
�

�

“main˙drv” — 2013/2/14 — 19:05 — page 1 — #1
�

�

�

�

�

�

UNCORRECTED
PROOF

Metadata of the chapter that will be visualized online

Book Title Handbook of Combinatorial Optimization
Chapter number 56
Book Copyright - Year 2013
Copyright Holder Springer Science+Business Media New York
Title Steiner Minimal Trees: An Introduction, Parallel Compu-

tation, and Future Work

Author Degree
Given Name Frederick C.
Particle
Family Name Harris
Suffix Jr.
Phone
Fax Fred.Harris@cse.unr.edu
Email

Affiliation Division
Organization Department of Computer Science &

Engineering, University of Nevada
City Reno
Postcode 89557
State NV
Country USA

Author Degree
Given Name Rakhi
Particle
Family Name Motwani
Suffix
Phone
Fax rakhi@cse.unr.edu
Email

Affiliation Division
Organization Department of Computer Science &

Engineering, University of Nevada
City Reno
Postcode 89557
State NV
Country USA

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 2 — #2
�

�

�

�

�

�

UNCORRECTED
PROOF

Abstract Given a set of N cities, construct a connected network which
has minimum length. The problem is simple enough, but
the catch is that you are allowed to add junctions in your
network. Therefore, the problem becomes how many extra
junctions should be added and where should they be placed
so as to minimize the overall network length. This intriguing
optimization problem is known as the Steiner minimal tree
(SMT) problem, where the junctions that are added to the
network are called Steiner points.
This chapter presents a brief overview of the problem, presents
an approximation algorithm which performs very well, then
reviews the computational algorithms implemented for this
problem. The foundation of this chapter is a parallel algorithm
for the generation of what Pawel Winter termed T list and
its implementation. This generation of T list is followed by
the extraction of the proper answer. When Winter developed
his algorithm, the time for extraction dominated the overall
computation time. After Cockayne and Hewgill’s work, the
time to generate T list dominated the overall computation time.
The parallel algorithms presented here were implemented in
a program called PARSTEINER94, and the results show that
the time to generate T list has now been cut by an order of
magnitude. So now the extraction time once again dominates
the overall computation time.
This chapter then concludes with the characterization of SMTs
for certain size grids. Beginning with the known characteriza-
tion of the SMT for a 2 � m grid, a grammar with rewrite rules
is presented for characterizations of SMTs for 3 � m, 4 � m,
5 � m, 6 � m, and 7 � m grids.

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 1 — #3
�

�

�

�

�

�

UNCORRECTED
PROOF

1

Steiner Minimal Trees: An Introduction,2

Parallel Computation, and Future Work3

Frederick C. Harris and Rakhi Motwani4

Contents5

1 Introduction. 26

2 The First Solution. 37

3 A Proposed Heuristic. 58

3.1 Background and Motivation. 59

3.2 Adding One Junction. 610

3.3 The Heuristic. 611

3.4 Results. 812

4 Problem Decomposition. 913

4.1 The Double Wedge Theorem. 1114

4.2 The Steiner Hull. 1215

4.3 The Steiner Hull Extension. 1316

5 Winter’s Sequential Algorithm. 1517

5.1 Overview and Significance. 1518

5.2 Winter’s Algorithm. 1519

5.3 Algorithm Enhancements. 1620

6 A Parallel Algorithm. 1721

6.1 An Introduction to Parallelism. 1722

6.2 Overview and Proper Structure. 1823

6.3 First Approach. 1824

6.4 Current Approach. 2025

7 Extraction of the Correct Answer. 2026

7.1 Introduction and Overview. 2027

7.2 Incompatibility Matrix. 2128

7.3 Decomposition. 2329

7.4 Forest Management. 2330

8 Computational Results. 2431

8.1 Previous Computation Times. 2432

8.2 The Implementation. 2533

8.3 Random Problems. 2734

8.4 Grids. 2935

F.C. Harris (�) • R. Motwani
Department of Computer Science & Engineering, University of Nevada, Reno, 89557, NV, USA
e-mail: Fred.Harris@cse.unr.edu; rakhi@cse.unr.edu

P.M. Pardalos, Ding-Zhu Du, R.L. Graham (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 56, © Springer Science+Business Media New York 2013

1

mailto:Fred.Harris@cse.unr.edu
rakhi@cse.unr.edu
fredh
Highlight
Please ad the Jr. to my name here.
It is on page 1.

Frederick C. Harris, Jr.

Thanks

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 2 — #4
�

�

�

�

�

�

UNCORRECTED
PROOF

2 F.C. Harris and R. Motwani

9 Future Work. 3836

9.1 Grids. 3837

9.2 Further Parallelization. 3938

9.3 Additional Problems. 4039

Recommended Reading. 4240

Abstract41

Given a set of N cities, construct a connected network which has minimum42

length. The problem is simple enough, but the catch is that you are allowed to43

add junctions in your network. Therefore, the problem becomes how many extra44

junctions should be added and where should they be placed so as to minimize45

the overall network length. This intriguing optimization problem is known as the46

Steiner minimal tree (SMT) problem, where the junctions that are added to the47

network are called Steiner points.48

This chapter presents a brief overview of the problem, presents an approx-49

imation algorithm which performs very well, then reviews the computational50

algorithms implemented for this problem. The foundation of this chapter is a51

parallel algorithm for the generation of what Pawel Winter termed T list and52

its implementation. This generation of T list is followed by the extraction of53

the proper answer. When Winter developed his algorithm, the time for extraction54

dominated the overall computation time. After Cockayne and Hewgill’s work, the55

time to generate T list dominated the overall computation time. The parallel algo-56

rithms presented here were implemented in a program called PARSTEINER94,57

and the results show that the time to generate T list has now been cut by an58

order of magnitude. So now the extraction time once again dominates the overall59

computation time.60

This chapter then concludes with the characterization of SMTs for certain size61

grids. Beginning with the known characterization of the SMT for a 2 � m grid, a62

grammar with rewrite rules is presented for characterizations of SMTs for 3 � m,63

4 � m, 5 � m, 6 � m, and 7 � m grids.64

1 Introduction65

Minimizing a network’s length is one of the oldest optimization problems in66

mathematics, and, consequently, it has been worked on by many of the leading67

mathematicians in history. In the mid-seventeenth century a simple problem was68

posed: Find the point P that minimizes the sum of the distances from P to each of69

three given points in the plane. Solutions to this problem were derived independently70

by Fermat, Torricelli, and Cavalieri. They all deduced that either P is inside the71

triangle formed by the given points and that the angles at P formed by the lines72

joining P to the three points are all 120ı or P is one of the three vertices and the73

angle at P formed by the lines joining P to the other two points is greater than or74

equal to 120ı.75

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 3 — #5
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3

In the nineteenth century a mathematician at the University of Berlin, named76

Jakob Steiner, studied this problem and generalized it to include an arbitrarily large77

set of points in the plane. This generalization created a star when P was connected to78

all the given points in the plane and is a geometric approach to the two-dimensional79

center of mass problem.80

In 1934 Jarnı́k and Kössler generalized the network minimization problem even81

further [41]: Given n points in the plane, find the shortest possible connected82

network containing these points. This generalized problem, however, did not83

become popular until the book, What is Mathematics, by Courant and Robbins [16],84

appeared in 1941. Courant and Robbins linked the name Steiner with this form of85

the problem proposed by Jarnı́k and Kössler, and it became known as the Steiner86

minimal tree problem. The general solution to this problem allows multiple points87

to be added, each of which is called a Steiner point, creating a tree instead of a star.88

Much is known about the exact solution to the Steiner minimal tree problem.89

Those who wish to learn about some of the spin-off problems are invited to read90

the introductory article by Bern and Graham [5], the excellent survey paper on this91

problem by Hwang and Richards [37], or the volume in The Annals of Discrete92

Mathematics devoted completely to Steiner tree problems [38]. Some of the basic93

pieces of information about the Steiner minimal tree problem that can be gleaned94

from these articles are (a) the fact that all of the original n points will be of degree 1,95

2, or 3, (b) the Steiner points are all of degree 3, (c) any two edges meet at an angle96

of at least 120ı in the Steiner minimal tree, and (d) at most n � 2 Steiner points will97

be added to the network.98

This chapter concentrates on the Steiner minimal tree problem, henceforth99

referred to as the SMT problem. Several algorithms for calculating Steiner minimal100

trees are presented, including the first parallel algorithm for doing so. Several101

implementation issues are discussed, some new results are presented, and several102

ideas for future work are proposed.103

Section 2 reviews the first fundamental algorithm for calculating SMTs. Section 3104

presents a proposed heuristic for SMTs. In Sect.4 problem decomposition for SMTs105

is outlined. Section 5 presents Winter’s sequential algorithm which has been the106

basis for most computerized calculation of SMTs to the present day. Section 6107

presents a parallel algorithm for SMTs. Extraction of the correct answer is discussed108

in Sect. 7. Computational Results are presented in Sect. 8 and Future Work and open109

problems are presented in Sect. 9.110

2 The First Solution111

A typical problem-solving approach is to begin with the simple cases and expand112

to a general solution. As was seen in Sect. 1, the trivial three point problem had113

already been solved in the 1600s, so all that remained was the work toward a general114

solution. As with many interesting problems, this is harder than it appears on the115

surface.116

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 4 — #6
�

�

�

�

�

�

UNCORRECTED
PROOF

4 F.C. Harris and R. Motwani

CA

X

B

P

Fig. 1 AP + CP = PX

The method proposed by the mathematicians of the mid-seventeenth century for117

the three-point problem is illustrated in Fig. 1. This method stated that in order118

to calculate the Steiner point given points A, B , and C , you first construct an119

equilateral triangle .ACX/ using the longest edge between two of the points .AC /120

such that the third .B/ lies outside the triangle. A circle is circumscribed around the121

triangle, and a line is constructed from the third point .B/ to the far vertex of the122

triangle .X/. The location of the Steiner point .P / is the intersection of this line123

.BX/ with the circle.124

The next logical extension of the problem, going to four points, is attributed to125

Gauss. His son, who was a railroad engineer, was apparently designing the layout126

for tracks between four major cities in Germany and was trying to minimize the127

length of these tracks. It is interesting to note at this point that a general solution128

to the SMT problem has recently been uncovered in the archives of a school in129

Germany (Graham, Private Communication).130

For the next 30 years after Kössler and Jarnı́k presented the general form of the131

SMT problem, only heuristics were known to exist. The heuristics were typically132

based upon the minimum length spanning tree (MST), which is a tree that spans133

or connects all vertices whose sum of the edge lengths is as small as possible, and134

tried in various ways to join three vertices with a Steiner point. In 1968 Gilbert and135

Pollak [26] linked the length of the SMT to the length of an MST. It was already136

known that the length of an MST is an upper bound for the length of an SMT, but137

their conjecture stated that the length of an SMT would never be any shorter than138 p
3

2
times the length of an MST. This conjecture was recently proved [17] and has139

led to the MST being the starting point for most of the heuristics that have been140

proposed in the last 20 years including a recent one that achieves some very good141

results [29].142

fredh
Sticky Note
I have a question regarding figure placement. Sometimes they are centered and sometimes they are on the right margin. ???

Fig 1 is right margin.
Fig 2 is centered.

Fig 9 and 10 are on the same page and each is different.

My question is what are the rules for this? I am unable to guess them from the manuscript.

