
Steiner Minimal Trees: An Introduction,
Parallel Computation, and Future Work

Frederick C. Harris Jr. and Rakhi Motwani

Contents

1 Introduction. 3134
2 The First Solution. 3135
3 A Proposed Heuristic. 3137

3.1 Background and Motivation. 3137
3.2 Adding One Junction. 3138
3.3 The Heuristic. 3138
3.4 Results. 3140

4 Problem Decomposition. 3142
4.1 The Double Wedge Theorem. 3143
4.2 The Steiner Hull. 3144
4.3 The Steiner Hull Extension. 3145

5 Winter’s Sequential Algorithm. 3147
5.1 Overview and Significance. 3147
5.2 Winter’s Algorithm. 3147
5.3 Algorithm Enhancements. 3148

6 A Parallel Algorithm. 3149
6.1 An Introduction to Parallelism. 3149
6.2 Overview and Proper Structure. 3150
6.3 First Approach. 3150
6.4 Current Approach. 3152

7 Extraction of the Correct Answer. 3152
7.1 Introduction and Overview. 3152
7.2 Incompatibility Matrix. 3153
7.3 Decomposition. 3155
7.4 Forest Management. 3155

8 Computational Results. 3156
8.1 Previous Computation Times. 3156
8.2 The Implementation. 3157
8.3 Random Problems. 3159
8.4 Grids. 3161

F.C. Harris (�) • R. Motwani
Department of Computer Science & Engineering, University of Nevada, Reno, NV, USA
e-mail: Fred.Harris@cse.unr.edu; rakhi@cse.unr.edu

P.M. Pardalos et al. (eds.), Handbook of Combinatorial Optimization,
DOI 10.1007/978-1-4419-7997-1 56, © Springer Science+Business Media New York 2013

3133

mailto:Fred.Harris@cse.unr.edu
mailto:rakhi@cse.unr.edu

3134 F.C. Harris and R. Motwani

9 Future Work. 3170
9.1 Grids. 3170
9.2 Further Parallelization. 3171
9.3 Additional Problems. 3172

Cross-References. 3174
Recommended Reading. 3174

Abstract
Given a set of N cities, construct a connected network which has minimum
length. The problem is simple enough, but the catch is that you are allowed to
add junctions in your network. Therefore, the problem becomes how many extra
junctions should be added and where should they be placed so as to minimize
the overall network length. This intriguing optimization problem is known as the
Steiner minimal tree (SMT) problem, where the junctions that are added to the
network are called Steiner points.

This chapter presents a brief overview of the problem, presents an approx-
imation algorithm which performs very well, then reviews the computational
algorithms implemented for this problem. The foundation of this chapter is a
parallel algorithm for the generation of what Pawel Winter termed T list and
its implementation. This generation of T list is followed by the extraction of
the proper answer. When Winter developed his algorithm, the time for extraction
dominated the overall computation time. After Cockayne and Hewgill’s work, the
time to generate T list dominated the overall computation time. The parallel algo-
rithms presented here were implemented in a program called PARSTEINER94,
and the results show that the time to generate T list has now been cut by an
order of magnitude. So now the extraction time once again dominates the overall
computation time.

This chapter then concludes with the characterization of SMTs for certain size
grids. Beginning with the known characterization of the SMT for a 2 � m grid, a
grammar with rewrite rules is presented for characterizations of SMTs for 3 � m,
4 � m, 5 � m, 6 � m, and 7 � m grids.

1 Introduction

Minimizing a network’s length is one of the oldest optimization problems in
mathematics, and, consequently, it has been worked on by many of the leading
mathematicians in history. In the mid-seventeenth century a simple problem was
posed: Find the point P that minimizes the sum of the distances from P to each of
three given points in the plane. Solutions to this problem were derived independently
by Fermat, Torricelli, and Cavalieri. They all deduced that either P is inside the
triangle formed by the given points and that the angles at P formed by the lines
joining P to the three points are all 120ı or P is one of the three vertices and the
angle at P formed by the lines joining P to the other two points is greater than or
equal to 120ı.

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3135

In the nineteenth century a mathematician at the University of Berlin, named
Jakob Steiner, studied this problem and generalized it to include an arbitrarily large
set of points in the plane. This generalization created a star when P was connected to
all the given points in the plane and is a geometric approach to the two-dimensional
center of mass problem.

In 1934 Jarnı́k and Kössler generalized the network minimization problem even
further [41]: Given n points in the plane, find the shortest possible connected
network containing these points. This generalized problem, however, did not
become popular until the book, What is Mathematics, by Courant and Robbins [16],
appeared in 1941. Courant and Robbins linked the name Steiner with this form of
the problem proposed by Jarnı́k and Kössler, and it became known as the Steiner
minimal tree problem. The general solution to this problem allows multiple points
to be added, each of which is called a Steiner point, creating a tree instead of a star.

Much is known about the exact solution to the Steiner minimal tree problem.
Those who wish to learn about some of the spin-off problems are invited to read
the introductory article by Bern and Graham [5], the excellent survey paper on this
problem by Hwang and Richards [37], or the volume in The Annals of Discrete
Mathematics devoted completely to Steiner tree problems [38]. Some of the basic
pieces of information about the Steiner minimal tree problem that can be gleaned
from these articles are (a) the fact that all of the original n points will be of degree 1,
2, or 3, (b) the Steiner points are all of degree 3, (c) any two edges meet at an angle
of at least 120ı in the Steiner minimal tree, and (d) at most n � 2 Steiner points will
be added to the network.

This chapter concentrates on the Steiner minimal tree problem, henceforth
referred to as the SMT problem. Several algorithms for calculating Steiner minimal
trees are presented, including the first parallel algorithm for doing so. Several
implementation issues are discussed, some new results are presented, and several
ideas for future work are proposed.

Section 2 reviews the first fundamental algorithm for calculating SMTs. Section 3
presents a proposed heuristic for SMTs. In Section 4 problem decomposition for
SMTs is outlined. Section 5 presents Winter’s sequential algorithm which has been
the basis for most computerized calculation of SMTs to the present day. Section 6
presents a parallel algorithm for SMTs. Extraction of the correct answer is discussed
in Section 7. Computational Results are presented in Section 8 and Future Work and
open problems are presented in Section 9.

2 The First Solution

A typical problem-solving approach is to begin with the simple cases and expand
to a general solution. As was seen in Section 1, the trivial three point problem had
already been solved in the 1600s, so all that remained was the work toward a general
solution. As with many interesting problems, this is harder than it appears on the
surface.

3136 F.C. Harris and R. Motwani

CA

X

B

P

Fig. 1 AP + CP = PX

The method proposed by the mathematicians of the mid-seventeenth century for
the three-point problem is illustrated in Fig. 1. This method stated that in order
to calculate the Steiner point given points A, B , and C , you first construct an
equilateral triangle .ACX/ using the longest edge between two of the points .AC /

such that the third .B/ lies outside the triangle. A circle is circumscribed around the
triangle, and a line is constructed from the third point .B/ to the far vertex of the
triangle .X/. The location of the Steiner point .P / is the intersection of this line
.BX/ with the circle.

The next logical extension of the problem, going to four points, is attributed to
Gauss. His son, who was a railroad engineer, was apparently designing the layout
for tracks between four major cities in Germany and was trying to minimize the
length of these tracks. It is interesting to note at this point that a general solution
to the SMT problem has recently been uncovered in the archives of a school in
Germany (Graham, Private Communication).

For the next 30 years after Kössler and Jarnı́k presented the general form of the
SMT problem, only heuristics were known to exist. The heuristics were typically
based upon the minimum length spanning tree (MST), which is a tree that spans
or connects all vertices whose sum of the edge lengths is as small as possible, and
tried in various ways to join three vertices with a Steiner point. In 1968 Gilbert and
Pollak [26] linked the length of the SMT to the length of an MST. It was already
known that the length of an MST is an upper bound for the length of an SMT, but
their conjecture stated that the length of an SMT would never be any shorter thanp

3
2

times the length of an MST. This conjecture was recently proved [17] and has
led to the MST being the starting point for most of the heuristics that have been
proposed in the last 20 years including a recent one that achieves some very good
results [29].

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3137

In 1961 Melzak developed the first known algorithm for calculating an SMT [44].
Melzak’s algorithm was geometric in nature and was based upon some simple
extensions to Fig. 1. The insight that Melzak offered was the fact that you can
reduce an n point problem to a set of n � 1 point problems. This reduction in size is
accomplished by taking every pair of points, A and C in our example; calculating
where the two possible points, X1 and X2, would be that form an equilateral triangle
with them; and creating two smaller problems, one where X1 replaces A and C

and the other where X2 replaces A and C . Both Melzak and Cockayne pointed
out however that some of these subproblems are invalid. Melzak’s algorithm can
then be run on the two smaller problems. This recursion, based upon replacing
two points with one point, finally terminates when you reduce the problem from
three to two vertices. At this termination the length of the tree will be the length
of the line segment connecting the final two points. This is due to the fact that
BP C AP C CP D BP C PX . This is straightforward to prove using the law of
cosines, for when P is on the circle, †APX D †CPX D 60ı. This allows the
calculation of the last Steiner point (P) and allows you to back up the recursive call
stack to calculate where each Steiner point in that particular tree is located.

This reduction is important in the calculation of an SMT, but the algorithm still
has exponential order, since it requires looking at every possible reduction of a pair
of points to a single point. The recurrence relation for an n-point problem is stated
quite simply in the following formula:

T .n/ D 2 �
�

n

2

�
� T .n � 1/:

This yields what is obviously a non-polynomial time algorithm. In fact Garey,
Graham, and Johnson [18] have shown that the Steiner minimal tree problem is
NP-Hard (NP-Complete if the distances are rounded up to discrete values).

In 1967, just a few years after Melzak’s paper, Cockayne [11] clarified some
of the details from Melzak’s proof. This clarified algorithm proved to be the basis
for the first computer program to calculate SMTs. The program was developed by
Cockayne and Schiller [15] and could compute an SMT for any placement of up to
seven vertices.

