

■ 2.0*(Glfloat)w/(Glfloat)h, 2.0, 20.0);

■ glMatrixMode(GL_MODELVIEW);

■ }

CS 480/680 Chapter 5 -- Viewing 38

9. Projections and Shadows

- The creation of simple shadows is an interesting
application of projection matrices.

- This section covers how to re-project the polygon
casting the shadow onto the ground

• this re-projection is called a shadow polygon.

CS 480/680 Chapter 5 -- Viewing 39

- For a simple environment, this technique works
well, however, when objects cast shadows on
other objects, this method becomes impractical.

- In chapter 9 we address a more general shadow-
creation method that requires more work.

- -

- -14

CS 480/680 Chapter 5 -- Viewing 40

10. Summary

- We have come a long way.
• We can now write complete, nontrivial, three

dimensional applications.
• Probably the most instructive activity that you can

do now is to write such an application.

- In Chapter 6 we consider the interaction of light
with the materials that characterize our objects.

CS 480/680 Chapter 5 -- Viewing 41

11. Suggested Readings

• Foley (90), Watt (93) and Hern&Baker (94) derive
canonical projection transformations

– All follow the PHIGS orientation, so the API is slightly
different from the one used here.

• Most differ in whether they use column or row
matrices, in where the COP is located, and in
whether the projection is in the positive or
negative z direction.

• See the OpenGL Programmer’s Guide (97) for
further discussion of the use of the model-view and
projection matrices

CS 480/680 Chapter 5 -- Viewing 42

Exercises -- Due next class