Also Fig 25 has the caption at the top of the fig and Fig 26 it is at the bottom (and they are on the same page)

Should I be noting ALL of these?

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 5 — #7
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 5

In 1961 Melzak developed the first known algorithm for calculating an SMT [44].143

Melzak’s algorithm was geometric in nature and was based upon some simple144

extensions to Fig. 1. The insight that Melzak offered was the fact that you can145

reduce an n point problem to a set of n � 1 point problems. This reduction in size is146

accomplished by taking every pair of points, A and C in our example; calculating147

where the two possible points, X1 and X2, would be that form an equilateral triangle148

with them; and creating two smaller problems, one where X1 replaces A and C149

and the other where X2 replaces A and C . Both Melzak and Cockayne pointed150

out however that some of these subproblems are invalid. Melzak’s algorithm can151

then be run on the two smaller problems. This recursion, based upon replacing152

two points with one point, finally terminates when you reduce the problem from153

three to two vertices. At this termination the length of the tree will be the length154

of the line segment connecting the final two points. This is due to the fact that155

BP C AP C CP D BP C PX . This is straightforward to prove using the law of156

cosines, for when P is on the circle, †APX D †CPX D 60ı. This allows the157

calculation of the last Steiner point (P) and allows you to back up the recursive call158

stack to calculate where each Steiner point in that particular tree is located.159

This reduction is important in the calculation of an SMT, but the algorithm still160

has exponential order, since it requires looking at every possible reduction of a pair161

of points to a single point. The recurrence relation for an n-point problem is stated162

quite simply in the following formula:163

T .n/ D 2 �
�

n

2

�
� T .n � 1/:164

This yields what is obviously a non-polynomial time algorithm. In fact Garey,165

Graham, and Johnson [18] have shown that the Steiner minimal tree problem is166

NP-Hard (NP-Complete if the distances are rounded up to discrete values).167

In 1967, just a few years after Melzak’s paper, Cockayne [11] clarified some168

of the details from Melzak’s proof. This clarified algorithm proved to be the basis169

for the first computer program to calculate SMTs. The program was developed by170

Cockayne and Schiller [15] and could compute an SMT for any placement of up to171

seven vertices.172

3 A Proposed Heuristic173

3.1 Background and Motivation174

By exploring a structural similarity between stochastic Petri nets (see [45, 49])175

and Hopfield neural nets (see [27, 35]), Geist was able to propose and take part176

in the development of a new computational approach for attacking large, graph-177

based optimization problems. Successful applications of this mechanism include178

I/O subsystem performance enhancement through disk cylinder remapping [23,24],179

file assignment in a distributed network to reduce disk access conflict [22], and new180

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 6 — #8
�

�

�

�

�

�

UNCORRECTED
PROOF

6 F.C. Harris and R. Motwani

computer graphics techniques for digital halftoning [21] and color quantization [20].181

The mechanism is based on maximum-entropy Gibbs measures, which is described182

in Reynold’s dissertation [53], and provides a natural equivalence between Hopfield183

nets and the simulated annealing paradigm. This similarity allows you to select the184

method that best matches the problem at hand. For the SMT problem, the first author185

implemented the simulated annealing approach [29].186

Simulated annealing [42] is a probabilistic algorithm that has been applied187

to many optimization problems in which the set of feasible solutions is so188

large that an exhaustive search for an optimum solution is out of the question.189

Although simulated annealing does not necessarily provide an optimum solution,190

it usually provides a good solution in a user-selected amount of time. Hwang and191

Richards [37] have shown that the optimal placement of s Steiner points to n original192

vertices yields a feasible solution space of the size193

2�n

�
n

s C 2

�
.n � s � 2/Š

sŠ
194

provided that none of the original points have degree 3 in the SMT. If the degree195

restriction is removed, they showed that the number is even larger. The SMT196

problem is therefore a good candidate for this approach.197

3.2 Adding One Junction198

Georgakopoulos and Papadimitriou [25] have provided an O.n2/ solution to the199

1-Steiner problem, wherein exactly one Steiner point is added to the original set of200

points. Since at most n � 2 Steiner points are needed in an SMT solution, repeated201

application of the algorithm offers a “greedy” O.n3/ approach. Using their method,202

the first Steiner point is selected by partitioning the plane into oriented Dirichlet203

cells, which they describe in detail. Since these cells do not need to be discarded204

and recalculated for each addition, subsequent additions can be accomplished in205

linear time. Deletion of a candidate Steiner point requires regeneration of the MST,206

which Shamos showed can be accomplished in O.n log n/ time if the points are207

in the plane [50], followed by the cost for a first addition (O.n2/). This approach208

can be regarded as a natural starting point for simulated annealing by adding and209

deleting different Steiner points.210

3.3 The Heuristic211

The Georgakopoulos and Papadimitriou 1-Steiner algorithm and the Shamos MST212

algorithm are both difficult to implement. As a result, Harris chose to investigate the213

potential effectiveness of this annealing algorithm using a more direct, but slightly214

more expensiveO.n3/ approach. As previously noted, all Steiner points have degree215

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 7 — #9
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 7

3 with edges meeting in angles of 120ı. He considered all
�

n
3

�
triples where the216

largest angle is less than 120ı, computed the Steiner point for each (a simple217

geometric construction), selected that Steiner point giving greatest reduction, or218

least increase in the length of the modified tree (increases are allowed since the219

annealing algorithm may go uphill), and updated the MST accordingly. Again,220

only the first addition requires this (now O.n3/) step. He used the straightforward221

O.n2/ Prim’s algorithm to generate the MST initially and after each deletion of a222

Steiner point.223

The annealing algorithm can be described as a nondeterministic walk on a224

surface. The points on the surface correspond to the lengths of all feasible solutions,225

where two solutions are adjacent if they can be reached through the addition or226

deletion of one Steiner point. The probability of going uphill on this surface is higher227

when the temperature is higher but decreases as the temperature cools. The rate of228

this cooling typically will determine how good your solution will be. The major229

portion of this algorithm is presented in Fig. 2. This nondeterministic walk, starting230

with the MST, has led to some very exciting results.231

#define EQUILIBRIUM ((accepts>=100 AND rejects>=200) OR
(accepts+rejects > 500))

#define FROZEN ((temperature < 0.5) OR ((temperature < 1.0)
AND (accepts==0)))

while(not(FROZEN)){
accepts = rejects = 0;
old energy = energy();
while(not(EQUILIBRIUM)){

operation = add or delete();
switch(operation){

case ADD:
ΔE = energy change from adding a node();
break;

case DELETE:
ΔE = energy change from deleting a node();
break;

}
if(rand(0,1) < emin{0.0,−ΔE/temperature}){

accepts++;
old energy = new energy;

}else {
/* put them back */
undo change(operation);
rejects++;

}
}
temperature = temperature*0.8;

}

Fig. 2 Simulated annealing algorithm

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 8 — #10
�

�

�

�

�

�

UNCORRECTED
PROOF

8 F.C. Harris and R. Motwani

3.4 Results232

Before discussion of large problems, a simple introduction into the results from233

a simple six-point problem is in order. The annealing algorithm is given the234

coordinates for six points: (0,0), (0,1), (2,0), (2,1), (4,0), and (4,1). The first step235

is to calculate the MST, which has a length of 7, as shown in Fig. 3. The output236

of the annealing algorithm for this simple problem is shown in Fig. 4. In this case237

the annealing algorithm calculates the exact SMT solution which has a length of238

6:616994.239

Harris proposed as a measure of accuracy the percentage of the difference240

between the length of the MST and the exact SMT solution that the annealing241

algorithm achieves. This is a new measure which has not been discussed (or used)242

because exact solutions have not been calculated for anything but the most simple243

layouts of points. For the six-point problem discussed above, this percentage is244

100:0 % (the exact solution is obtained).245

After communicating with Cockayne, data sets were obtained for exact solutions246

to randomly generated 100-point problems that were developed for [14]. This allows247

us to use the measure of accuracy previously described. Results for some of these248

data sets provided by Cockayne are shown in Table 1.249

An interesting aspect of the annealing algorithm that cannot be shown in the250

table is the comparison of execution times with Cockayne’s program. Whereas251

Cockayne mentioned that his results had an execution cutoff of 12 h, these results252

were obtained in less than 1 h. The graphical output for the first line of the table,253

(0,0) (0,1) (2,0) (2,1) (4,0) (4,1)
Fig. 3 Spanning tree for
6-point problem

Fig. 4 6-point solution

Table 1 Results from 100-point problems

t5.1 Exact solution Spanning tree Simulated annealing Percent covered (%)

t5.2 6.255463 6.448690 6.261797 96.39
t5.3 6.759661 6.935189 6.763495 98.29
t5.4 6.667217 6.923836 6.675194 96.89
t5.5 6.719102 6.921413 6.721283 99.01
t5.6 6.759659 6.935187 6.763493 98.29
t5.7 6.285690 6.484320 6.289342 98.48

fredh
Sticky Note
figure not centered

fredh
Sticky Note
figure not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 9 — #11
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 9

Fig. 5 Spanning tree

which reaches over 96 % of the optimal value, appears as follows: The data points254

and the MST are shown in Fig. 5, the simulated annealing result is in Fig. 6, and255

the exact SMT solution is in Fig. 7. The solution presented here is obtained in256

less than 1
10

of the time with less than 4 % of the possible range not covered. This257

indicates that one could hope to extend our annealing algorithm to much larger258

problems, perhaps as large as 1; 000 points. If you were to extend this approach to259

larger problems, then you would definitely need to implement the Georgakopoulos–260

Papadimitriou 1-Steiner algorithm and the Shamos MST algorithm.261

4 Problem Decomposition262

After the early work by Melzak [44], many people began to work on the Steiner263

minimal tree problem. The first major effort was to find some kind of geometric264

bound for the problem. In 1968 Gilbert and Pollak [26] showed that the SMT for a265

set of points, S, must lie within the convex hull of S. This bound has since served266

as the starting point of every bounds enhancement for SMTs.267

As a brief review, the convex hull is defined as follows: Given a set of points S268

in the plane, the convex hull is the convex polygon of the smallest area containing269

all the points of S. A polygon is defined to be convex if a line segment connecting270

any two points inside the polygon lies entirely within the polygon. An example of271

the convex hull for a set of 100 randomly generated points is shown in Fig. 8.272

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 10 — #12
�

�

�

�

�

�

UNCORRECTED
PROOF

10 F.C. Harris and R. Motwani

Fig. 6 Simulated annealing solution

Fig. 7 Exact solution

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 11 — #13
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 11

Fig. 8 The convex hull for a random set of points

Shamos in his PhD thesis [54] proposed a divide and conquer algorithm which273

has served as the basis for many parallel algorithms calculating the convex hull. One274

of the first such approaches appeared in the PhD thesis by Chow [8]. This approach275

was refined and made to run in optimal O.log n/ time by Aggarwal et al. [1], and276

Attalah and Goodrich [2].277

The next major work on the SMT problem was in the area of problem decom-278

position. As with any non-polynomial algorithm, the most important theorems are279

those that say “If propertyP exists, then the problem may be split into the following280

sub-problems.” For the Steiner minimal tree problem, property P will probably be281

geometric in nature. Unfortunately, decomposition theorems have been few and far282

between for the SMT problem. In fact, at this writing there have been only three283

such theorems.284

4.1 The Double Wedge Theorem285

The first decomposition theorem, known as the Double Wedge Theorem, was286

proposed by Gilbert and Pollak [26]. This is illustrated in Fig. 9 and can be287

summarized quite simply as follows: If two lines intersect at point X and meet at288

120ı, they split the plane into two 120ı wedges and two 60ı wedges. If R1 and R2289

denote the two 60ı wedges and all the points of S are contained in R1

S
R2, then290

the problem can be decomposed. There are two cases to be considered. In case 1 X291

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 12 — #14
�

�

�

�

�

�

UNCORRECTED
PROOF

12 F.C. Harris and R. Motwani

R1 R260 60

120

120

X

Fig. 9 An illustration of the Double Wedge

Fig. 10 The Steiner hull
algorithm

The initial Steiner Polygon, P1, is the Convex Hull.
Repeat

Create Next Steiner Polygon Pi+1 from Pi by
1) find a set of points pqr ∈ S such that:

p and r are adjacent on Pi

pqr ≥ 120◦

∃ a point from S in the triangle pqr
2) remove the edge pr.
3) add edges pq and qr.