3 A Proposed Heuristic

3.1 Background and Motivation

By exploring a structural similarity between stochastic Petri nets (see [45, 49])
and Hopfield neural nets (see [27, 35]), Geist was able to propose and take part
in the development of a new computational approach for attacking large, graph-
based optimization problems. Successful applications of this mechanism include
I/O subsystem performance enhancement through disk cylinder remapping [23,24],
file assignment in a distributed network to reduce disk access conflict [22], and new

3138 F.C. Harris and R. Motwani

computer graphics techniques for digital halftoning [21] and color quantization [20].
The mechanism is based on maximum-entropy Gibbs measures, which is described
in Reynold’s dissertation [53], and provides a natural equivalence between Hopfield
nets and the simulated annealing paradigm. This similarity allows you to select the
method that best matches the problem at hand. For the SMT problem, the first author
implemented the simulated annealing approach [29].

Simulated annealing [42] is a probabilistic algorithm that has been applied
to many optimization problems in which the set of feasible solutions is so
large that an exhaustive search for an optimum solution is out of the question.
Although simulated annealing does not necessarily provide an optimum solution,
it usually provides a good solution in a user-selected amount of time. Hwang and
Richards [37] have shown that the optimal placement of s Steiner points to n original
vertices yields a feasible solution space of the size

2�n

�
n

s C 2

�
.n � s � 2/Š

sŠ

provided that none of the original points have degree 3 in the SMT. If the degree
restriction is removed, they showed that the number is even larger. The SMT
problem is therefore a good candidate for this approach.

3.2 Adding One Junction

Georgakopoulos and Papadimitriou [25] have provided an O.n2/ solution to the
1-Steiner problem, wherein exactly one Steiner point is added to the original set of
points. Since at most n � 2 Steiner points are needed in an SMT solution, repeated
application of the algorithm offers a “greedy” O.n3/ approach. Using their method,
the first Steiner point is selected by partitioning the plane into oriented Dirichlet
cells, which they describe in detail. Since these cells do not need to be discarded
and recalculated for each addition, subsequent additions can be accomplished in
linear time. Deletion of a candidate Steiner point requires regeneration of the MST,
which Shamos showed can be accomplished in O.n log n/ time if the points are
in the plane [50], followed by the cost for a first addition (O.n2/). This approach
can be regarded as a natural starting point for simulated annealing by adding and
deleting different Steiner points.

3.3 The Heuristic

The Georgakopoulos and Papadimitriou 1-Steiner algorithm and the Shamos MST
algorithm are both difficult to implement. As a result, Harris chose to investigate the
potential effectiveness of this annealing algorithm using a more direct, but slightly
more expensiveO.n3/ approach. As previously noted, all Steiner points have degree

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3139

#define EQUILIBRIUM ((accepts>=100 AND rejects>=200) OR
(accepts+rejects > 500))

#define FROZEN ((temperature < 0.5) OR ((temperature < 1.0)
AND (accepts==0)))

while(not(FROZEN)){
accepts = rejects = 0;
old energy = energy();
while(not(EQUILIBRIUM)){

operation = add or delete();
switch(operation){

case ADD:
ΔE = energy change from adding a node();
break;

case DELETE:
ΔE = energy change from deleting a node();
break;

}
if(rand(0,1) < emin{0.0,−ΔE/temperature}){

accepts++;
old energy = new energy;

}else {
/* put them back */
undo change(operation);
rejects++;

}
}
temperature = temperature*0.8;

}

Fig. 2 Simulated annealing algorithm

3 with edges meeting in angles of 120ı. He considered all
�

n
3

�
triples where the

largest angle is less than 120ı, computed the Steiner point for each (a simple
geometric construction), selected that Steiner point giving greatest reduction, or
least increase in the length of the modified tree (increases are allowed since the
annealing algorithm may go uphill), and updated the MST accordingly. Again,
only the first addition requires this (now O.n3/) step. He used the straightforward
O.n2/ Prim’s algorithm to generate the MST initially and after each deletion of a
Steiner point.

The annealing algorithm can be described as a nondeterministic walk on a
surface. The points on the surface correspond to the lengths of all feasible solutions,
where two solutions are adjacent if they can be reached through the addition or
deletion of one Steiner point. The probability of going uphill on this surface is higher
when the temperature is higher but decreases as the temperature cools. The rate of
this cooling typically will determine how good your solution will be. The major
portion of this algorithm is presented in Fig. 2. This nondeterministic walk, starting
with the MST, has led to some very exciting results.

3140 F.C. Harris and R. Motwani

3.4 Results

Before discussion of large problems, a simple introduction into the results from
a simple six-point problem is in order. The annealing algorithm is given the
coordinates for six points: (0,0), (0,1), (2,0), (2,1), (4,0), and (4,1). The first step
is to calculate the MST, which has a length of 7, as shown in Fig. 3. The output
of the annealing algorithm for this simple problem is shown in Fig. 4. In this case
the annealing algorithm calculates the exact SMT solution which has a length of
6:616994.

Harris proposed as a measure of accuracy the percentage of the difference
between the length of the MST and the exact SMT solution that the annealing
algorithm achieves. This is a new measure which has not been discussed (or used)
because exact solutions have not been calculated for anything but the most simple
layouts of points. For the six-point problem discussed above, this percentage is
100:0 % (the exact solution is obtained).

After communicating with Cockayne, data sets were obtained for exact solutions
to randomly generated 100-point problems that were developed for [14]. This allows
us to use the measure of accuracy previously described. Results for some of these
data sets provided by Cockayne are shown in Table 1.

An interesting aspect of the annealing algorithm that cannot be shown in the
table is the comparison of execution times with Cockayne’s program. Whereas
Cockayne mentioned that his results had an execution cutoff of 12 h, these results
were obtained in less than 1 h. The graphical output for the first line of the table,

(0,0) (0,1) (2,0) (2,1) (4,0) (4,1)
Fig. 3 Spanning tree for
6-point problem

Fig. 4 6-point solution

Table 1 Results from 100-point problems

Exact solution Spanning tree Simulated annealing Percent covered (%)

6.255463 6.448690 6.261797 96.39
6.759661 6.935189 6.763495 98.29
6.667217 6.923836 6.675194 96.89
6.719102 6.921413 6.721283 99.01
6.759659 6.935187 6.763493 98.29
6.285690 6.484320 6.289342 98.48

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3141

Fig. 5 Spanning tree

Fig. 6 Simulated annealing solution

3142 F.C. Harris and R. Motwani

Fig. 7 Exact solution

which reaches over 96 % of the optimal value, appears as follows: The data points
and the MST are shown in Fig. 5, the simulated annealing result is in Fig. 6, and
the exact SMT solution is in Fig. 7. The solution presented here is obtained in
less than 1

10
of the time with less than 4 % of the possible range not covered. This

indicates that one could hope to extend our annealing algorithm to much larger
problems, perhaps as large as 1; 000 points. If you were to extend this approach to
larger problems, then you would definitely need to implement the Georgakopoulos–
Papadimitriou 1-Steiner algorithm and the Shamos MST algorithm.

4 Problem Decomposition

After the early work by Melzak [44], many people began to work on the Steiner
minimal tree problem. The first major effort was to find some kind of geometric
bound for the problem. In 1968 Gilbert and Pollak [26] showed that the SMT for a
set of points, S, must lie within the convex hull of S. This bound has since served
as the starting point of every bounds enhancement for SMTs.

As a brief review, the convex hull is defined as follows: Given a set of points S
in the plane, the convex hull is the convex polygon of the smallest area containing
all the points of S. A polygon is defined to be convex if a line segment connecting
any two points inside the polygon lies entirely within the polygon. An example of
the convex hull for a set of 100 randomly generated points is shown in Fig. 8.

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3143

Fig. 8 The convex hull for a random set of points

Shamos in his PhD thesis [54] proposed a divide and conquer algorithm which
has served as the basis for many parallel algorithms calculating the convex hull. One
of the first such approaches appeared in the PhD thesis by Chow [8]. This approach
was refined and made to run in optimal O.log n/ time by Aggarwal et al. [1], and
Attalah and Goodrich [2].

The next major work on the SMT problem was in the area of problem decom-
position. As with any non-polynomial algorithm, the most important theorems are
those that say “If propertyP exists, then the problem may be split into the following
sub-problems.” For the Steiner minimal tree problem, property P will probably be
geometric in nature. Unfortunately, decomposition theorems have been few and far
between for the SMT problem. In fact, at this writing there have been only three
such theorems.

4.1 The Double Wedge Theorem

The first decomposition theorem, known as the Double Wedge Theorem, was
proposed by Gilbert and Pollak [26]. This is illustrated in Fig. 9 and can be
summarized quite simply as follows: If two lines intersect at point X and meet at
120ı, they split the plane into two 120ı wedges and two 60ı wedges. If R1 and R2

denote the two 60ı wedges and all the points of S are contained in R1

S
R2, then

the problem can be decomposed. There are two cases to be considered. In case 1 X

3144 F.C. Harris and R. Motwani

R1 R260 60

120

120

X

Fig. 9 An illustration of the Double Wedge

is not a point in S; therefore, the Steiner minimal tree for S consists of the SMT for
R1, the SMT for R2, and the shortest edge connecting the two trees. In case 2 X is a
point in S; therefore, the Steiner minimal tree for S is the SMT for R1 and the SMT
for R2. Since X is in both R1 and R2, the two trees are connected.

4.2 The Steiner Hull

The next decomposition theorem is due to Cockayne [12] and is based upon what he
termed the Steiner hull. The Steiner hull is defined as follows: Let P1 be the convex
hull. PiC1 is constructed from Pi by finding an edge (p; r) of Pi that has a vertex
(q) near it such that †pqr � 120ı, and there is not a vertex inside the triangle pqr .
The final polygon, Pi , that can be created in such a way is called the Steiner hull.
The algorithm for this construction is shown in Fig. 10. The Steiner hull for the 100
points shown in Fig. 8 is given in Fig. 11.