Until(Pi == Pi+1)
Steiner Hull = Pi

is not a point in S; therefore, the Steiner minimal tree for S consists of the SMT for292

R1, the SMT for R2, and the shortest edge connecting the two trees. In case 2 X is a293

point in S; therefore, the Steiner minimal tree for S is the SMT for R1 and the SMT294

for R2. Since X is in both R1 and R2, the two trees are connected.295

4.2 The Steiner Hull296

The next decomposition theorem is due to Cockayne [12] and is based upon what he297

termed the Steiner hull. The Steiner hull is defined as follows: Let P1 be the convex298

hull. PiC1 is constructed from Pi by finding an edge (p; r) of Pi that has a vertex299

(q) near it such that †pqr � 120ı, and there is not a vertex inside the triangle pqr .300

The final polygon, Pi , that can be created in such a way is called the Steiner hull.301

The algorithm for this construction is shown in Fig. 10. The Steiner hull for the 100302

points shown in Fig. 8 is given in Fig. 11.303

After defining the Steiner hull, Cockayne showed that the SMT for S must lie304

within the Steiner hull of S. This presents us with the following decomposition: The305

Steiner hull can be thought of as an ordered sequence of points, fp1; p2; : : : ; png,306

where the hull is defined by the sequence of line segments, fp1p2; p2p3; : : : ; pnp1g.307

If there exists a point pi that occurs twice in the Steiner hull, then the problem can308

fredh
Sticky Note
figure not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 13 — #15
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 13

Fig. 11 The Steiner hull for a random set of 100 points

be decomposed at point pi . If a Steiner hull contains such a point, then the Steiner309

hull is referred to as degenerate. This decomposition is accomplished by showing310

that the Steiner hull splits S into two contained subsets, R1 and R2, where R1 is the311

set of points contained in the Steiner hull from the first time pi appears until the last312

time pi appears, and R2 is the set of points contained in the Steiner hull from the313

last time pi appears until the first time pi appears. With this decomposition it can314

be shown that S D R1

S
R2, and the SMT for S is the union of the SMT for R1 and315

the SMT for R2. This decomposition is illustrated in Fig. 12. Cockayne also proved316

that the Steiner hull decomposition includes every decomposition possible with the317

Double Wedge Theorem.318

In their work on 100-point problems, Cockayne and Hewgill [14] mention that319

approximately 15 % of the randomly generated 100-point problems have degenerate320

Steiner Hull’s. The Steiner hull shown in Fig. 11 is not degenerate, while that in321

Fig. 12 is.322

4.3 The Steiner Hull Extension323

The final decomposition belongs to Hwang et al. [39]. They proposed an extension324

to the Steiner hull as defined by Cockayne. Their extension is as follows:325

If there exist four points a; b; c, and d on a Steiner hull such that:326

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 14 — #16
�

�

�

�

�

�

UNCORRECTED
PROOF

14 F.C. Harris and R. Motwani

P

Fig. 12 An illustration of the
Steiner hull decomposition

O R1R2

a b

cd

Fig. 13 An illustration of the Steiner hull extension

1. a; b; c, and d form a convex quadrilateral327

2. There does not exist a point from S in the quadrilateral .a; b; c; d /328

3. †a � 120ı and †b � 120ı
329

4. The two diagonals (ac) and (bd) meet at O, and †bOa � †a C †b � 150ı, then330

the SMT for S is the union of the SMTs for R1 and R2 and the edge ab where331

R1 is the set of points contained in the Steiner hull from c to b with the edge bc332

and R2 is the set of points contained in the Steiner polygon from a to d with the333

edge ad . This decomposition is illustrated in Fig. 13.334

These three decomposition theorems were combined into a parallel algorithm for335

decomposition presented in [28].336

fredh
Sticky Note
figure not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 15 — #17
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 15

5 Winter’s Sequential Algorithm337

5.1 Overview and Significance338

The development of the first working implementation of Melzak’s algorithm sparked339

a move into the computerized arena for the calculation of SMTs. As we saw in340

Sect. 2, Cockayne and Schiller [15] had implemented Melzak’s algorithm and could341

calculate the SMT for all arrangements of 7 points. This was followed almost342

immediately by Boyce and Seery’s program which they called STEINER72 [6].343

Their work done at Bell Labs could calculate the SMT for all 10-point problems.344

They continued to work on the problem and in personal communication with345

Cockayne said they could solve 12-point problems with STEINER73. Yet even with346

quite a few people working on the problem, the number of points that any program347

could handle was still very small.348

As mentioned toward the end of Sect. 2, Melzak’s algorithm yields invalid349

answers and invalid tree structures for quite a few combinations of points. It350

was not until 1981 that anyone was able to characterize a few of these invalid351

tree structures. These characterizations were accomplished by Pawel Winter and352

were based upon several geometric constructions which enable one to eliminate353

many of the possible combinations previously generated. He implemented these354

improvements in a program called GeoSteiner [60]. In his work he was able to355

calculate in under 30 s SMTs for problems having up to 15 vertices and stated that356

“with further improvements, it is reasonable to assert that point sets of up to 30357

V-points could be solved in less than an hour [60].”358

5.2 Winter’s Algorithm359

Winter’s breakthrough was based upon two things: the use of extended binary trees360

and what he termed pushing. Winter proposed an extended binary tree as a means361

of constructing trees only once and easily identifying a full Steiner tree (FST: trees362

with n vertices and n � 2 Steiner points) on the same set of vertices readily.363

Pushing came from the geometric nature of the problem and is illustrated in364

Fig. 14. It was previously known that the Steiner point for a pair of points, a and b,365

would lie on the circle that circumscribed that pair and their equilateral third point.366

Winter set out to limit this region even further. This limitation was accomplished367

by placing a pair of points, a0 and b0, on the circle at a and b, respectively, and368

attempting to push them closer and closer together. In his work Winter proposed369

and proved various geometric properties that would allow you to push a0 toward b370

and b0 toward a. If the two points ever crossed, then it was impossible for the current371

branch of the sample space tree to contain a valid answer.372

Unfortunately, the description of Winter’s algorithm is not as clear as one would373

hope, since the presence of goto statements rapidly makes his program difficult374

to understand and almost impossible to modify. Winter’s goal is to build a list of375

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 16 — #18
�

�

�

�

�

�

UNCORRECTED
PROOF

16 F.C. Harris and R. Motwani

ba

 a�
b�

Fig. 14 An illustration of Winter’s pushing

FSTs which are candidates for inclusion in the final answer. This list, called T list,376

is primed with the edges of the MST, thereby guaranteeing that the length of the377

SMT does not exceed the length of the MST.378

The rest of the algorithm sets about to expand what Winter termed as Q list,379

which is a list of partial trees that the algorithm attempts to combine until no380

combinations are possible. Q list is primed with the original input points. The381

legality of a combination is determined in the construct procedure, which uses382

pushing to eliminate cases. While this combination proceeds, the algorithm also383

attempts to take newly created members of Q list and create valid FSTs out of them.384

These FSTs are then placed onto T list.385

This algorithm was a turning point in the calculation of SMTs. It sparked renewed386

interest into the calculation of SMTs in general. This renewed interest has produced387

new algorithms such as the negative edge algorithm [57] and the luminary algorithm388

[36]. Winter’s algorithm has also served as the foundation for most computerized389

computation for calculating SMTs and is the foundation for the parallel algorithm390

we present in Sect. 6.391

5.3 Algorithm Enhancements392

In 1996, Winter and Zachariasen presented GEOSTEINER96 [61, 62] an enhance-393

ment to their exact algorithm that strongly improved the pruning and concatenation394

techniques of the GEOSTEINER algorithm just presented. This new algorithm395

modified the pruning tests to exploit the geometry of the problem (wedge property,396

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 17 — #19
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 17

bottleneck Steiner distances) to yield effective and/or faster pruning of nonoptimal397

full Steiner trees (FSTs). Furthermore, efficient concatenation of FSTs was achieved398

by new and strong compatibility tests that utilize pairwise and subset compatibility399

along with very powerful preprocessing of surviving FSTs. GEOSTEINER96400

has been implemented in C++ on an HP9000 workstation and solves randomly401

generated problem instances with 100 terminals in less than 8 min and up to 140402

terminals within an hour. The hardest 100-terminal problem was solved in less403

than 29 min. Previously unsolved public library instances (OR-Library [3, 4]) have404

been solved by GEOSTEINER96 within 14 min. The authors point out that the405

concatenation of FSTs still remains the bottleneck of both GEOSTEINER96 and406

GEOSTEINER algorithms. However, the authors show that FSTs are generated 25407

times faster by GEOSTEINER96 than by EDSTEINER89.408

In their follow-up work [58], Winter and Zachariasen presented performance409

statistics for the exact SMT problem solved using the Euclidean FST generator410

from Winter and Zachariasen’s algorithm [61, 62] and the FST concatenator of411

Warme’s algorithm [59]. Optimal solutions have been obtained by this approach for412

problem instances of up to 2,000 terminals. Extensive computational experiences413

for randomly generated instances [100–500 terminals], public library instances414

(OR-Library [100–1,000 terminals] [3, 4], TSPLIB [198–7,397 terminals] [34]),415

and difficult instances with special structure have been shared in this work. The416

computational study has been conducted on an HP9000 workstation; the FST417

generator was implemented in C++ and the FST concatenator was implemented418

in C using CPLEX. Results indicate that (1) Warme’s FST concatenation solved419

by branch-and-cut is orders of magnitude faster than backtrack search or dynamic420

programming based FST concatenation algorithms and (2) the Euclidean FST421

generator is more effective on uniformly randomly generated problem instances than422

for structured real-world instances.423

6 A Parallel Algorithm424

6.1 An Introduction to Parallelism425

Parallel computation is allowing us to look at problems that have previously been426

impossible to calculate, as well as allowing us to calculate faster than ever before427

problems we have looked at for a long time. It is with this in mind that we begin to428

look at a parallel algorithm for the Steiner minimal tree problem.429

There have been volumes written on parallel computation and parallel algo-430

rithms; therefore, we will not rehash the material that has already been so excellently431

covered by many others more knowledgeable on the topic, but will refer the432

interested readers to various books currently available. For a thorough description433

of parallel algorithms, and the PRAM model, the reader is referred to the book by434

Joseph JáJá [40], and for a more practical approach to implementation on a parallel435

machine, the reader is referred to the book by Vipin Kumar et al. [43], the book by436

Michael Quinn [51], or the book by Justin Smith [55].437

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 18 — #20
�

�

�

�

�

�

UNCORRECTED
PROOF

18 F.C. Harris and R. Motwani

6.2 Overview and Proper Structure438

When attempting to construct a parallel algorithm for a problem, the sequential439

code for that problem is often the starting point. In examining sequential code,440

major levels of parallelism may become self-evident. Therefore, for this problem441

the first thing to do is to look at Winter’s algorithm and convert it into structured442

code without gotos. The initialization (step 1) does not change, and the translation443

of steps 2–7 appears in Fig. 15.444

Notice that the code in Fig. 15 lies within a for loop. In a first attempt to445

parallelize anything, you typically look at loops that can be split across multiple446

processors. Unfortunately, upon further inspection, the loop continues while p<q447

and, in the large if statement in the body of the loop, is the statement q++ (line 30).448

This means that the number of iterations is data dependent and is not fixed at the449

outset. This loop cannot be easily parallelized.450

Since the sequential version of the code does not lend itself to easy paralleliza-451

tion, the next thing to do is to back up and develop an understanding of how the452

algorithm works. The first thing that is obvious from the code is that you select a left453

subtree and then try to mate it with possible right subtrees. Upon further examination454

we come to the conclusion that a left tree will mate with all trees that are shorter455

than it and all trees of the same height that appear after it on Q list, but it will never456

mate with any tree that is taller.457

6.3 First Approach458

The description of this parallel algorithm is in a master–slave perspective. This459

perspective was taken due to the structure of most parallel architectures at the time460

of its development, as well as the fact that all nodes on the Q list need a sequencing461

number assigned to them. The master will therefore be responsible for numbering462

the nodes and maintaining the main Q list and T list.463

The description from the slave’s perspective is quite simple. A process is464

spawned off for each member of Q list that is a proper left subtree (Winter’s465

algorithm allows members of Q list that are not proper left subtrees). Each new466

process is then given all the current nodes on Q list. With this information the slave467

then can determine with which nodes its left subtree could mate. This mating creates468

new nodes that are sent back to the master, assigned a number, and added to the469

master’s Q list. The slave also attempts to create an FST out of the new Q list470

member, and if it is successful, this FST is sent to the master to be added to the471

T list. When a process runs out of Q list nodes to check, it sends a request for more472

nodes to the master.473

The master also has a simple job description. It has to start a process for each474

initial member of the Q list, send them all the current members of the Q list, and475

wait for their messages.476

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 19 — #21
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 19

/* Step 2 */
1 for(p=0; p<q; p++){
2 AP = A(p);
3 /* Step 3 */
4 for(r=0; ((H(p) > H(r)) AND (r!=q)); r++){
5 if((H(p) == H(r)) AND (r<p))
6 r = p;
7 if(Subset(V(r), AP)){
8 p star = p;
9 r star = r;
10 for(Label = PLUS; Label <= MINUS; Label++){
11 /* Step 4 */
12 AQ = A(q);
13 if(Construct(p star,r star,&(E(q)))){

;p=)q(L41
;r=)q(R51

;lebaL=)q(LBL61
;)p(FL=)q(FL71

;1+)p(H=)q(H81
/*tnereffidsieniltxen*/91

;))r(H,1-)p(niM(xam=)q(niM02
)0=!)p(psL(fi12

)p(psL=)q(psL22
esle32

)r(psL=)q(psL42
)0=!)r(psR(fi52

)r(psR=)q(psR62
esle72

)p(psR=)q(psR82
q92 star = q;

30 q++;
/*5petS*/13

reporP(fi23 to Add Tree to Tlist(q star)){
rof33 all(j in AP with Lf(R(q star)) < j){

;j=)t(tooRS43
q=)t(tooR53 star;

;++t63
37 }
38 }
39 }
40 /* Step 6 */
41 p star = r;
42 r star = p;
43 }
44 }
45 }
46 }

Fig. 15 The main loop properly structured

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 20 — #22
�

�

�

�

�

�

UNCORRECTED
PROOF

20 F.C. Harris and R. Motwani

This structure worked quite well for smaller problems (up to about 15 points), but477

for larger problems it reached a grinding halt quite rapidly. This was due to various478

reasons such as the fact that for each slave started the entire Q list had to be sent.479

This excessive message passing quickly bogged down the network. Secondly, in480

their work on 100-point problems, Cockayne and Hewgill [14] made the comment481

that T list has an average length of 220, but made no comment about the size of482

Q list, which is the number of slaves that would be started. From our work on 100483

point problems this number easily exceeds 1; 000 which means that over 1; 000484

processes are starting, each being sent the current Q list. From these few problems, it485

is quite easy to see that some major changes needed to be made in order to facilitate486

the calculation of SMTs for large problems.487

6.4 Current Approach488

The idea for a modification to this approach came from a paper by Quinn and489

Deo [52], on parallel algorithms for Branch-and-Bound problems. Their idea was to490

let the master have a list of work that needs to be done. Each slave is assigned to a491

processor. Each slave who requests work, is given some, and during its processing492

creates more work to be done. This new work is placed in the master’s work493

list, which is sorted in some fashion. When a slave runs out of work to do, it494

requests more from the master. They noted that this leaves some processors idle at495

times (particularly when the problem was starting and stopping), but this approach496

provides the best utilization if all branches are independent.497

This description almost perfectly matches the problem at hand. First, we will498

probably have a fixed number of processors which can be determined at runtime.499

Second, we have a list of work that needs to be done. The hard part is implementing500

a sorted work list in order to obtain a better utilization. This was implemented in501

what we term the Proc list, which is a list of the processes that either are currently502

running or have not yet started. This list is primed with the information about the503

initial members of Q list, and for every new node put on the Q list, a node which504

contains information about the Q list node is placed on the Proc list in a sorted505

order.506

The results for this approach are quite exciting, and the timings are discussed in507

Sect. 8.508

7 Extraction of the Correct Answer509

7.1 Introduction and Overview510

Once the T list discussed in Sect. 5 is formed, the next step is to extract the proper511

answer from it. Winter described this in step 7 of his algorithm. His description512

stated that unions of FSTs saved in T list were to be formed subject to constraints513

described in his paper. The shortest union is the SMT for the original points.514

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 21 — #23
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 21

Fig. 16 T list for a random set of points

The constraints he described were quite obvious considering the definition of an515

SMT. First, the answer had to cover all the original points. Second, the union of516

FSTs could not contain a cycle. Third, the answer is bounded in length by the length517

of the MST.518

This led Winter to implement a simple exhaustive search algorithm over the FSTs519

in T list. This approach yields a sample space of size O.2m/ (where m is the number520

of trees in T list) that has to be searched. This exponentiality is born out in his work521

where he stated that for problems with more than 15 points “the computation time522

needed to form the union of FSTs dominates the computation time needed for the523

construction of the FSTs [60].” An example of the input the last step of Winter’s524

algorithm receives (T list) is given in Fig. 16. The answer it extracts (the SMT) is525

shown in Fig. 17.526

7.2 Incompatibility Matrix527

Once Cockayne published the clarification of Melzak’s proof in 1967 [11] and528

Gilbert and Pollak published their paper giving an upper bound the SMT length in529

1968 [26], many people were attracted to this problem. From this time until Winter’s530

work was published in 1985 [60], quite a few papers were published dealing with531

various aspects of the SMT problem, but the attempt to computerize the solution532

of the SMT problem bogged down around 12 vertices. It wasn’t until Winter’s533

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 22 — #24
�

�

�

�

�

�

UNCORRECTED
PROOF

22 F.C. Harris and R. Motwani

Fig. 17 SMT extracted from T list for a random set of points

algorithm was published that the research community received the spark it needed to534

work on computerized computation of the SMT problem with renewed vigor. With535

the insight Winter provided into the problem, an attempt to computerize the solution536

of the SMT problem began anew.537

Enhancement of this algorithm was first attempted by Cockayne and Hewgill538

at the University of Victoria. For this implementation Cockayne and Hewgill539

spent most of their work on the back end of the problem, or the extraction from540

T list, and used Winter’s algorithm to generate T list. This work on the extraction541

focused on what they termed an incompatibility matrix. This matrix had one row542

and one column for each member of T list. The entries in this matrix were flags543

corresponding to one of three possibilities: compatible, incompatible, or don’t know.544

The rationale behind the construction of this matrix is the fact that it is faster to look545

up the value in a matrix than it is to check for the creation of cycles and improper546

angles during the union of FSTs.547

The first value calculations for this matrix were straightforward. If two trees548

do not have any points in common, then we don’t know if they are incompatible549

or not. If they have two or more points in common, then they form a cycle and550

are incompatible. If they have only one point in common and the angle at the551

intersection point is less than 120ı, then they are also incompatible. In all other552

cases they are compatible.553

This simple enhancement to the extraction process enabled Cockayne and554

Hewgill to solve all randomly generated problems of size up to 17 vertices in a555

little over 3 min [13].556

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 23 — #25
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 23

7.3 Decomposition557

The next focus of Cockayne and Hewgill’s work was in the area of the decomposi-558

tion of the problem. As was discussed earlier in Sect. 4, the best theorems for any559

problem, especially non-polynomial problems, are those of the form “If property P560

exists then the problem can be decomposed.” Since the formation of unions of FSTs561

is exponential in nature, any theorem of this type is important.562

Cockayne and Hewgill’s theorem states: “Let A1 and A2 be subsets of A563

satisfying (a) A1

S
A2 D A (b) jA1

T
A2j D 1 and (c) the leaf set of each FST in564

T list is entirely contained in A1 or A2. Then any SMT on A is the union of separate565

SMTs on A1 and A2 [13].” This means that if you break T list into biconnected566

components, the SMT will be the union of the SMTs on those components.567

Their next decomposition theorem allowed further improvements in the calcula-568

tion of SMTs. This theorem stated that if you had a component of T list left from569

the previous theorem and if the T list members of that component form a cycle, then570

it might be possible to break that cycle and apply the previous algorithm again. The571

cycle could be broken if there existed a vertex v whose removal would change that572

component from one biconnected component to more than one.573

With these two decomposition theorems, Cockayne and Hewgill were able to574

calculate the SMT for 79 of 100 randomly generated 30-point problems. The575

remaining 21 would not decompose into blocks of size 17 or smaller and thus would576

have taken too much computation time [13]. This calculation was implemented in577

the program they called EDSTEINER86.578

7.4 Forest Management579

Cockayne and Hewgill’s next work focused on improvements to the incompat-580

ibility matrix previously described and was implemented in a program called581

EDSTEINER89. Their goal was to reduce the number of don’t know’s in the matrix582

and possibly remove some FSTs from T list altogether.583

They proposed two refinements for calculating the entry into the incompatibility584

matrix and one Tree Deletion Theorem. The Tree Deletion Theorem stated that if585

there exists an FST in T list that is incompatible with all FSTs containing a certain586

point a, then the original FST can be deleted since at least one FST containing a587

will be in the SMT.588

This simple change allowed Cockayne and Hewgill to calculate the SMT for 77589

of 100 randomly generated 100-point problems [14]. The other 23 problems could590

not be calculated in less than 12 h and were therefore terminated. For those that did591

complete, the computation time to generate T list had become the dominate factor592

in the overall computation time.593

So the pendulum had swung back from the extraction of the correct answer from594

T list to the generation of T list dominating the computation time. In Sect. 8 we595

will look at the results of the parallel algorithm presented in Sect. 9 to see if the596

pendulum can be pushed back the other way one more time.597

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 24 — #26
�

�

�

�

�

�

UNCORRECTED
PROOF

24 F.C. Harris and R. Motwani

8 Computational Results598

8.1 Previous Computation Times599

Before presenting the results for the parallel algorithm presented in Sect. 6, it is600

worthwhile to review the computation times that have preceded this algorithm in601

the literature. The first algorithm for calculating FSTs was discussed in a paper by602