After defining the Steiner hull, Cockayne showed that the SMT for S must lie
within the Steiner hull of S. This presents us with the following decomposition: The
Steiner hull can be thought of as an ordered sequence of points, fp1; p2; : : : ; png,
where the hull is defined by the sequence of line segments, fp1p2; p2p3; : : : ; pnp1g.
If there exists a point pi that occurs twice in the Steiner hull, then the problem can
be decomposed at point pi . If a Steiner hull contains such a point, then the Steiner
hull is referred to as degenerate. This decomposition is accomplished by showing
that the Steiner hull splits S into two contained subsets, R1 and R2, where R1 is the
set of points contained in the Steiner hull from the first time pi appears until the last
time pi appears, and R2 is the set of points contained in the Steiner hull from the
last time pi appears until the first time pi appears. With this decomposition it can
be shown that S D R1

S
R2, and the SMT for S is the union of the SMT for R1 and

the SMT for R2. This decomposition is illustrated in Fig. 12. Cockayne also proved
that the Steiner hull decomposition includes every decomposition possible with the
Double Wedge Theorem.

In their work on 100-point problems, Cockayne and Hewgill [14] mention that
approximately 15 % of the randomly generated 100-point problems have degenerate

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3145

The initial Steiner Polygon, P1, is the Convex Hull.
Repeat

Create Next Steiner Polygon Pi+1 from Pi by
1) find a set of points pqr ∈ S such that:

p and r are adjacent on Pi

pqr ≥ 120◦

∃ a point from S in the triangle pqr
2) remove the edge pr.
3) add edges pq and qr.

Until(Pi == Pi+1)
Steiner Hull = Pi

Fig. 10 The Steiner hull
algorithm

Fig. 11 The Steiner hull for a random set of 100 points

Steiner Hull’s. The Steiner hull shown in Fig. 11 is not degenerate, while that in
Fig. 12 is.

4.3 The Steiner Hull Extension

The final decomposition belongs to Hwang et al. [39]. They proposed an extension
to the Steiner hull as defined by Cockayne. Their extension is as follows:
If there exist four points a; b; c, and d on a Steiner hull such that:

3146 F.C. Harris and R. Motwani

P

Fig. 12 An illustration of the
Steiner hull decomposition

O R1R2

a b

cd

Fig. 13 An illustration of the Steiner hull extension

1. a; b; c, and d form a convex quadrilateral
2. There does not exist a point from S in the quadrilateral .a; b; c; d /

3. †a � 120ı and †b � 120ı
4. The two diagonals (ac) and (bd) meet at O, and †bOa � †a C †b � 150ı, then

the SMT for S is the union of the SMTs for R1 and R2 and the edge ab where
R1 is the set of points contained in the Steiner hull from c to b with the edge bc

and R2 is the set of points contained in the Steiner polygon from a to d with the
edge ad . This decomposition is illustrated in Fig. 13.
These three decomposition theorems were combined into a parallel algorithm for

decomposition presented in [28].

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3147

5 Winter’s Sequential Algorithm

5.1 Overview and Significance

The development of the first working implementation of Melzak’s algorithm sparked
a move into the computerized arena for the calculation of SMTs. As we saw in
Section 2, Cockayne and Schiller [15] had implemented Melzak’s algorithm and
could calculate the SMT for all arrangements of 7 points. This was followed almost
immediately by Boyce and Seery’s program which they called STEINER72 [6].
Their work done at Bell Labs could calculate the SMT for all 10-point problems.
They continued to work on the problem and in personal communication with
Cockayne said they could solve 12-point problems with STEINER73. Yet even with
quite a few people working on the problem, the number of points that any program
could handle was still very small.

As mentioned toward the end of Section 2, Melzak’s algorithm yields invalid
answers and invalid tree structures for quite a few combinations of points. It
was not until 1981 that anyone was able to characterize a few of these invalid
tree structures. These characterizations were accomplished by Pawel Winter and
were based upon several geometric constructions which enable one to eliminate
many of the possible combinations previously generated. He implemented these
improvements in a program called GeoSteiner [60]. In his work he was able to
calculate in under 30 s SMTs for problems having up to 15 vertices and stated that
“with further improvements, it is reasonable to assert that point sets of up to 30
V-points could be solved in less than an hour [60].”

5.2 Winter’s Algorithm

Winter’s breakthrough was based upon two things: the use of extended binary trees
and what he termed pushing. Winter proposed an extended binary tree as a means
of constructing trees only once and easily identifying a full Steiner tree (FST: trees
with n vertices and n � 2 Steiner points) on the same set of vertices readily.

Pushing came from the geometric nature of the problem and is illustrated in
Fig. 14. It was previously known that the Steiner point for a pair of points, a and b,
would lie on the circle that circumscribed that pair and their equilateral third point.
Winter set out to limit this region even further. This limitation was accomplished
by placing a pair of points, a0 and b0, on the circle at a and b, respectively, and
attempting to push them closer and closer together. In his work Winter proposed
and proved various geometric properties that would allow you to push a0 toward b

and b0 toward a. If the two points ever crossed, then it was impossible for the current
branch of the sample space tree to contain a valid answer.

Unfortunately, the description of Winter’s algorithm is not as clear as one would
hope, since the presence of goto statements rapidly makes his program difficult
to understand and almost impossible to modify. Winter’s goal is to build a list of

3148 F.C. Harris and R. Motwani

ba

 a�
b�

Fig. 14 An illustration of Winter’s pushing

FSTs which are candidates for inclusion in the final answer. This list, called T list,
is primed with the edges of the MST, thereby guaranteeing that the length of the
SMT does not exceed the length of the MST.

The rest of the algorithm sets about to expand what Winter termed as Q list,
which is a list of partial trees that the algorithm attempts to combine until no
combinations are possible. Q list is primed with the original input points. The
legality of a combination is determined in the construct procedure, which uses
pushing to eliminate cases. While this combination proceeds, the algorithm also
attempts to take newly created members of Q list and create valid FSTs out of them.
These FSTs are then placed onto T list.

This algorithm was a turning point in the calculation of SMTs. It sparked renewed
interest into the calculation of SMTs in general. This renewed interest has produced
new algorithms such as the negative edge algorithm [57] and the luminary algorithm
[36]. Winter’s algorithm has also served as the foundation for most computerized
computation for calculating SMTs and is the foundation for the parallel algorithm
we present in Section 6.

5.3 Algorithm Enhancements

In 1996, Winter and Zachariasen presented GEOSTEINER96 [61, 62] an enhance-
ment to their exact algorithm that strongly improved the pruning and concatenation
techniques of the GEOSTEINER algorithm just presented. This new algorithm
modified the pruning tests to exploit the geometry of the problem (wedge property,

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3149

bottleneck Steiner distances) to yield effective and/or faster pruning of nonoptimal
full Steiner trees (FSTs). Furthermore, efficient concatenation of FSTs was achieved
by new and strong compatibility tests that utilize pairwise and subset compatibility
along with very powerful preprocessing of surviving FSTs. GEOSTEINER96
has been implemented in C++ on an HP9000 workstation and solves randomly
generated problem instances with 100 terminals in less than 8 min and up to 140
terminals within an hour. The hardest 100-terminal problem was solved in less
than 29 min. Previously unsolved public library instances (OR-Library [3, 4]) have
been solved by GEOSTEINER96 within 14 min. The authors point out that the
concatenation of FSTs still remains the bottleneck of both GEOSTEINER96 and
GEOSTEINER algorithms. However, the authors show that FSTs are generated 25
times faster by GEOSTEINER96 than by EDSTEINER89.

In their follow-up work [58], Winter and Zachariasen presented performance
statistics for the exact SMT problem solved using the Euclidean FST generator
from Winter and Zachariasen’s algorithm [61, 62] and the FST concatenator of
Warme’s algorithm [59]. Optimal solutions have been obtained by this approach for
problem instances of up to 2,000 terminals. Extensive computational experiences
for randomly generated instances [100–500 terminals], public library instances
(OR-Library [100–1,000 terminals] [3, 4], TSPLIB [198–7,397 terminals] [34]),
and difficult instances with special structure have been shared in this work. The
computational study has been conducted on an HP9000 workstation; the FST
generator was implemented in C++ and the FST concatenator was implemented
in C using CPLEX. Results indicate that (1) Warme’s FST concatenation solved
by branch-and-cut is orders of magnitude faster than backtrack search or dynamic
programming based FST concatenation algorithms and (2) the Euclidean FST
generator is more effective on uniformly randomly generated problem instances than
for structured real-world instances.

6 A Parallel Algorithm

6.1 An Introduction to Parallelism

Parallel computation is allowing us to look at problems that have previously been
impossible to calculate, as well as allowing us to calculate faster than ever before
problems we have looked at for a long time. It is with this in mind that we begin to
look at a parallel algorithm for the Steiner minimal tree problem.

There have been volumes written on parallel computation and parallel algo-
rithms; therefore, we will not rehash the material that has already been so excellently
covered by many others more knowledgeable on the topic, but will refer the
interested readers to various books currently available. For a thorough description
of parallel algorithms, and the PRAM model, the reader is referred to the book by
Joseph JáJá [40], and for a more practical approach to implementation on a parallel
machine, the reader is referred to the book by Vipin Kumar et al. [43], the book by
Michael Quinn [51], or the book by Justin Smith [55].

3150 F.C. Harris and R. Motwani

6.2 Overview and Proper Structure

When attempting to construct a parallel algorithm for a problem, the sequential
code for that problem is often the starting point. In examining sequential code,
major levels of parallelism may become self-evident. Therefore, for this problem
the first thing to do is to look at Winter’s algorithm and convert it into structured
code without gotos. The initialization (step 1) does not change, and the translation
of steps 2–7 appears in Fig. 15.

Notice that the code in Fig. 15 lies within a for loop. In a first attempt to
parallelize anything, you typically look at loops that can be split across multiple
processors. Unfortunately, upon further inspection, the loop continues while p<q
and, in the large if statement in the body of the loop, is the statement q++ (line 30).
This means that the number of iterations is data dependent and is not fixed at the
outset. This loop cannot be easily parallelized.