Cockayne [12] where he mentioned that preliminary results indicated his code could603

solve any problem up to 30 points that could be decomposed with the Steiner hull604

into regions of 6 points or less.605

As we saw in Sect. 2, the next computational results were presented by Cockayne606

and Schiller [15]. Their program, called STEINER, was written in FORTRAN on607

an IBM 360/50 at the University of Victoria. STEINER could calculate the SMT608

for any 7-point problem in less than 5 min of CPU time. When the problem size was609

increased to 8, it could solve them if 7 of the vertices were on the Steiner hull. When610

this condition held it could calculate the SMT in under 10 min, but if this condition611

did not hold it would take an unreasonable amount of time.612

Cockayne called STEINER a prototype for calculating SMTs and allowed Boyce613

and Serry of Bell Labs to obtain a copy of his code to improve the work. They614

improved the code, renamed it STEINER72, and were able to calculate the FST for615

all 9-point problems and most 10-point problems in a reasonable amount of time [6].616

Boyce and Serry continued their work and developed another version of the code617

that they thought could solve problems of size up to 12 points, but no computation618

times were given.619

The breakthrough we saw in Sect. 5 was by Pawel Winter. His program620

called GEOSTEINER [60] was written in SIMULA 67 on a UNIVAC-1100.621

GEOSTEINER could calculate SMTs for all randomly generated sets with 15 points622

in under 30 s. This improvement was put into focus when he mentioned that all623

previous implementations took more than an hour for nondegenerate problems of624

size 10 or more. In his work, Winter tried randomly generated 20-point problems625

but did not give results since some of them did not finish in his CPU time limit626

of 30 s. The only comment he made for problems bigger than size 15 was that the627

extraction discussed in Sect. 7 was dominating the overall computation time.628

The next major program, EDSTEINER86, was developed in FORTRAN on an629

IBM 4381 by Cockayne and Hewgill [13]. This implementation was based upon630

Winter’s results, but had enhancements in the extraction process. EDSTEINER86631

was able to calculate the FST for 79 out of 100 randomly generated 32-point632

problems. For these problems the CPU time for T list varied from 1 to 5 min, while633

for the 79 problems that finished the extraction time never exceeded 70 s.634

Cockayne and Hewgill subsequently improved their SMT program and renamed635

it EDSTEINER89 [14]. This improvement was completely focused on the extraction636

process. EDSTEINER89 was still written in FORTRAN, but was run on a SUN 3/60637

workstation. They randomly generated 200 32-point problems to solve and found638

that the generation of T list dominated the computation time for problems of this639

size. The average time for T list generation was 438 s, while the average time for640

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 25 — #27
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 25

Table 2 SMT programs,
authors, and resultst6.1 Program Author(s) Points

t6.2 STEINER Cockayne & Schiller 7
t6.3 Univ of Victoria
t6.4 STEINER72 Boyce & Serry 10
t6.5 ATT Bell Labs
t6.6 STEINER73 Boyce & Serry 12
t6.7 ATT Bell Labs
t6.8 GEOSTEINER Winter 15
t6.9 Univ of Copenhagen
t6.10 EDSTEINER86 Cockayne & Hewgill 30
t6.11 Univ of Victoria
t6.12 EDSTEINER89 Cockayne & Hewgill 100
t6.13 Univ of Victoria
t6.14 PARSTEINER94 Harris 100
t6.15 Univ of Nevada

forest management and extraction averaged only 43 s. They then focused on 100-641

point problems and set a CPU limit of 12 h. The average CPU time to generate642

T list was 209 min for these problems, but only 77 finished the extraction in the643

CPU time limit. These programs and their results are summarized in Table 2.644

8.2 The Implementation645

8.2.1 The Significance of the Implementation646

The parallel algorithm we presented has been implemented in a program called647

PARSTEINER94 [28, 31]. This implementation is only the second SMT program648

since Winter’s GEOSTEINER in 1981 and is the first parallel code. The major649

reason that the number of SMT programs is so small is due to the fact that any650

implementation is necessarily complex.651

PARSTEINER94 currently has over 13,000 lines of C code. While there is a652

bit of code dealing with the parallel implementation, certain sections of Winter’s653

algorithm have a great deal of code buried beneath the simplest statements. For654

example, line 13 of Fig. 15 is the following:655

if(Construct(p_star,r_star,&(E(q)))){.656

657

To implement the function Construct() over 4; 000 lines of code were658

necessary, and this does not include the geometry library with functions such as659

equilateral third point(),center of equilateral triangle(),660

line circle intersect(), and a host more.661

Another important aspect of this implementation is the fact that there can now662

be comparisons made between the two current SMT programs. This would allow663

verification checks to be made between EDSTEINER89 and PARSTEINER94. This664

fredh
Sticky Note
table not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 26 — #28
�

�

�

�

�

�

UNCORRECTED
PROOF

26 F.C. Harris and R. Motwani

verification is important since with any complex program it is quite probable that665

there are a few errors hiding in the code. This implementation would also allow666

other SMT problems, such as those we will discuss in Sect. 9, to be explored667

independently, thereby broadening the knowledge base for SMTs even faster.668

8.2.2 The Platform669

In the design and implementation of parallel algorithms, you are faced with many670

decisions. One such decision is what will your target architecture be? There are671

times when this decision is quite easy due to the machines at hand or the size of the672

problem. In our case we decided not to target a specific machine, but an architectural673

platform called PVM [19].674

PVM, which stands for Parallel Virtual Machine, is a software package available675

from Oak Ridge National Laboratory. This package allows a collection of parallel676

or serial machines to appear as a large distributed memory computational machine677

(MIMD model). This is implemented via two major pieces of software, a library678

of PVM interface routines, and a PVM demon that runs on every machine that you679

wish to use.680

The library interface comes in two languages, C and ORTRAN. The functions in681

this library are the same no matter which architectural platform you are running on.682

This library has functions to spawn off (start) many copies of a particular program683

on the parallel machine, as well as functions to allow message passing to transfer684

data from one process to another. Application programs must be linked with this685

library to use PVM.686

The demon process, called pvmd in the user’s guide, can be considered the back687

end of PVM. As with any back end, such as the back end of a compiler, when688

it is ported to a new machine, the front end can interface to it without change.689

The back end of PVM has been ported to a variety of machines, such as a few690

versions of Crays, various Unix machines such as Sun workstations, HP machines,691

Data General workstations, and DEC Alpha machines. It has also been ported to a692

variety of true parallel machines such as the iPSC/2, iPSC/860, CM2, CM5, BBN693

Butterfly, and the Intel Paragon.694

With this information it is easy to see why PVM was picked as the target695

platform. Once a piece of code is implemented under PVM, it can be recompiled696

on the goal machine, linked with the PVM interface library on that machine, and697

run without modification. In our case we designed PARSTEINER94 on a network698

of SUN workstations, but, as just discussed, moving to a large parallel machine699

should be trivial.700

8.2.3 Errors Encountered701

When attempting to implement any large program from another person’s descrip-702

tion, you often reach a point where you don’t understand something. At first you703

always question yourself, but as you gain an understanding of the problem you learn704

that there are times when the description you were given is wrong. Such was the case705

with the SMT problem. Therefore, to help some of those that may come along and706

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 27 — #29
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 27

attempt to implement this problem after us, we recommend that you look at the list707

of errors we found while implementing Winter’s algorithm [28].708

8.3 Random Problems709

8.3.1 Hundred-Point Random Problems710

From the literature it is obvious that the current standard for calculating SMTs has711

been established by Cockayne and Hewgill. Their work on SMTs has pushed the712

boundary of computation out from the 15-point problems of Winter to being able to713

calculate SMTs for a large percentage of 100-point problems.714

Cockayne and Hewgill, in their investigation of the effectiveness of715

EDSTEINER89, randomly generated 100 problems with 100 points inside the716

unit square. They set up a CPU limit of 12 h, and 77 of 100 problems finished717

within that limit. They described the average execution times as follows: T list718

construction averaged 209 min, forest management averaged 27 min, and extraction719

averaged 10.8 min.720

While preparing the code for this project, Cockayne and Hewgill were kind721

enough to supply us with 40 of the problems generated for [14] along with722

their execution times. These data sets were given as input to the parallel code723

PARSTEINER94, and the calculation was timed. The wall clock time necessary to724

generate T list for the two programs appears in Table 3. For all 40 cases, the average725

time to generate T list was less than 20 min. This is exciting because we have been726

able to generate T list properly while cutting an order of magnitude off the time.727

These results are quite promising for various reasons. First, the parallel im-728

plementation presented in this work is quite scalable and therefore could be run729

with many more processors, thereby enhancing the speedup provided. Second, with730

the PVM platform used, we can in the future port this work to a real parallel731

MIMD machine, which will have much less communication overhead, or to a shared732

memory machine, where the communication could all but be eliminated, and expect733

the speedup to improve much more.734

It is also worth noting that proper implementation of the cycle breaking which735

Cockayne and Hewgill presented in [13] is important if extraction of the proper736

answer is to be accomplished. In their work, Cockayne and Hewgill mentioned that737

58 % of the problems they generated were solvable without the cycle breaking being738

implemented, which is approximately what we have found with the data sets they739

provided. An example of such a T list that would need cycles broken (possibly740

multiple times) is provided in Fig. 18.741

8.3.2 Larger Random Problems742

Once the 100-point problems supplied by Cockayne and Hewgill had been success-743

fully completed, the next step was to try a few larger problems. This was done with744

the hope of gaining an insight into the changes that would be brought about from745

the addition of more data points.746

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 28 — #30
�

�

�

�

�

�

UNCORRECTED
PROOF

28 F.C. Harris and R. Motwani

Table 3 Comparison of
T list timest7.1 Test case PARSTEINER94 EDSTEINER89

t7.2 1 650 8; 597

t7.3 2 1; 031 13; 466

t7.4 3 1; 047 15; 872

t7.5 4 1; 687 17; 061

t7.6 5 874 13; 258

t7.7 6 1; 033 15; 226

t7.8 7 1; 164 12; 976

t7.9 8 1; 109 16; 697

t7.10 9 975 15; 354

t7.11 10 554 8; 650

t7.12 11 660 9; 894

t7.13 12 946 13; 057

t7.14 13 858 13; 687

t7.15 14 978 17; 132

t7.16 15 819 11; 333

t7.17 16 752 12; 766

t7.18 17 896 13; 815

t7.19 18 788 10; 508

t7.20 19 618 10; 550

t7.21 20 724 11; 193

t7.22 21 983 11; 357

t7.23 22 889 12; 999

t7.24 23 1; 449 15; 028

t7.25 24 890 14; 417

t7.26 25 912 17; 562

t7.27 26 1; 125 12; 395

t7.28 27 943 15; 721

t7.29 28 583 10; 014

t7.30 29 1; 527 18; 656

t7.31 30 681 10; 033

t7.32 31 873 16; 401

t7.33 32 791 10; 217

t7.34 33 1; 132 18; 635

t7.35 34 1; 097 18; 305

t7.36 35 1; 198 19; 657

t7.37 36 803 11; 174

t7.38 37 923 15; 256

t7.39 38 824 12; 920

t7.40 39 826 12; 538

t7.41 40 972 15; 570

t7.42 Avg. 939 13; 748

fredh
Sticky Note
table not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 29 — #31
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 29