Since the sequential version of the code does not lend itself to easy paralleliza-
tion, the next thing to do is to back up and develop an understanding of how the
algorithm works. The first thing that is obvious from the code is that you select a left
subtree and then try to mate it with possible right subtrees. Upon further examination
we come to the conclusion that a left tree will mate with all trees that are shorter
than it and all trees of the same height that appear after it on Q list, but it will never
mate with any tree that is taller.

6.3 First Approach

The description of this parallel algorithm is in a master–slave perspective. This
perspective was taken due to the structure of most parallel architectures at the time
of its development, as well as the fact that all nodes on the Q list need a sequencing
number assigned to them. The master will therefore be responsible for numbering
the nodes and maintaining the main Q list and T list.

The description from the slave’s perspective is quite simple. A process is
spawned off for each member of Q list that is a proper left subtree (Winter’s
algorithm allows members of Q list that are not proper left subtrees). Each new
process is then given all the current nodes on Q list. With this information the slave
then can determine with which nodes its left subtree could mate. This mating creates
new nodes that are sent back to the master, assigned a number, and added to the
master’s Q list. The slave also attempts to create an FST out of the new Q list
member, and if it is successful, this FST is sent to the master to be added to the
T list. When a process runs out of Q list nodes to check, it sends a request for more
nodes to the master.

The master also has a simple job description. It has to start a process for each
initial member of the Q list, send them all the current members of the Q list, and
wait for their messages.

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3151

/* Step 2 */
1 for(p=0; p<q; p++){
2 AP = A(p);
3 /* Step 3 */
4 for(r=0; ((H(p) > H(r)) AND (r!=q)); r++){
5 if((H(p) == H(r)) AND (r<p))
6 r = p;
7 if(Subset(V(r), AP)){
8 p star = p;
9 r star = r;
10 for(Label = PLUS; Label <= MINUS; Label++){
11 /* Step 4 */
12 AQ = A(q);
13 if(Construct(p star,r star,&(E(q)))){

;p=)q(L41
;r=)q(R51

;lebaL=)q(LBL61
;)p(FL=)q(FL71

;1+)p(H=)q(H81
/*tnereffidsieniltxen*/91

;))r(H,1-)p(niM(xam=)q(niM02
)0=!)p(psL(fi12

)p(psL=)q(psL22
esle32

)r(psL=)q(psL42
)0=!)r(psR(fi52

)r(psR=)q(psR62
esle72

)p(psR=)q(psR82
q92 star = q;

30 q++;
/*5petS*/13

reporP(fi23 to Add Tree to Tlist(q star)){
rof33 all(j in AP with Lf(R(q star)) < j){

;j=)t(tooRS43
q=)t(tooR53 star;

;++t63
37 }
38 }
39 }
40 /* Step 6 */
41 p star = r;
42 r star = p;
43 }
44 }
45 }
46 }

Fig. 15 The main loop properly structured

3152 F.C. Harris and R. Motwani

This structure worked quite well for smaller problems (up to about 15 points), but
for larger problems it reached a grinding halt quite rapidly. This was due to various
reasons such as the fact that for each slave started the entire Q list had to be sent.
This excessive message passing quickly bogged down the network. Secondly, in
their work on 100-point problems, Cockayne and Hewgill [14] made the comment
that T list has an average length of 220, but made no comment about the size of
Q list, which is the number of slaves that would be started. From our work on 100
point problems this number easily exceeds 1; 000 which means that over 1; 000

processes are starting, each being sent the current Q list. From these few problems, it
is quite easy to see that some major changes needed to be made in order to facilitate
the calculation of SMTs for large problems.

6.4 Current Approach

The idea for a modification to this approach came from a paper by Quinn and
Deo [52], on parallel algorithms for Branch-and-Bound problems. Their idea was to
let the master have a list of work that needs to be done. Each slave is assigned to a
processor. Each slave who requests work, is given some, and during its processing
creates more work to be done. This new work is placed in the master’s work
list, which is sorted in some fashion. When a slave runs out of work to do, it
requests more from the master. They noted that this leaves some processors idle at
times (particularly when the problem was starting and stopping), but this approach
provides the best utilization if all branches are independent.

This description almost perfectly matches the problem at hand. First, we will
probably have a fixed number of processors which can be determined at runtime.
Second, we have a list of work that needs to be done. The hard part is implementing
a sorted work list in order to obtain a better utilization. This was implemented in
what we term the Proc list, which is a list of the processes that either are currently
running or have not yet started. This list is primed with the information about the
initial members of Q list, and for every new node put on the Q list, a node which
contains information about the Q list node is placed on the Proc list in a sorted
order.

The results for this approach are quite exciting, and the timings are discussed in
Section 8.

7 Extraction of the Correct Answer

7.1 Introduction and Overview

Once the T list discussed in Sect. 5 is formed, the next step is to extract the proper
answer from it. Winter described this in step 7 of his algorithm. His description
stated that unions of FSTs saved in T list were to be formed subject to constraints
described in his paper. The shortest union is the SMT for the original points.

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3153

Fig. 16 T list for a random set of points

The constraints he described were quite obvious considering the definition of an
SMT. First, the answer had to cover all the original points. Second, the union of
FSTs could not contain a cycle. Third, the answer is bounded in length by the length
of the MST.

This led Winter to implement a simple exhaustive search algorithm over the FSTs
in T list. This approach yields a sample space of size O.2m/ (where m is the number
of trees in T list) that has to be searched. This exponentiality is born out in his work
where he stated that for problems with more than 15 points “the computation time
needed to form the union of FSTs dominates the computation time needed for the
construction of the FSTs [60].” An example of the input the last step of Winter’s
algorithm receives (T list) is given in Fig. 16. The answer it extracts (the SMT) is
shown in Fig. 17.

7.2 Incompatibility Matrix

Once Cockayne published the clarification of Melzak’s proof in 1967 [11] and
Gilbert and Pollak published their paper giving an upper bound the SMT length in
1968 [26], many people were attracted to this problem. From this time until Winter’s
work was published in 1985 [60], quite a few papers were published dealing with
various aspects of the SMT problem, but the attempt to computerize the solution
of the SMT problem bogged down around 12 vertices. It wasn’t until Winter’s

3154 F.C. Harris and R. Motwani

Fig. 17 SMT extracted from T list for a random set of points

algorithm was published that the research community received the spark it needed to
work on computerized computation of the SMT problem with renewed vigor. With
the insight Winter provided into the problem, an attempt to computerize the solution
of the SMT problem began anew.

Enhancement of this algorithm was first attempted by Cockayne and Hewgill
at the University of Victoria. For this implementation Cockayne and Hewgill
spent most of their work on the back end of the problem, or the extraction from
T list, and used Winter’s algorithm to generate T list. This work on the extraction
focused on what they termed an incompatibility matrix. This matrix had one row
and one column for each member of T list. The entries in this matrix were flags
corresponding to one of three possibilities: compatible, incompatible, or don’t know.
The rationale behind the construction of this matrix is the fact that it is faster to look
up the value in a matrix than it is to check for the creation of cycles and improper
angles during the union of FSTs.

The first value calculations for this matrix were straightforward. If two trees
do not have any points in common, then we don’t know if they are incompatible
or not. If they have two or more points in common, then they form a cycle and
are incompatible. If they have only one point in common and the angle at the
intersection point is less than 120ı, then they are also incompatible. In all other
cases they are compatible.

This simple enhancement to the extraction process enabled Cockayne and
Hewgill to solve all randomly generated problems of size up to 17 vertices in a
little over 3 min [13].

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3155

7.3 Decomposition

The next focus of Cockayne and Hewgill’s work was in the area of the decomposi-
tion of the problem. As was discussed earlier in Sect. 4, the best theorems for any
problem, especially non-polynomial problems, are those of the form “If property P
exists then the problem can be decomposed.” Since the formation of unions of FSTs
is exponential in nature, any theorem of this type is important.

Cockayne and Hewgill’s theorem states: “Let A1 and A2 be subsets of A

satisfying (a) A1

S
A2 D A (b) jA1

T
A2j D 1 and (c) the leaf set of each FST in

T list is entirely contained in A1 or A2. Then any SMT on A is the union of separate
SMTs on A1 and A2 [13].” This means that if you break T list into biconnected
components, the SMT will be the union of the SMTs on those components.

Their next decomposition theorem allowed further improvements in the calcula-
tion of SMTs. This theorem stated that if you had a component of T list left from
the previous theorem and if the T list members of that component form a cycle, then
it might be possible to break that cycle and apply the previous algorithm again. The
cycle could be broken if there existed a vertex v whose removal would change that
component from one biconnected component to more than one.

With these two decomposition theorems, Cockayne and Hewgill were able to
calculate the SMT for 79 of 100 randomly generated 30-point problems. The
remaining 21 would not decompose into blocks of size 17 or smaller and thus would
have taken too much computation time [13]. This calculation was implemented in
the program they called EDSTEINER86.

7.4 Forest Management

Cockayne and Hewgill’s next work focused on improvements to the incompat-
ibility matrix previously described and was implemented in a program called
EDSTEINER89. Their goal was to reduce the number of don’t know’s in the matrix
and possibly remove some FSTs from T list altogether.

They proposed two refinements for calculating the entry into the incompatibility
matrix and one Tree Deletion Theorem. The Tree Deletion Theorem stated that if
there exists an FST in T list that is incompatible with all FSTs containing a certain
point a, then the original FST can be deleted since at least one FST containing a

will be in the SMT.
This simple change allowed Cockayne and Hewgill to calculate the SMT for 77

of 100 randomly generated 100-point problems [14]. The other 23 problems could
not be calculated in less than 12 h and were therefore terminated. For those that did
complete, the computation time to generate T list had become the dominate factor
in the overall computation time.

So the pendulum had swung back from the extraction of the correct answer from
T list to the generation of T list dominating the computation time. In Sect. 8 we
will look at the results of the parallel algorithm presented in Sect. 9 to see if the
pendulum can be pushed back the other way one more time.