Fig. 18 T list with more than 1 cycle

For this attempt we generated several random sets of 110 points each. The length747

of T list increased by approximately 38 %, from an average of 210 trees to an748

average of 292 trees. The time to compute T list also increased drastically, going749

from an average of 15 min to an average of more than 40 min.750

The interesting thing that jumped out the most was the increase in the number751

of large biconnected components. Since the extraction process must do a complete752

search of all possibilities, the larger the component, the longer it will take. This is a753

classic example of an exponential problem, where when the problem size increases754

by 1, the time doubles. With this increased component size, none of the random755

problems generated finished inside a 12 h cut off time.756

This rapid growth puts into perspective the importance of the work previously757

done by Cockayne and Hewgill. Continuation of their work with incompatibility758

matrices as well as decomposition of T list components appears at this point to be759

very important for the future of SMT calculations.760

8.4 Grids761

The problem of determining SMTs for grids was mentioned to the author by Ron762

Graham. In this context we are thinking of a grid as a regular lattice of unit squares.763

The literature has little of information regarding SMTs on grids, and most of the764

information that is given is conjectured and not proven. In Sect. 8.4.1 we will765

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 30 — #32
�

�

�

�

�

�

UNCORRECTED
PROOF

30 F.C. Harris and R. Motwani

look at what is known about SMTs on grids. In the following subsections, we will766

introduce new results for grids up through 7 � m in size. These results presented767

are computational results from PARSTEINER94 [28, 30, 31] which was discussed768

previously.769

8.4.1 2 � m and Square Grids770

The first proof for anything besides a 2 � 2 grid came in a paper by Chung and771

Graham [10] in which they proved the optimality of their characterization of SMTs772

for 2 � m grids. The only other major work was presented in a paper by Chung,773

Gardner, and Graham [9]. They argued the optimality of the SMT on 2 � 2, 3 � 3,774

and 4 � 4 grids and gave conjectures and constructions for those conjectures for775

SMTs on all other square lattices.776

In their work Chung, Gardner, and Graham specified three building blocks from777

which all SMTs on square (n � n) lattices were constructed. The first, labeled I,778

is just a K2 or a path on two vertices. This building block is given in Fig. 19a.779

The second, labeled Y , is a full Steiner tree (FST) (n vertices and n � 2 Steiner780

points) on 3 vertices of the unit square. This building block is given in Fig. 19b. The781

third, labeled X , is an FST on all 4 vertices of the unit square. This building block782

is given in Fig. 19c. For the generalizations we are going to make here, we need to783

introduce one more building block, which we will label S. This building block is an784

FST on a 3 � 2 grid and appears in Fig. 19d.785

SMTs for grids of size 2 � m have two basic structures. The first is an FST on all786

the vertices in the 2�m grid. An example of this for a 2�3 grid is given in Fig.19d.787

The other structure is constructed from the building blocks previously described. We788

hope that these building blocks, when put in conjunction with the generalizations for789

3�m, 4�m, 5�m, 6�m, and 7�m will provide the foundation for a generalization790

of m � n grids in the future.791

In their work on ladders (2 � m grids) Chung and Graham established and792

proved the optimality of their characterization for 2 � m grids. Before giving their793

characterization, a brief review of the first few 2 � m SMTs is in order. The SMT794

for a 2 � 2 grid is shown in Fig. 19c, the SMT for a 2 � 3 grid is shown in Fig. 19d,795

and the SMT for a 2 � 4 grid is given in Fig. 20.796

Chung and Graham [10] proved that SMTs for ladders fell into one of two797

categories. If the length of the ladder was odd, then the SMT was the FST on the798

vertices of the ladder. The SMT for the 2 � 3 grid in Fig. 19d is an example of this.799

a b c d

Fig. 19 Building blocks

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 31 — #33
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 31

Fig. 20 SMT for a 2 � 4 grid

Fig. 21 SMT for a 3 � 3 grid

Fig. 22 SMT for a 3 � 5 grid

If the length of the ladder was even, the SMT was made up of a series of . m
2

� 1/800

XIs followed by one last X . The SMT for the 2 � 4 grid in Fig. 20 is an example801

of this.802

8.4.2 3 � m Grids803

The SMT for 3 � m grids has a very easy characterization which can be seen once804

the initial cases have been presented. The SMT for the 3 � 2 grid is presented in805

Fig. 19d. The SMT for the 3 � 3 grid is presented in Fig. 21.806

From here we can characterize all 3 � m grids. Except for the 3 � 2 grid, which807

is an S building block, there will be only two basic building blocks present, X s and808

Is. There will be exactly two Is and .m � 1/X s. The two Is will appear on each809

end of the grid. The X s will appear in a staggered checkerboard pattern, one on each810

column of the grid the same way that the two X s are staggered in the 3�3 grid. The811

3 � 5 grid is a good example of this and is shown in Fig. 22.812

fredh
Sticky Note
figure not centered

fredh
Sticky Note
figure not centered

fredh
Sticky Note
figure not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 32 — #34
�

�

�

�

�

�

UNCORRECTED
PROOF

32 F.C. Harris and R. Motwani

8.4.3 4 � m Grids813

The foundation for the 4 � m grids has already been laid. In their most recent work,814

Cockayne and Hewgill presented some results on square lattice problems [14]. They815

looked at 4 � m grids for m D 2 to m D 6. They also looked at the SMTs for these816

problems when various lattice points in that grid were missing. What they did not817

do, however, was characterize the structure of the SMTs for all 4 � m grids.818

The 4 � 2 grid is given in Fig. 20. From the work of Chung et al. [9], we know819

that the SMT for a 4 � 4 grid is a checkerboard pattern of 5 X s. This layout gives820

us the first two patterns we will need to describe the 4 � m generalization. The first821

pattern, which we will call pattern A, is the same as the 3�4 grid without the two Is822

on the ends. This pattern is given in Fig. 23. The second pattern, denoted as pattern823

B, is the 2 � 4 grid in Fig. 20 without the connecting I. This is shown in Fig. 24.824

Before the final characterization can be made, two more patterns are needed. The825

first one, called pattern C, is a 4 � 3 grid where the pattern is made up of two non-826

connected 2 � 3 SMTs, shown in Fig. 25. The next pattern, denoted by pattern D,827

is quite simply a Y centered in a 2 � 4 grid. This is shown in Fig. 26. The final828

pattern, denoted by E , is just an I on the right side of a 2 � 4 grid. This is shown in829

Fig. 27.830

Now we can begin the characterization. The easiest way to present the character-831

ization is with some simple string rewriting rules. Since the 4 � 2, 4 � 3, and 4 � 4832

patterns have already been given, the rules will begin with a 4 � 5 grid. This grid833

has the string AC. The first rule is that whenever there is a C on the right end of834

your string, replace it with BDB. Therefore, a 4 � 6 grid is ABDB. The next rule is835

that whenever there is a B on the right end of your string, replace it with a C. The836

final rule is whenever there is a DC on the right end of your string, replace it with837

an EAB. These rules are summarized in Table 4. A listing of the strings for m from838

5 to 11 is given in Table 5.839

Fig. 23 4 � m pattern A

Fig. 24 4 � m pattern B

fredh
Sticky Note
figure not centered

fredh
Sticky Note
figure not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 33 — #35
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 33

Fig. 25 4 � m pattern C

Fig. 26 4 � m pattern D

Fig. 27 4 � m pattern E

Table 4 Rewrite rules for
4 � m grids

t8.1 1 B ! C
t8.2 2 C ! BDB
t8.3 3 DC ! EAB

Table 5 String
representations for 4 � m

grids

t9.1 m 5 6 7 8
t9.2 String AC ABDB ABDC ABEAB
t9.3 m 9 10 11
t9.4 String ABEAC ABEABDB ABEABDC

8.4.4 5 � m Grids840

For the 5 � m grids, there are 5 building blocks (and their mirror images which are841

donated with an 0) that are used to generate any 5 � m grid. These building blocks842

appear in Figs. 28–32.843

With the building blocks in place, the characterization of 5 � m grids is quite844

easy using grammar rewrite rules. The rules used for rewriting strings representing845

fredh
Sticky Note
figure not centered

fredh
Sticky Note
figure not centered

fredh
Sticky Note
figure not centered

fredh
Sticky Note
table not centered	

fredh
Sticky Note
table not centered

fredh
Highlight
Caption above figure - all the rest are below.

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 34 — #36
�

�

�

�

�

�

UNCORRECTED
PROOF

34 F.C. Harris and R. Motwani

Fig. 28 5 � m pattern A

Fig. 29 5 � m pattern B

Fig. 30 5 � m pattern C

Fig. 31 5 � m pattern D

Fig. 32 5 � m pattern E

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 35 — #37
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 35

a 5 � m grid are given in Table 6. The SMTs for 5 � 2, 5 � 3, and 5 � 4 have already846

been given. For a 5�5 grid the SMT is made up of the following string: EA0BD. As847

a reminder, the A0 signifies the mirror of building block A. A listing of the strings848

for m from 5 to 11 is given in Table 7.849

8.4.5 6 � m Grids850

For the 6�m grids, there are five building blocks that are used to generate any 6�m851

grid. These building blocks appear in Figs. 33–37.852

The solution for 6 � m grids can now be characterized by using grammar rewrite853

rules. The rules used for rewriting strings representing a 6 � m grid are given in854

Table 8. The basis for this rewrite system is the SMT for the 6 � 3 grid which is AC.855

It is also nice to see that for the 6 � m grids, there is a simple regular expression856

which can characterize what the string will be. That regular expression has the form857

A.BE/�.CjBD/, which means that the BE part can be repeated 0 or more times and858

the end can be either C or BD. A listing of the strings for m from 6 to 11 is given in859

Table 9.860

8.4.6 7 � m Grids861

For the 7 � m grids, there are six building blocks that are used to generate any 7 � m862

grid. These building blocks appear in Figs. 38–43.863

Table 6 Rewrite rules for
5 � m grids

t10.1 1 C ! B0D0

t10.2 2 D ! A0E
t10.3 3 E ! AC
t10.4 4 C0 ! BD
t10.5 5 D0 ! AE 0

t10.6 6 E 0 ! A0C0

Table 7 String representations for 5 � m grids

t11.1 m 5 6 7 8
t11.2 String EA0BD EA0BA0E EA0BA0AC EA0BA0AB0D0

t11.3 m 9 10 11
t11.4 String EA0BA0AB0AE 0 EA0BA0AB0AA0C0 EA0BA0AB0AA0BD

Fig. 33 6 � m pattern A

fredh
Sticky Note
table not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 36 — #38
�

�

�

�

�

�

UNCORRECTED
PROOF

36 F.C. Harris and R. Motwani

Fig. 34 6 � m pattern B

Fig. 35 6 � m pattern C

Fig. 36 6 � m pattern D

Fig. 37 6 � m pattern E

Table 8 Rewrite rules for
6 � m grids

t12.1 1 C ! BD
t12.2 2 D ! EC

fredh
Sticky Note
table not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 37 — #39
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 37