3156 F.C. Harris and R. Motwani

8 Computational Results

8.1 Previous Computation Times

Before presenting the results for the parallel algorithm presented in Sect. 6, it is
worthwhile to review the computation times that have preceded this algorithm in
the literature. The first algorithm for calculating FSTs was discussed in a paper by
Cockayne [12] where he mentioned that preliminary results indicated his code could
solve any problem up to 30 points that could be decomposed with the Steiner hull
into regions of 6 points or less.

As we saw in Sect. 2, the next computational results were presented by Cockayne
and Schiller [15]. Their program, called STEINER, was written in FORTRAN on
an IBM 360/50 at the University of Victoria. STEINER could calculate the SMT
for any 7-point problem in less than 5 min of CPU time. When the problem size was
increased to 8, it could solve them if 7 of the vertices were on the Steiner hull. When
this condition held it could calculate the SMT in under 10 min, but if this condition
did not hold it would take an unreasonable amount of time.

Cockayne called STEINER a prototype for calculating SMTs and allowed Boyce
and Serry of Bell Labs to obtain a copy of his code to improve the work. They
improved the code, renamed it STEINER72, and were able to calculate the FST for
all 9-point problems and most 10-point problems in a reasonable amount of time [6].
Boyce and Serry continued their work and developed another version of the code
that they thought could solve problems of size up to 12 points, but no computation
times were given.

The breakthrough we saw in Sect. 5 was by Pawel Winter. His program
called GEOSTEINER [60] was written in SIMULA 67 on a UNIVAC-1100.
GEOSTEINER could calculate SMTs for all randomly generated sets with 15 points
in under 30 s. This improvement was put into focus when he mentioned that all
previous implementations took more than an hour for nondegenerate problems of
size 10 or more. In his work, Winter tried randomly generated 20-point problems
but did not give results since some of them did not finish in his CPU time limit
of 30 s. The only comment he made for problems bigger than size 15 was that the
extraction discussed in Sect. 7 was dominating the overall computation time.

The next major program, EDSTEINER86, was developed in FORTRAN on an
IBM 4381 by Cockayne and Hewgill [13]. This implementation was based upon
Winter’s results, but had enhancements in the extraction process. EDSTEINER86
was able to calculate the FST for 79 out of 100 randomly generated 32-point
problems. For these problems the CPU time for T list varied from 1 to 5 min, while
for the 79 problems that finished the extraction time never exceeded 70 s.

Cockayne and Hewgill subsequently improved their SMT program and renamed
it EDSTEINER89 [14]. This improvement was completely focused on the extraction
process. EDSTEINER89 was still written in FORTRAN, but was run on a SUN 3/60
workstation. They randomly generated 200 32-point problems to solve and found
that the generation of T list dominated the computation time for problems of this
size. The average time for T list generation was 438 s, while the average time for

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3157

Table 2 SMT programs,
authors, and results Program Author(s) Points

STEINER Cockayne & Schiller 7
Univ of Victoria

STEINER72 Boyce & Serry 10
ATT Bell Labs

STEINER73 Boyce & Serry 12
ATT Bell Labs

GEOSTEINER Winter 15
Univ of Copenhagen

EDSTEINER86 Cockayne & Hewgill 30
Univ of Victoria

EDSTEINER89 Cockayne & Hewgill 100
Univ of Victoria

PARSTEINER94 Harris 100
Univ of Nevada

forest management and extraction averaged only 43 s. They then focused on 100-
point problems and set a CPU limit of 12 h. The average CPU time to generate
T list was 209 min for these problems, but only 77 finished the extraction in the
CPU time limit. These programs and their results are summarized in Table 2.

8.2 The Implementation

8.2.1 The Significance of the Implementation
The parallel algorithm we presented has been implemented in a program called
PARSTEINER94 [28, 31]. This implementation is only the second SMT program
since Winter’s GEOSTEINER in 1981 and is the first parallel code. The major
reason that the number of SMT programs is so small is due to the fact that any
implementation is necessarily complex.

PARSTEINER94 currently has over 13,000 lines of C code. While there is a
bit of code dealing with the parallel implementation, certain sections of Winter’s
algorithm have a great deal of code buried beneath the simplest statements. For
example, line 13 of Fig. 15 is the following:

if(Construct(p_star,r_star,&(E(q)))){.

To implement the function Construct() over 4; 000 lines of code were
necessary, and this does not include the geometry library with functions such as
equilateral third point(),center of equilateral triangle(),
line circle intersect(), and a host more.

Another important aspect of this implementation is the fact that there can now
be comparisons made between the two current SMT programs. This would allow
verification checks to be made between EDSTEINER89 and PARSTEINER94. This

3158 F.C. Harris and R. Motwani

verification is important since with any complex program it is quite probable that
there are a few errors hiding in the code. This implementation would also allow
other SMT problems, such as those we will discuss in Sect. 9, to be explored
independently, thereby broadening the knowledge base for SMTs even faster.

8.2.2 The Platform
In the design and implementation of parallel algorithms, you are faced with many
decisions. One such decision is what will your target architecture be? There are
times when this decision is quite easy due to the machines at hand or the size of the
problem. In our case we decided not to target a specific machine, but an architectural
platform called PVM [19].

PVM, which stands for Parallel Virtual Machine, is a software package available
from Oak Ridge National Laboratory. This package allows a collection of parallel
or serial machines to appear as a large distributed memory computational machine
(MIMD model). This is implemented via two major pieces of software, a library
of PVM interface routines, and a PVM demon that runs on every machine that you
wish to use.

The library interface comes in two languages, C and ORTRAN. The functions in
this library are the same no matter which architectural platform you are running on.
This library has functions to spawn off (start) many copies of a particular program
on the parallel machine, as well as functions to allow message passing to transfer
data from one process to another. Application programs must be linked with this
library to use PVM.

The demon process, called pvmd in the user’s guide, can be considered the back
end of PVM. As with any back end, such as the back end of a compiler, when
it is ported to a new machine, the front end can interface to it without change.
The back end of PVM has been ported to a variety of machines, such as a few
versions of Crays, various Unix machines such as Sun workstations, HP machines,
Data General workstations, and DEC Alpha machines. It has also been ported to a
variety of true parallel machines such as the iPSC/2, iPSC/860, CM2, CM5, BBN
Butterfly, and the Intel Paragon.

With this information it is easy to see why PVM was picked as the target
platform. Once a piece of code is implemented under PVM, it can be recompiled
on the goal machine, linked with the PVM interface library on that machine, and
run without modification. In our case we designed PARSTEINER94 on a network
of SUN workstations, but, as just discussed, moving to a large parallel machine
should be trivial.

8.2.3 Errors Encountered
When attempting to implement any large program from another person’s descrip-
tion, you often reach a point where you don’t understand something. At first you
always question yourself, but as you gain an understanding of the problem you learn
that there are times when the description you were given is wrong. Such was the case
with the SMT problem. Therefore, to help some of those that may come along and

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3159

attempt to implement this problem after us, we recommend that you look at the list
of errors we found while implementing Winter’s algorithm [28].

8.3 Random Problems

8.3.1 Hundred-Point Random Problems
From the literature it is obvious that the current standard for calculating SMTs has
been established by Cockayne and Hewgill. Their work on SMTs has pushed the
boundary of computation out from the 15-point problems of Winter to being able to
calculate SMTs for a large percentage of 100-point problems.

Cockayne and Hewgill, in their investigation of the effectiveness of
EDSTEINER89, randomly generated 100 problems with 100 points inside the
unit square. They set up a CPU limit of 12 h, and 77 of 100 problems finished
within that limit. They described the average execution times as follows: T list
construction averaged 209 min, forest management averaged 27 min, and extraction
averaged 10.8 min.

While preparing the code for this project, Cockayne and Hewgill were kind
enough to supply us with 40 of the problems generated for [14] along with
their execution times. These data sets were given as input to the parallel code
PARSTEINER94, and the calculation was timed. The wall clock time necessary to
generate T list for the two programs appears in Table 3. For all 40 cases, the average
time to generate T list was less than 20 min. This is exciting because we have been
able to generate T list properly while cutting an order of magnitude off the time.

These results are quite promising for various reasons. First, the parallel im-
plementation presented in this work is quite scalable and therefore could be run
with many more processors, thereby enhancing the speedup provided. Second, with
the PVM platform used, we can in the future port this work to a real parallel
MIMD machine, which will have much less communication overhead, or to a shared
memory machine, where the communication could all but be eliminated, and expect
the speedup to improve much more.

It is also worth noting that proper implementation of the cycle breaking which
Cockayne and Hewgill presented in [13] is important if extraction of the proper
answer is to be accomplished. In their work, Cockayne and Hewgill mentioned that
58 % of the problems they generated were solvable without the cycle breaking being
implemented, which is approximately what we have found with the data sets they
provided. An example of such a T list that would need cycles broken (possibly
multiple times) is provided in Fig. 18.

8.3.2 Larger Random Problems
Once the 100-point problems supplied by Cockayne and Hewgill had been success-
fully completed, the next step was to try a few larger problems. This was done with
the hope of gaining an insight into the changes that would be brought about from
the addition of more data points.

3160 F.C. Harris and R. Motwani

Table 3 Comparison of
T list times Test case PARSTEINER94 EDSTEINER89

1 650 8; 597

2 1; 031 13; 466

3 1; 047 15; 872

4 1; 687 17; 061

5 874 13; 258

6 1; 033 15; 226

7 1; 164 12; 976

8 1; 109 16; 697

9 975 15; 354

10 554 8; 650

11 660 9; 894

12 946 13; 057

13 858 13; 687

14 978 17; 132

15 819 11; 333

16 752 12; 766

17 896 13; 815

18 788 10; 508

19 618 10; 550

20 724 11; 193

21 983 11; 357

22 889 12; 999

23 1; 449 15; 028

24 890 14; 417

25 912 17; 562

26 1; 125 12; 395

27 943 15; 721

28 583 10; 014

29 1; 527 18; 656

30 681 10; 033

31 873 16; 401

32 791 10; 217

33 1; 132 18; 635

34 1; 097 18; 305

35 1; 198 19; 657

36 803 11; 174

37 923 15; 256

38 824 12; 920

39 826 12; 538

40 972 15; 570

Avg. 939 13; 748

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3161

Fig. 18 T list with more than 1 cycle

For this attempt we generated several random sets of 110 points each. The length
of T list increased by approximately 38 %, from an average of 210 trees to an
average of 292 trees. The time to compute T list also increased drastically, going
from an average of 15 min to an average of more than 40 min.

The interesting thing that jumped out the most was the increase in the number
of large biconnected components. Since the extraction process must do a complete
search of all possibilities, the larger the component, the longer it will take. This is a
classic example of an exponential problem, where when the problem size increases
by 1, the time doubles. With this increased component size, none of the random
problems generated finished inside a 12 h cut off time.

This rapid growth puts into perspective the importance of the work previously
done by Cockayne and Hewgill. Continuation of their work with incompatibility
matrices as well as decomposition of T list components appears at this point to be
very important for the future of SMT calculations.

8.4 Grids

The problem of determining SMTs for grids was mentioned to the author by Ron
Graham. In this context we are thinking of a grid as a regular lattice of unit squares.
The literature has little of information regarding SMTs on grids, and most of the
information that is given is conjectured and not proven. In Sect. 8.4.1 we will

3162 F.C. Harris and R. Motwani

look at what is known about SMTs on grids. In the following subsections, we will
introduce new results for grids up through 7 � m in size. These results presented
are computational results from PARSTEINER94 [28, 30, 31] which was discussed
previously.

8.4.1 2 � m and Square Grids
The first proof for anything besides a 2 � 2 grid came in a paper by Chung and
Graham [10] in which they proved the optimality of their characterization of SMTs
for 2 � m grids. The only other major work was presented in a paper by Chung,
Gardner, and Graham [9]. They argued the optimality of the SMT on 2 � 2, 3 � 3,
and 4 � 4 grids and gave conjectures and constructions for those conjectures for
SMTs on all other square lattices.

In their work Chung, Gardner, and Graham specified three building blocks from
which all SMTs on square (n � n) lattices were constructed. The first, labeled I,
is just a K2 or a path on two vertices. This building block is given in Fig. 19a.
The second, labeled Y , is a full Steiner tree (FST) (n vertices and n � 2 Steiner
points) on 3 vertices of the unit square. This building block is given in Fig. 19b. The
third, labeled X , is an FST on all 4 vertices of the unit square. This building block
is given in Fig. 19c. For the generalizations we are going to make here, we need to
introduce one more building block, which we will label S. This building block is an
FST on a 3 � 2 grid and appears in Fig. 19d.

SMTs for grids of size 2 � m have two basic structures. The first is an FST on all
the vertices in the 2�m grid. An example of this for a 2�3 grid is given in Fig.19d.
The other structure is constructed from the building blocks previously described. We
hope that these building blocks, when put in conjunction with the generalizations for
3�m, 4�m, 5�m, 6�m, and 7�m will provide the foundation for a generalization
of m � n grids in the future.

a b c d

Fig. 19 Building blocks

Fig. 20 SMT for a 2 � 4 grid

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3163

In their work on ladders (2 � m grids) Chung and Graham established and
proved the optimality of their characterization for 2 � m grids. Before giving their
characterization, a brief review of the first few 2 � m SMTs is in order. The SMT
for a 2 � 2 grid is shown in Fig. 19c, the SMT for a 2 � 3 grid is shown in Fig. 19d,
and the SMT for a 2 � 4 grid is given in Fig. 20.

Chung and Graham [10] proved that SMTs for ladders fell into one of two
categories. If the length of the ladder was odd, then the SMT was the FST on the
vertices of the ladder. The SMT for the 2 � 3 grid in Fig. 19d is an example of this.
If the length of the ladder was even, the SMT was made up of a series of . m

2
� 1/

XIs followed by one last X . The SMT for the 2 � 4 grid in Fig. 20 is an example
of this.

8.4.2 3 � m Grids
The SMT for 3 � m grids has a very easy characterization which can be seen once
the initial cases have been presented. The SMT for the 3 � 2 grid is presented in
Fig. 19d. The SMT for the 3 � 3 grid is presented in Fig. 21.

From here we can characterize all 3 � m grids. Except for the 3 � 2 grid, which
is an S building block, there will be only two basic building blocks present, X s and
Is. There will be exactly two Is and .m � 1/X s. The two Is will appear on each
end of the grid. The X s will appear in a staggered checkerboard pattern, one on each
column of the grid the same way that the two X s are staggered in the 3�3 grid. The
3 � 5 grid is a good example of this and is shown in Fig. 22.

Fig. 21 SMT for a 3 � 3 grid

Fig. 22 SMT for a 3 � 5 grid

3164 F.C. Harris and R. Motwani

8.4.3 4 � m Grids
The foundation for the 4 � m grids has already been laid. In their most recent work,
Cockayne and Hewgill presented some results on square lattice problems [14]. They
looked at 4 � m grids for m D 2 to m D 6. They also looked at the SMTs for these
problems when various lattice points in that grid were missing. What they did not
do, however, was characterize the structure of the SMTs for all 4 � m grids.

The 4 � 2 grid is given in Fig. 20. From the work of Chung et al. [9], we know
that the SMT for a 4 � 4 grid is a checkerboard pattern of 5 X s. This layout gives
us the first two patterns we will need to describe the 4 � m generalization. The first
pattern, which we will call pattern A, is the same as the 3�4 grid without the two Is
on the ends. This pattern is given in Fig. 23. The second pattern, denoted as pattern
B, is the 2 � 4 grid in Fig. 20 without the connecting I. This is shown in Fig. 24.

Before the final characterization can be made, two more patterns are needed. The
first one, called pattern C, is a 4 � 3 grid where the pattern is made up of two non-
connected 2 � 3 SMTs, shown in Fig. 25. The next pattern, denoted by pattern D,

Fig. 23 4 � m pattern A

Fig. 24 4 � m pattern B

Fig. 25 4 � m pattern C

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3165

Fig. 26 4 � m pattern D

Fig. 27 4 � m pattern E

Table 4 Rewrite rules for
4 � m grids

1 B ! C
2 C ! BDB
3 DC ! EAB

Table 5 String
representations for 4 � m

grids

m 5 6 7 8
String AC ABDB ABDC ABEAB
m 9 10 11
String ABEAC ABEABDB ABEABDC

is quite simply a Y centered in a 2 � 4 grid. This is shown in Fig. 26. The final
pattern, denoted by E , is just an I on the right side of a 2 � 4 grid. This is shown in
Fig. 27.

Now we can begin the characterization. The easiest way to present the character-
ization is with some simple string rewriting rules. Since the 4 � 2, 4 � 3, and 4 � 4

patterns have already been given, the rules will begin with a 4 � 5 grid. This grid
has the string AC. The first rule is that whenever there is a C on the right end of
your string, replace it with BDB. Therefore, a 4 � 6 grid is ABDB. The next rule is
that whenever there is a B on the right end of your string, replace it with a C. The
final rule is whenever there is a DC on the right end of your string, replace it with
an EAB. These rules are summarized in Table 4. A listing of the strings for m from
5 to 11 is given in Table 5.

8.4.4 5 � m Grids
For the 5 � m grids, there are 5 building blocks (and their mirror images which are
donated with an 0) that are used to generate any 5 � m grid. These building blocks
appear in Figs. 28–32.

3166 F.C. Harris and R. Motwani

Fig. 28 5 � m pattern A

Fig. 29 5 � m pattern B

Fig. 30 5 � m pattern C

Fig. 31 5 � m pattern D

Fig. 32 5 � m pattern E

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3167

With the building blocks in place, the characterization of 5 � m grids is quite
easy using grammar rewrite rules. The rules used for rewriting strings representing
a 5 � m grid are given in Table 6. The SMTs for 5 � 2, 5 � 3, and 5 � 4 have already
been given. For a 5�5 grid the SMT is made up of the following string: EA0BD. As
a reminder, the A0 signifies the mirror of building block A. A listing of the strings
for m from 5 to 11 is given in Table 7.

8.4.5 6 � m Grids
For the 6�m grids, there are five building blocks that are used to generate any 6�m

grid. These building blocks appear in Figs. 33–37.
The solution for 6 � m grids can now be characterized by using grammar rewrite

rules. The rules used for rewriting strings representing a 6 � m grid are given in
Table 8. The basis for this rewrite system is the SMT for the 6 � 3 grid which is AC.

Table 6 Rewrite rules for
5 � m grids

1 C ! B0D0

2 D ! A0E
3 E ! AC
4 C0 ! BD
5 D0 ! AE 0

6 E 0 ! A0C0

Table 7 String representations for 5 � m grids

m 5 6 7 8
String EA0BD EA0BA0E EA0BA0AC EA0BA0AB0D0

m 9 10 11
String EA0BA0AB0AE 0 EA0BA0AB0AA0C0 EA0BA0AB0AA0BD

Fig. 33 6 � m pattern A

Fig. 34 6 � m pattern B

3168 F.C. Harris and R. Motwani

Fig. 35 6 � m pattern C

Fig. 36 6 � m pattern D

Fig. 37 6 � m pattern E

Table 8 Rewrite rules for
6 � m grids

1 C ! BD
2 D ! EC

Table 9 String
representations for 6 � m

grids

m = 6 7 8
String ABEBD ABEBEC ABEBEBD
m = 9 10 11
String ABEBEBEC ABEBEBEBD ABEBEBEBEC

It is also nice to see that for the 6 � m grids, there is a simple regular expression
which can characterize what the string will be. That regular expression has the form
A.BE/�.CjBD/, which means that the BE part can be repeated 0 or more times and
the end can be either C or BD. A listing of the strings for m from 6 to 11 is given in
Table 9.

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3169

8.4.6 7 � m Grids
For the 7 � m grids, there are six building blocks that are used to generate any 7 � m

grid. These building blocks appear in Figs. 38–43.