Table 9 String
representations for 6 � m

grids

t13.1 m = 6 7 8
t13.2 String ABEBD ABEBEC ABEBEBD
t13.3 m = 9 10 11
t13.4 String ABEBEBEC ABEBEBEBD ABEBEBEBEC

Fig. 38 7 � m pattern A

Fig. 39 7 � m pattern B

Fig. 40 7 � m pattern C

Fig. 41 7 � m pattern D

fredh
Sticky Note
table not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 38 — #40
�

�

�

�

�

�

UNCORRECTED
PROOF

38 F.C. Harris and R. Motwani

Fig. 42 7 � m pattern E

Fig. 43 7 � m pattern F

Table 10 Rewrite rules for
7 � m grids

t14.1 1 E 0F 0 ! BA0F
t14.2 2 F ! CD
t14.3 3 CD ! AEF
t14.4 4 EF ! B0AF 0

t14.5 5 F 0 ! C0D0

t14.6 6 C0D0 ! A0E 0F 0

Table 11 String representations for 7 � m grids

t15.1 m 6 7 8 9

t15.2 String FA0BA0F FA0BA0CD FA0BA0AEF FA0BA0AB0AF 0

t15.3 m 10 11 12

t15.4 String FA0BA0AB0AC0D0 FA0BA0AB0AA0E 0F 0 FA0BA0AB0AA0BA0F

The grammar rewrite rules for strings representing a 7 � m grid are given in864

Table 10. The basis for this rewrite system is the SMT for the 7 � 5 grid which is865

FA0E 0F 0. A listing of the strings for m from 6 to 11 is given in Table 11.866

9 Future Work867

9.1 Grids868

In this work we reviewed what is known about SMTs on grids and then presented869

results from PARSTEINER94 [28, 31] which characterize SMTs for 3 � m to870

7�m grids. The next obvious question is the following: What is the characterization871

for an 8�m grid or an n�m grid? Well, this is where things start getting nasty. Even872

though PARSTEINER94 cuts the computation time of the previous best program873

fredh
Sticky Note
table not centered

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 39 — #41
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 39

Fig. 44 8 � 8

for SMTs by an order of magnitude, the computation time for an NP-Hard problem874

blows up sooner or later, and 8 � m is where we run into the computation wall.875

We have been able to make small chips into this wall though and have some876

results for 8 � m grids. The pattern for this seems to be based upon repeated use of877

the 8 � 8 grid which is shown in Fig. 44. This grid solution seems to be combined878

with smaller 8� solutions in order to build larger solutions. However, until better879

computational approaches are developed, further characterizations of SMTs on grids880

will be very hard and tedious.881

9.2 Further Parallelization882

9.2.1 Algorithm Enhancements883

There remains a great deal of work that can be done on the Steiner minimal tree884

problem in the parallel arena. The first thing to consider is whether there are other885

ways to approach the parallel generation of T list that would be more efficient.886

Improvement in this area would push the computation pendulum even further away887

from T list generation and toward SMT extraction.888

The next thing to consider is the entire extraction process. The initial generation889

of the incompatibility matrix has the appearance of easy parallelization. The forest890

management technique introduced by Cockayne and Hewgill could also be put into891

a parallel framework, thereby speeding up the preparation for extraction quite a bit.892

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 40 — #42
�

�

�

�

�

�

UNCORRECTED
PROOF

40 F.C. Harris and R. Motwani

With this initialization out of the way, decomposition could then be considered.893

The best possible enhancement here might be the addition of thresholds. As with894

most parallel algorithms, for any problem smaller than a particular size, it is usually895

faster to solve it sequentially. These thresholds could come into play in determining896

whether to call a further decomposition, such as the cycle decomposition introduced897

by Cockayne and Hewgill that was discussed in Sect. 7.898

The final option for parallelization is one that may yield the best results and that899

is in the extraction itself. Extraction is basically a branch-and-bound process, using900

the incompatibility matrix. This branch and bound is primed with the length of the901

MST as the initial bound and continues until all possible combinations have been902

considered. The easiest implementation here would probably be the idea presented903

in the paper by Quinn and Deo [52] that served as the basis for the parallel algorithm904

in Sect. 6.905

9.2.2 GPU Implementation906

With games and visualization driving the evolution of graphics processors, the fixed907

functionality of the rendering pipeline once offered has been steadily replaced by the908

introduction of programmable pipeline components called shaders. These shaders909

not only allow the GPU to be used for more elaborate graphical effects but also910

allow it to be used for more general purpose computations. By storing general data911

as texture data, user-programmed vertex and fragment shaders can transform the912

GPU into a highly data parallel multiprocessor [48].913

In 2007, Nvidia released CUDA [46], a programming language which allows914

for direct GPGPU programming in a C-like environment. Modern GPUs offer 512915

processing cores [47], which is far more than any CPU currently provides. Many916

researchers have taken advantage of the environment provided by CUDA to easily917

map their parallel algorithms to the GPU.918

Of note is the work being done by Joshua Hegie [33]. In his thesis, Hegie has919

mapped out an implementation of Winter’s work onto the GPU. Preliminary results920

are very promising, and in the future work, he maps out a methodology for the use921

of multiple GPUs which will open the door for much larger problems at a reasonable922

computation time.923

9.3 Additional Problems924

9.3.1 1-Reliable Steiner Tree Problem925

If we would like to be able to sustain a single failure of any vertex, without in-926

terrupting communication among remaining vertices, the minimum length network927

problem takes on a decidedly different structure. For example, in any FST all of the928

original vertices are of degree 1, and hence, any one can be disconnected from the929

network by a single failure of the adjacent Steiner point.930

We would clearly like a minimum length 2-connected network. The answer can931

be the minimum length Hamiltonian cycle (consider the vertices of the unit square),932

but it does not need to be, as shown in the ‚ graph given in Fig. 45.933

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 41 — #43
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 41

Fig. 45 Theta graph

Here we can add Steiner points near the vertices of degree 3 and reduce the934

network length without sacrificing 2-connectivity. This is not just a single graph,935

but is a member of a family of graphs that look like ladders, where the ‚ graph936

has only one internal rung. We hope to extend earlier work providing constructions937

on 2-connected graphs [32] to allow effective application of an annealing algorithm938

that could walk through graphs within the 2-connected class.939

9.3.2 Augmenting Existing Plane Networks940

In practical applications, it frequently happens that new points must be joined to an941

existing Steiner minimal tree. Although a new and larger SMT can, in principle, be942

constructed which connects both the new and the existing points, this is typically943

impractical, e.g., in cases where a fiber optic network has already been constructed.944

Thus, the only acceptable approach is to add the new points to the network as945

cheaply as possible. Cockayne has presented this problem which we can state as946

follows:947

Augmented Steiner Network: Given a connected plane graph G D .V; E/ (i.e.,948

an embedding of a connected planar graph in E2) and a set V 0 of points in949

the plane which are not on edges of G, construct a connected plane supergraph950

G” D .V ”; E”/, such that V ” contains V
S

V 0, E” contains E , and the sum of951

the Euclidean lengths of the set of edges in E” � E is a minimum. In constructing952

the plane graph G”, it is permitted to add an edge connecting a point in V 0 to an953

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 42 — #44
�

�

�

�

�

�

UNCORRECTED
PROOF

42 F.C. Harris and R. Motwani

1

f1 f2

s2
2

s1

3

4

f3

76
s3

5

8Fig. 46 An optimal forest

interior point of an edge in G. It is also permitted to add Steiner points. Thus, strictly954

speaking, G” does not need to be a supergraph of G.955

The Augmented Steiner Network Problem clearly has applications in such di-956

verse areas as canal systems, rail systems, housing subdivisions, irrigation networks,957

and computer networks. For example, given a (plane) fiber optic computer network958

G D .V; E/ and a new set V 0 of nodes to be added to the network, the problem is to959

construct a set F 0 of fiber optic links with minimum total length that connects V 0 to960

G. The set F 0 of new links is easily seen to form a forest in the plane, because the961

minimum total length requirement ensures that there cannot be cycles in F 0.962

As an example, consider the situation in Fig. 46 where G consists of a single,963

long edge and V 0 D v1; : : : ; v8. The optimal forest F 0 consists of three trees joining964

G at f1, f2, and f3. It is necessary that extra Steiner points s1, s2, and s3 be added965

so that F has minimum length.966

While we are aware of several algorithms for solving special cases of the967

Augmented Existing Plane Network Problem, such as those by Chen [7] and968

Trietsch [56] or the special case where the graph G consists of a single vertex,969

in which case the problem is equivalent to the classical Steiner minimal tree970

problem, we are not aware of any algorithms or computer programs available for971

exact solutions to the general form of this problem. Here, “exact” means provably972

optimal except for roundoff error and machine representation of real numbers. Non-973

exact (i.e., heuristic) solutions are suboptimal although they may often be found974

considerably faster.975AU1

Recommended Reading976

1. A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel computational geometry.977

Algorithmica 3(3), 293–327 (1988)978

2. M.J. Atallah, M.T. Goodrich, Parallel algorithms for some functions of two convex polygons.979

Algorithmica 3(4), 535–548 (1988)980

3. J.E. Beasley, Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11),981

1069–1072 (1990)982

4. J.E. Beasley, Or-library. http://people.brunel.ac.uk/�mastjjb/jeb/info.html. Last Accessed983

29 Dec 2010984

5. M.W. Bern, R.L. Graham, The shortest-network problem. Sci. Am. 260(1), 84–89 (1989)985

6. W.M. Boyce, J.R. Seery, STEINER 72 – an improved version of Cockayne and Schiller’s986

program STEINER for the minimal network problem. Technical Report 35, Bell Labs.,987

Department of Computer Science, 1975988

http://people.brunel.ac.uk/~mastjjb/ jeb/info.html
fredh
Sticky Note
This link has an extra space in it and therefore when clicked on does not work.
The space appears to be between the / and jeb

fredh
Sticky Note
figure not centered

fredh
Sticky Note
References was changed? to Recommended Reading??

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 43 — #45
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 43

7. G.X. Chen, The shortest path between two points with a (linear) constraint [in Chinese].989

Knowl. Appl. Math. 4, 1–8 (1980)990

8. A. Chow, Parallel Algorithms for Geometric Problems. PhD thesis, University of Illinois,991

Urbana-Champaign, IL, 1980992

9. F.R.K. Chung, M. Gardner, R.L. Graham, Steiner trees on a checkerboard. Math. Mag. 62,993

83–96 (1989)994

10. F.R.K. Chung, R.L. Graham, in Steiner Trees for Ladders, ed. by B. Alspach, P. Hell, D.J.995

Miller, Annals of Discrete Mathematics, vol. 2 (North-Holland, 1978), pp. 173–200 AU2996

11. E.J. Cockayne, On the Steiner problem. Can. Math. Bull. 10(3), 431–450 (1967)997

12. E.J. Cockayne, On the efficiency of the algorithm for Steiner minimal trees. SIAM J. Appl.998

Math. 18(1), 150–159 (1970)999

13. E.J. Cockayne, D.E. Hewgill, Exact computation of Steiner minimal trees in the plane. Info.1000

Process. Lett. 22(3), 151–156 (1986)1001

14. E.J. Cockayne, D.E. Hewgill, Improved computation of plane Steiner minimal trees.1002

Algorithmica 7(2/3), 219–229 (1992)1003

15. E.J. Cockayne, D.G. Schiller, in Computation of Steiner Minimal Trees, ed. by D.J.A. Welsh,1004

D.R. Woodall, Combinatorics, pp. 52–71, Maitland House, Warrior Square, Southend-on-Sea,1005

Essex SS1 2J4, 1972. Mathematical Institute, Oxford, Inst. Math. Appl.1006

16. R. Courant, H. Robbins, What Is Mathematics? An Elementary Approach to Ideas and Methods1007

(Oxford University Press, London, 1941)1008

17. D.Z. Du, F.H. Hwang, A proof of the Gilbert-Pollak conjecture on the Steiner ratio.1009

Algorithmica 7(2/3), 121–135 (1992)1010

18. M.R. Garey, R.L. Graham, D.S Johnson, The complexity of computing Steiner minimal trees.1011

SIAM J. Appl. Math. 32(4), 835–859 (1977)1012

19. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel1013

Virtual Machine – A User’s Guide and Tutorial for Networked Parallel Computing (MIT1014

Press, Cambridge, MA, 1994)1015

20. R. Geist, R. Reynolds, C. Dove, Context sensitive color quantization. Technical Report1016

91–120, Dept. of Comp. Sci., Clemson Univ., Clemson, SC 29634, July 19911017

21. R. Geist, R. Reynolds, D. Suggs, A markovian framework for digital halftoning. ACM Trans.1018

Graph. 12(2), 136–159 (1993)1019

22. R. Geist, D. Suggs, Neural networks for the design of distributed, fault-tolerant, computing1020

environments, in Proc. 11th IEEE Symp. on Reliable Distributed Systems (SRDS), Houston,1021

Texas, October 1992, pp. 189–1951022

23. R. Geist, D. Suggs, R. Reynolds, Minimizing mean seek distance in mirrored disk systems1023

by cylinder remapping, in Proc. 16th IFIP Int. Symp. on Computer Performance Model-1024

ing, Measurement, and Evaluation (PERFORMANCE ‘93), Rome, Italy, September 1993,1025

pp. 91–1081026

24. R. Geist, D. Suggs, R. Reynolds, S. Divatia, F. Harris, E. Foster, P. Kolte, Disk performance1027

enhancement through Markov-based cylinder remapping, in Proc. of the ACM Southeastern1028

Regional Conf., ed. by C.M. Pancake, D.S. Reeves, Raleigh, North Carolina, April 1992,1029

pp. 23–28. The Association for Computing Machinery, Inc.1030

25. G. Georgakopoulos, C. Papadimitriou, A 1-steiner tree problem. J. Algorithm 8(1), 122–1301031

(1987)1032

26. E.N. Gilbert, H.O. Pollak, Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)1033

27. S. Grossberg, Nonlinear neural networks: Principles, mechanisms, and architectures. Neural1034

Network 1, 17–61 (1988)1035

28. F.C. Harris, Jr, Parallel Computation of Steiner Minimal Trees. PhD thesis, Clemson,1036

University, Clemson, SC 29634, May 19941037

29. F.C. Harris, Jr, A stochastic optimization algorithm for steiner minimal trees. Congr. Numer.1038

105, 54–64 (1994)1039

30. F.C. Harris, Jr, An introduction to steiner minimal trees on grids. Congr. Numer. 111, 3–171040

(1995)1041

fredh
Highlight
North-Holland Publishing has been purchased by Elsevier and is now one of their imprints.

http://www.elsevier.com/books/book-series/annals-of-discrete-mathematics

I can't find Vol 2, but the address in Vol 53 is:

Elsevier Science Publishers B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 44 — #46
�

�

�

�

�

�

UNCORRECTED
PROOF

44 F.C. Harris and R. Motwani

31. F.C. Harris, Jr, Parallel computation of steiner minimal trees, in Proc. of the 7th SIAM Conf. on1042

Parallel Process. for Sci. Comput., ed. by David H. Bailey, Petter E. Bjorstad, John R. Gilbert,1043

Michael V. Mascagni, Robert S. Schreiber, Horst D. Simon, Virgia J. Torczan, Layne T. Watson,1044

San Francisco, California, February 1995. SIAM, pp. 267–2721045

32. S. Hedetniemi, Characterizations and constructions of minimally 2-connected graphs and1046

minimally strong digraphs, in Proc. 2nd Louisiana Conf. on Combinatorics, Graph Theory,1047

and Computing, Louisiana State University, Baton Rouge, Louisiana, March 1971, pages1048

257–2821049

33. J. Hegie, Steiner minimal trees on the gpu. Master’s thesis, University of Nevada, Reno, 20121050

34. Universitat Heidelberg, Tsplib. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. Last1051

Accessed 29 Dec 20101052

35. J.J. Hopfield, Neurons with graded response have collective computational properties like1053

those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)1054

36. F.K. Hwang, J.F. Weng, The shortest network under a given topology. J. Algorithm 13(3),1055

468–488 (1992)1056

37. F.K. Hwang, D.S. Richards, Steiner tree problems. Networks 22(1), 55–89 (1992)1057

38. F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, vol. 53 of Ann. Discrete1058

Math. (North-Holland, Amsterdam, 1992)1059

39. F.K. Hwang, G.D. Song, G.Y. Ting, D.Z. Du, A decomposition theorem on Euclidian Steiner1060

minimal trees. Disc. Comput. Geom. 3(4), 367–382 (1988)1061

40. J. JáJá, An Introduction to Parallel Algorithms (Addison-Wesley, Reading, MA, 1992)1062

41. V. Jarnı́k, O. Kössler, O minimálnich gratech obsahujicich n daných bodu [in Czech]. Casopis1063

Pesk. Mat. Fyr. 63, 223–235 (1934)1064

42. S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing. Science 220(13),1065

671–680 (1983)1066

43. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and1067

Analysis of Algorithms (The Benjamin/Cummings Publishing, Redwood City, 1994)1068

44. Z.A. Melzak, On the problem of Steiner. Can. Math. Bull. 4(2), 143–150 (1961)1069

45. M.K. Molloy, Performance analysis using stochastic petri nets. IEEE Trans. Comput. C-31(9),1070

913–917 (1982)1071

46. Nvidia, Cuda zone. http://www.nvidia.com/object/cuda home new.html. Last Accessed 291072

Dec 20101073

47. Nvidia, Geforce gtx 580. http://www.nvidia.com/object/product-geforce-gtx-580-us.html.1074

Last Accessed 29 Dec 20101075

48. J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E. Lefohn, T.J. Purcell, A1076

survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1),1077

80–113 (2007)1078

49. J.L. Peterson, Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood Cliffs,1079

1981)1080

50. F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction (Springer, New York,1081

1988)1082

51. M.J. Quinn, Parallel Computing: Theory and Practice (McGraw-Hill, New York, 1994)1083

52. M.J. Quinn, N. Deo, An upper bound for the speedup of parallel best-bound branch-and-bound1084

algorithms. BIT 26(1), 35–43 (1986)1085

53. W.R. Reynolds, A Markov Random Field Approach to Large Combinatorial Optimization1086

Problems. PhD thesis, Clemson, University, Clemson, SC 29634, August 19931087

54. M.I. Shamos, Computational Geometry. PhD thesis, Department of Computer Science, Yale1088

University, New Haven, 19781089

55. J.R. Smith, The Design and Analysis of Parallel Algorithms (Oxford University Press,1090

New York, 1993)1091

56. D. Trietsch, Augmenting Euclidean networks – the Steiner case. SIAM J. Appl. Math. 45,1092

855–860 (1985)1093

57. D. Trietsch, F.K. Hwang, An improved algorithm for Steiner trees. SIAM J. Appl. Math. 50,1094

244–263 (1990)1095

http://comopt.ifi.uni-heidelberg.de/ software/TSPLIB95/
http://www.nvidia.com/object/cuda_home _new.html
http://www.nvidia.com/object/product-geforce-gtx-580-us.html

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 45 — #47
�

�

�

�

�

�

UNCORRECTED
PROOF

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 45

58. D.M. Warme, P. Winter, M. Zachariasen, Exact algorithms for plane steiner tree problems:1096

a computational study, in Advances in Steiner Trees, ed. by D.-Z. Du, J.M. Smith, J.H.1097

Rubinstein (Kluwer Academic, Boston, 2000), pp. 81–1161098

59. D.M. Warme, A new exact algorithm for rectilinear steiner trees, in International Symposium1099

on Mathematical Programming. American Mathematical Society, 1997, pp. 357–395 AU31100

60. P. Winter, An algorithm for the Steiner problem in the Euclidian plane. Networks 15(3),1101

323–345 (1985)1102

61. P. Winter, M. Zachariasen, Large euclidean steiner minimum trees in an hour. Technical Report1103

96/34, DIKU, Department of Computer Science, University of Copenhagen, 19961104

62. P. Winter, M. Zachariasen, Euclidean Steiner minimum trees: an improved exact algorithm.1105

Networks 30, 149–166 (1997)1106
AU4

fredh
Highlight
16th International Symposium on
Mathematical Programming
Lausanne, Switzerland
August 24-29, 1997

�

�

“main˙drv” — 2013/2/14 — 19:05 — page 46 — #48
�

�

�

�

�

�

UNCORRECTED
PROOF

Author Query Form

Handbook of Combinatorial Optimization

Chapter No. 56

Query Refs. Details Required Author’s
response

AU1 Please provide “Cross References”
section for this chapter.

AU2 Please provide publisher location for
Ref. [10].

AU3 Please provide conference location for
Ref. [59].

AU4 Please provide the Index terms for this
chapter.

fredh
Sticky Note
Note is in the text.

fredh
Sticky Note
Note is in the text

fredh
Sticky Note
???
What is supposed to be in a Cross References Section for this chapter?

Do you have directions? examples?

Thanks

fredh
Sticky Note
What format of index terms would you like?

Do you have directions? examples?

Thanks

	Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work
	1 Introduction
	2 The First Solution
	3 A Proposed Heuristic
	3.1 Background and Motivation
	3.2 Adding One Junction
	3.3 The Heuristic
	3.4 Results

	4 Problem Decomposition
	4.1 The Double Wedge Theorem
	4.2 The Steiner Hull
	4.3 The Steiner Hull Extension

	5 Winter's Sequential Algorithm
	5.1 Overview and Significance
	5.2 Winter's Algorithm
	5.3 Algorithm Enhancements

	6 A Parallel Algorithm
	6.1 An Introduction to Parallelism
	6.2 Overview and Proper Structure
	6.3 First Approach
	6.4 Current Approach

	7 Extraction of the Correct Answer
	7.1 Introduction and Overview
	7.2 Incompatibility Matrix
	7.3 Decomposition
	7.4 Forest Management

	8 Computational Results
	8.1 Previous Computation Times
	8.2 The Implementation
	8.2.1 The Significance of the Implementation
	8.2.2 The Platform
	8.2.3 Errors Encountered

	8.3 Random Problems
	8.3.1 Hundred-Point Random Problems
	8.3.2 Larger Random Problems

	8.4 Grids
	8.4.1 2 m and Square Grids
	8.4.2 3 m Grids
	8.4.3 4 m Grids
	8.4.4 5 m Grids
	8.4.5 6 m Grids
	8.4.6 7 m Grids

	9 Future Work
	9.1 Grids
	9.2 Further Parallelization
	9.2.1 Algorithm Enhancements
	9.2.2 GPU Implementation

	9.3 Additional Problems
	9.3.1 1-Reliable Steiner Tree Problem
	9.3.2 Augmenting Existing Plane Networks

	Recommended Reading