Fig. 38 7 � m pattern A

Fig. 39 7 � m pattern B

Fig. 40 7 � m pattern C

Fig. 41 7 � m pattern D

3170 F.C. Harris and R. Motwani

Fig. 42 7 � m pattern E

Fig. 43 7 � m pattern F

Table 10 Rewrite rules for
7 � m grids

1 E 0F 0 ! BA0F
2 F ! CD
3 CD ! AEF
4 EF ! B0AF 0

5 F 0 ! C0D0

6 C0D0 ! A0E 0F 0

Table 11 String representations for 7 � m grids

m 6 7 8 9

String FA0BA0F FA0BA0CD FA0BA0AEF FA0BA0AB0AF 0

m 10 11 12

String FA0BA0AB0AC0D0 FA0BA0AB0AA0E 0F 0 FA0BA0AB0AA0BA0F

The grammar rewrite rules for strings representing a 7 � m grid are given in
Table 10. The basis for this rewrite system is the SMT for the 7 � 5 grid which is
FA0E 0F 0. A listing of the strings for m from 6 to 11 is given in Table 11.

9 Future Work

9.1 Grids

In this work we reviewed what is known about SMTs on grids and then presented
results from PARSTEINER94 [28, 31] which characterize SMTs for 3 � m to
7�m grids. The next obvious question is the following: What is the characterization
for an 8�m grid or an n�m grid? Well, this is where things start getting nasty. Even
though PARSTEINER94 cuts the computation time of the previous best program

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3171

Fig. 44 8 � 8

for SMTs by an order of magnitude, the computation time for an NP-Hard problem
blows up sooner or later, and 8 � m is where we run into the computation wall.

We have been able to make small chips into this wall though and have some
results for 8 � m grids. The pattern for this seems to be based upon repeated use of
the 8 � 8 grid which is shown in Fig. 44. This grid solution seems to be combined
with smaller 8� solutions in order to build larger solutions. However, until better
computational approaches are developed, further characterizations of SMTs on grids
will be very hard and tedious.

9.2 Further Parallelization

9.2.1 Algorithm Enhancements
There remains a great deal of work that can be done on the Steiner minimal tree
problem in the parallel arena. The first thing to consider is whether there are other
ways to approach the parallel generation of T list that would be more efficient.
Improvement in this area would push the computation pendulum even further away
from T list generation and toward SMT extraction.

The next thing to consider is the entire extraction process. The initial generation
of the incompatibility matrix has the appearance of easy parallelization. The forest
management technique introduced by Cockayne and Hewgill could also be put into
a parallel framework, thereby speeding up the preparation for extraction quite a bit.

3172 F.C. Harris and R. Motwani

With this initialization out of the way, decomposition could then be considered.
The best possible enhancement here might be the addition of thresholds. As with
most parallel algorithms, for any problem smaller than a particular size, it is usually
faster to solve it sequentially. These thresholds could come into play in determining
whether to call a further decomposition, such as the cycle decomposition introduced
by Cockayne and Hewgill that was discussed in Sect. 7.

The final option for parallelization is one that may yield the best results and that
is in the extraction itself. Extraction is basically a branch-and-bound process, using
the incompatibility matrix. This branch and bound is primed with the length of the
MST as the initial bound and continues until all possible combinations have been
considered. The easiest implementation here would probably be the idea presented
in the paper by Quinn and Deo [52] that served as the basis for the parallel algorithm
in Sect. 6.

9.2.2 GPU Implementation
With games and visualization driving the evolution of graphics processors, the fixed
functionality of the rendering pipeline once offered has been steadily replaced by the
introduction of programmable pipeline components called shaders. These shaders
not only allow the GPU to be used for more elaborate graphical effects but also
allow it to be used for more general purpose computations. By storing general data
as texture data, user-programmed vertex and fragment shaders can transform the
GPU into a highly data parallel multiprocessor [48].

In 2007, Nvidia released CUDA [46], a programming language which allows
for direct GPGPU programming in a C-like environment. Modern GPUs offer 512
processing cores [47], which is far more than any CPU currently provides. Many
researchers have taken advantage of the environment provided by CUDA to easily
map their parallel algorithms to the GPU.

Of note is the work being done by Joshua Hegie [33]. In his thesis, Hegie has
mapped out an implementation of Winter’s work onto the GPU. Preliminary results
are very promising, and in the future work, he maps out a methodology for the use
of multiple GPUs which will open the door for much larger problems at a reasonable
computation time.

9.3 Additional Problems

9.3.1 1-Reliable Steiner Tree Problem
If we would like to be able to sustain a single failure of any vertex, without in-
terrupting communication among remaining vertices, the minimum length network
problem takes on a decidedly different structure. For example, in any FST all of the
original vertices are of degree 1, and hence, any one can be disconnected from the
network by a single failure of the adjacent Steiner point.

We would clearly like a minimum length 2-connected network. The answer can
be the minimum length Hamiltonian cycle (consider the vertices of the unit square),
but it does not need to be, as shown in the ‚ graph given in Fig. 45.

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3173

Fig. 45 Theta graph

Here we can add Steiner points near the vertices of degree 3 and reduce the
network length without sacrificing 2-connectivity. This is not just a single graph,
but is a member of a family of graphs that look like ladders, where the ‚ graph
has only one internal rung. We hope to extend earlier work providing constructions
on 2-connected graphs [32] to allow effective application of an annealing algorithm
that could walk through graphs within the 2-connected class.

9.3.2 Augmenting Existing Plane Networks
In practical applications, it frequently happens that new points must be joined to an
existing Steiner minimal tree. Although a new and larger SMT can, in principle, be
constructed which connects both the new and the existing points, this is typically
impractical, e.g., in cases where a fiber optic network has already been constructed.
Thus, the only acceptable approach is to add the new points to the network as
cheaply as possible. Cockayne has presented this problem which we can state as
follows:

Augmented Steiner Network: Given a connected plane graph G D .V; E/ (i.e.,
an embedding of a connected planar graph in E2) and a set V 0 of points in
the plane which are not on edges of G, construct a connected plane supergraph
G” D .V ”; E”/, such that V ” contains V

S
V 0, E” contains E , and the sum of

the Euclidean lengths of the set of edges in E” � E is a minimum. In constructing
the plane graph G”, it is permitted to add an edge connecting a point in V 0 to an

3174 F.C. Harris and R. Motwani

1

f1 f2

s2
2

s1

3

4

f3

76
s3

5

8Fig. 46 An optimal forest

interior point of an edge in G. It is also permitted to add Steiner points. Thus, strictly
speaking, G” does not need to be a supergraph of G.

The Augmented Steiner Network Problem clearly has applications in such di-
verse areas as canal systems, rail systems, housing subdivisions, irrigation networks,
and computer networks. For example, given a (plane) fiber optic computer network
G D .V; E/ and a new set V 0 of nodes to be added to the network, the problem is to
construct a set F 0 of fiber optic links with minimum total length that connects V 0 to
G. The set F 0 of new links is easily seen to form a forest in the plane, because the
minimum total length requirement ensures that there cannot be cycles in F 0.

As an example, consider the situation in Fig. 46 where G consists of a single,
long edge and V 0 D v1; : : : ; v8. The optimal forest F 0 consists of three trees joining
G at f1, f2, and f3. It is necessary that extra Steiner points s1, s2, and s3 be added
so that F has minimum length.

While we are aware of several algorithms for solving special cases of the
Augmented Existing Plane Network Problem, such as those by Chen [7] and
Trietsch [56] or the special case where the graph G consists of a single vertex,
in which case the problem is equivalent to the classical Steiner minimal tree
problem, we are not aware of any algorithms or computer programs available for
exact solutions to the general form of this problem. Here, “exact” means provably
optimal except for roundoff error and machine representation of real numbers. Non-
exact (i.e., heuristic) solutions are suboptimal although they may often be found
considerably faster.

Cross-References

�Gradient-Constrained Minimum Interconnection Networks
�Steiner Minimum Trees in E3: Theory, Algorithms, and Applications

Recommended Reading

1. A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, C. Yap, Parallel computational geometry.
Algorithmica 3(3), 293–327 (1988)

2. M.J. Atallah, M.T. Goodrich, Parallel algorithms for some functions of two convex polygons.
Algorithmica 3(4), 535–548 (1988)

http://dx.doi.org/10.1007/978-1-4419-7997-1_73
http://dx.doi.org/10.1007/978-1-4419-7997-1_53

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3175

3. J.E. Beasley, Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11),
1069–1072 (1990)

4. J.E. Beasley, Or-library. http://people.brunel.ac.uk/�mastjjb/jeb/info.html. Last Accessed
29 Dec 2010

5. M.W. Bern, R.L. Graham, The shortest-network problem. Sci. Am. 260(1), 84–89 (1989)
6. W.M. Boyce, J.R. Seery, STEINER 72 – an improved version of Cockayne and Schiller’s

program STEINER for the minimal network problem. Technical Report 35, Bell Labs.,
Department of Computer Science, 1975

7. G.X. Chen, The shortest path between two points with a (linear) constraint [in Chinese].
Knowl. Appl. Math. 4, 1–8 (1980)

8. A. Chow, Parallel Algorithms for Geometric Problems. PhD thesis, University of Illinois,
Urbana-Champaign, IL, 1980

9. F.R.K. Chung, M. Gardner, R.L. Graham, Steiner trees on a checkerboard. Math. Mag. 62,
83–96 (1989)

10. F.R.K. Chung, R.L. Graham, in Steiner Trees for Ladders, ed. by B. Alspach, P. Hell,
D.J. Miller, Annals of Discrete Mathematics, vol. 2 (Elsevier Science Publishers B.V., The
Netherlands, 1978), pp. 173–200

11. E.J. Cockayne, On the Steiner problem. Can. Math. Bull. 10(3), 431–450 (1967)
12. E.J. Cockayne, On the efficiency of the algorithm for Steiner minimal trees. SIAM J. Appl.

Math. 18(1), 150–159 (1970)
13. E.J. Cockayne, D.E. Hewgill, Exact computation of Steiner minimal trees in the plane. Info.

Process. Lett. 22(3), 151–156 (1986)
14. E.J. Cockayne, D.E. Hewgill, Improved computation of plane Steiner minimal trees.

Algorithmica 7(2/3), 219–229 (1992)
15. E.J. Cockayne, D.G. Schiller, in Computation of Steiner Minimal Trees, ed. by D.J.A. Welsh,

D.R. Woodall, Combinatorics, pp. 52–71, Maitland House, Warrior Square, Southend-on-Sea,
Essex SS1 2J4, 1972. Mathematical Institute, Oxford, Inst. Math. Appl.

16. R. Courant, H. Robbins, What Is Mathematics? An Elementary Approach to Ideas and Methods
(Oxford University Press, London, 1941)

17. D.Z. Du, F.H. Hwang, A proof of the Gilbert-Pollak conjecture on the Steiner ratio.
Algorithmica 7(2/3), 121–135 (1992)

18. M.R. Garey, R.L. Graham, D.S Johnson, The complexity of computing Steiner minimal trees.
SIAM J. Appl. Math. 32(4), 835–859 (1977)

19. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel
Virtual Machine – A User’s Guide and Tutorial for Networked Parallel Computing (MIT
Press, Cambridge, MA, 1994)

20. R. Geist, R. Reynolds, C. Dove, Context sensitive color quantization. Technical Report
91–120, Dept. of Comp. Sci., Clemson Univ., Clemson, SC 29634, July 1991

21. R. Geist, R. Reynolds, D. Suggs, A markovian framework for digital halftoning. ACM Trans.
Graph. 12(2), 136–159 (1993)

22. R. Geist, D. Suggs, Neural networks for the design of distributed, fault-tolerant, computing
environments, in Proc. 11th IEEE Symp. on Reliable Distributed Systems (SRDS), Houston,
Texas, October 1992, pp. 189–195

23. R. Geist, D. Suggs, R. Reynolds, Minimizing mean seek distance in mirrored disk systems
by cylinder remapping, in Proc. 16th IFIP Int. Symp. on Computer Performance Model-
ing, Measurement, and Evaluation (PERFORMANCE ‘93), Rome, Italy, September 1993,
pp. 91–108

24. R. Geist, D. Suggs, R. Reynolds, S. Divatia, F. Harris, E. Foster, P. Kolte, Disk performance
enhancement through Markov-based cylinder remapping, in Proc. of the ACM Southeastern
Regional Conf., ed. by C.M. Pancake, D.S. Reeves, Raleigh, North Carolina, April 1992,
pp. 23–28. The Association for Computing Machinery, Inc.

25. G. Georgakopoulos, C. Papadimitriou, A 1-steiner tree problem. J. Algorithm 8(1), 122–130
(1987)

26. E.N. Gilbert, H.O. Pollak, Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

3176 F.C. Harris and R. Motwani

27. S. Grossberg, Nonlinear neural networks: Principles, mechanisms, and architectures. Neural
Network 1, 17–61 (1988)

28. F.C. Harris, Jr, Parallel Computation of Steiner Minimal Trees. PhD thesis, Clemson,
University, Clemson, SC 29634, May 1994

29. F.C. Harris, Jr, A stochastic optimization algorithm for steiner minimal trees. Congr. Numer.
105, 54–64 (1994)

30. F.C. Harris, Jr, An introduction to steiner minimal trees on grids. Congr. Numer. 111, 3–17
(1995)

31. F.C. Harris, Jr, Parallel computation of steiner minimal trees, in Proc. of the 7th SIAM Conf. on
Parallel Process. for Sci. Comput., ed. by David H. Bailey, Petter E. Bjorstad, John R. Gilbert,
Michael V. Mascagni, Robert S. Schreiber, Horst D. Simon, Virgia J. Torczan, Layne T. Watson,
San Francisco, California, February 1995. SIAM, pp. 267–272

32. S. Hedetniemi, Characterizations and constructions of minimally 2-connected graphs and
minimally strong digraphs, in Proc. 2nd Louisiana Conf. on Combinatorics, Graph Theory,
and Computing, Louisiana State University, Baton Rouge, Louisiana, March 1971, pages
257–282

33. J. Hegie, Steiner minimal trees on the gpu. Master’s thesis, University of Nevada, Reno, 2012
34. Universitat Heidelberg, Tsplib. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. Last

Accessed 29 Dec 2010
35. J.J. Hopfield, Neurons with graded response have collective computational properties like

those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)
36. F.K. Hwang, J.F. Weng, The shortest network under a given topology. J. Algorithm 13(3),

468–488 (1992)
37. F.K. Hwang, D.S. Richards, Steiner tree problems. Networks 22(1), 55–89 (1992)
38. F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, vol. 53 of Ann. Discrete

Math. (North-Holland, Amsterdam, 1992)
39. F.K. Hwang, G.D. Song, G.Y. Ting, D.Z. Du, A decomposition theorem on Euclidian Steiner

minimal trees. Disc. Comput. Geom. 3(4), 367–382 (1988)
40. J. JáJá, An Introduction to Parallel Algorithms (Addison-Wesley, Reading, MA, 1992)
41. V. Jarnı́k, O. Kössler, O minimálnich gratech obsahujicich n daných bodu [in Czech]. Casopis

Pesk. Mat. Fyr. 63, 223–235 (1934)
42. S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing. Science 220(13),

671–680 (1983)
43. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and

Analysis of Algorithms (The Benjamin/Cummings Publishing, Redwood City, 1994)
44. Z.A. Melzak, On the problem of Steiner. Can. Math. Bull. 4(2), 143–150 (1961)
45. M.K. Molloy, Performance analysis using stochastic petri nets. IEEE Trans. Comput. C-31(9),

913–917 (1982)
46. Nvidia, Cuda zone. http://www.nvidia.com/object/cuda home new.html. Last Accessed 29

Dec 2010
47. Nvidia, Geforce gtx 580. http://www.nvidia.com/object/product-geforce-gtx-580-us.html.

Last Accessed 29 Dec 2010
48. J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E. Lefohn, T.J. Purcell, A

survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1),
80–113 (2007)

49. J.L. Peterson, Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood Cliffs,
1981)

50. F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction (Springer, New York,
1988)

51. M.J. Quinn, Parallel Computing: Theory and Practice (McGraw-Hill, New York, 1994)
52. M.J. Quinn, N. Deo, An upper bound for the speedup of parallel best-bound branch-and-bound

algorithms. BIT 26(1), 35–43 (1986)
53. W.R. Reynolds, A Markov Random Field Approach to Large Combinatorial Optimization

Problems. PhD thesis, Clemson, University, Clemson, SC 29634, August 1993

http://comopt.ifi.uni-heidelberg.de/ software/TSPLIB95/
http://www.nvidia.com/object/cuda_home _new.html
http://www.nvidia.com/object/product-geforce-gtx-580-us.html

Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work 3177

54. M.I. Shamos, Computational Geometry. PhD thesis, Department of Computer Science, Yale
University, New Haven, 1978

55. J.R. Smith, The Design and Analysis of Parallel Algorithms (Oxford University Press,
New York, 1993)

56. D. Trietsch, Augmenting Euclidean networks – the Steiner case. SIAM J. Appl. Math. 45,
855–860 (1985)

57. D. Trietsch, F.K. Hwang, An improved algorithm for Steiner trees. SIAM J. Appl. Math. 50,
244–263 (1990)

58. D.M. Warme, P. Winter, M. Zachariasen, Exact algorithms for plane steiner tree problems:
a computational study, in Advances in Steiner Trees, ed. by D.-Z. Du, J.M. Smith, J.H.
Rubinstein (Kluwer Academic, Boston, 2000), pp. 81–116

59. D.M. Warme, A new exact algorithm for rectilinear steiner trees, in 16th International Sympo-
sium on Mathematical Programming. American Mathematical Society, Lausanne, Switzerland,
1997, pp. 357–395

60. P. Winter, An algorithm for the Steiner problem in the Euclidian plane. Networks 15(3),
323–345 (1985)

61. P. Winter, M. Zachariasen, Large euclidean steiner minimum trees in an hour. Technical Report
96/34, DIKU, Department of Computer Science, University of Copenhagen, 1996

62. P. Winter, M. Zachariasen, Euclidean Steiner minimum trees: an improved exact algorithm.
Networks 30, 149–166 (1997)

	Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work
	1 Introduction
	2 The First Solution
	3 A Proposed Heuristic
	3.1 Background and Motivation
	3.2 Adding One Junction
	3.3 The Heuristic
	3.4 Results

	4 Problem Decomposition
	4.1 The Double Wedge Theorem
	4.2 The Steiner Hull
	4.3 The Steiner Hull Extension

	5 Winter's Sequential Algorithm
	5.1 Overview and Significance
	5.2 Winter's Algorithm
	5.3 Algorithm Enhancements

	6 A Parallel Algorithm
	6.1 An Introduction to Parallelism
	6.2 Overview and Proper Structure
	6.3 First Approach
	6.4 Current Approach

	7 Extraction of the Correct Answer
	7.1 Introduction and Overview
	7.2 Incompatibility Matrix
	7.3 Decomposition
	7.4 Forest Management

	8 Computational Results
	8.1 Previous Computation Times
	8.2 The Implementation
	8.2.1 The Significance of the Implementation
	8.2.2 The Platform
	8.2.3 Errors Encountered

	8.3 Random Problems
	8.3.1 Hundred-Point Random Problems
	8.3.2 Larger Random Problems

	8.4 Grids
	8.4.1 2 m and Square Grids
	8.4.2 3 m Grids
	8.4.3 4 m Grids
	8.4.4 5 m Grids
	8.4.5 6 m Grids
	8.4.6 7 m Grids

	9 Future Work
	9.1 Grids
	9.2 Further Parallelization
	9.2.1 Algorithm Enhancements
	9.2.2 GPU Implementation

	9.3 Additional Problems
	9.3.1 1-Reliable Steiner Tree Problem
	9.3.2 Augmenting Existing Plane Networks

	Recommended Reading

