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Abstract

Given a set of N cities, construct a connected network which has minimum
length. The problem is simple enough, but the catch is that you are allowed
to add junctions in your network. Therefore the problem becomes how many
extra junctions should be added, and where should they be placed so as to
minimize the overall network length. This intriguing optimization problem
is known as the Steiner Minimal Tree Problem (SMT), where the junctions
that are added to the network are called Steiner Points.

This chapter presents a brief overview of the problem, presents an ap-
proximation algorithm which performs very well, then reviews the compu-
tational algorithms implemented for this problem. The foundation of this
chapter is a parallel algorithm for the generation of what Pawel Winter
termed T list and its implementation. This generation of T list is followed
by the extraction of the proper answer. When Winter developed his al-
gorithm, the time for extraction dominated the overall computation time.
After Cockayne and Hewgill’s work, the time to generate T list dominated
the overall computation time. The parallel algorithms presented here were
implemented in a program called PARSTEINER94, and the results show
that the time to generate T list has now been cut by an order of magnitude.
So now the extraction time once again dominates the overall computation
time.
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This chapter then concludes with the characterization of SMT’s for cer-
tain size grids. Begining with the known characterization of the SMT for a
2 x m grid a grammar with rewrite rules are presented for characterizations
of SMT’s for 3 x m, 4 x m, 5 x m, 6 x m, and 7 x m grids.

1 Introduction

Minimizing a network’s length is one of the oldest optimization problems
in mathematics and, consequently, it has been worked on by many of the
leading mathematicians in history. In the mid-seventeenth century a sim-
ple problem was posed: Find the point P that minimizes the sum of the
distances from P to each of three given points in the plane. Solutions to
this problem were derived independently by Fermat, Torricelli, and Cava-
lieri. They all deduced that either P is inside the triangle formed by the
given points and that the angles at P formed by the lines joining P to the
three points are all 120∘, or P is one of the three vertices and the angle at
P formed by the lines joining P to the other two points is greater than or
equal to 120∘.

In the nineteenth century a mathematician at the University of Berlin,
named Jakob Steiner, studied this problem and generalized it to include an
arbitrarily large set of points in the plane. This generalization created a
star when P was connected to all the given points in the plane, and is a
geometric approach to the 2-dimensional center of mass problem.

In 1934 Jarńık and Kössler generalized the network minimization prob-
lem even further [42]: Given n points in the plane find the shortest possible
connected network containing these points. This generalized problem, how-
ever, did not become popular until the book, What is Mathematics, by
Courant and Robbins [16], appeared in 1941. Courant and Robbins linked
the name Steiner with this form of the problem proposed by Jarńık and
Kössler, and it became known as the Steiner Minimal Tree problem. The
general solution to this problem allows multiple points to be added, each of
which is called a Steiner Point, creating a tree instead of a star.

Much is known about the exact solution to the Steiner Minimal Tree
problem. Those who wish to learn about some of the spin-off problems
are invited to read the introductory article by Bern and Graham [5], the
excellent survey paper on this problem by Hwang and Richards [38], or
the volume in The Annals of Discrete Mathematics devoted completely to
Steiner Tree problems [39]. Some of the basic pieces of information about
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the Steiner Minimal Tree problem that can be gleaned from these articles
are: (i) the fact that all of the original n points will be of degree 1, 2, or
3, (ii) the Steiner Points are all of degree 3, (iii) any two edges meet at an
angle of at least 120∘ in the Steiner Minimal Tree, and (iv) at most n − 2
Steiner Points will be added to the network.

This chapter concentrates on the Steiner Minimal Tree problem, hence-
forth referred to as the SMT problem. Several algorithms for calculating
Steiner Minimal Trees are presented, including the first parallel algorithm
for doing so. Several implementation issues are discussed, some new results
are presented, and several ideas for future work are proposed.

Section 2 reviews the first fundamental algorithm for calculating SMTs.
Section 3 presents a proposed heuristic for SMTs. In Section 4 problem
decomposition for SMTs is outlined. Section 5 presents Winter’s sequential
algorithm which has been the basis for most computerized calculation of
SMTs to the present day. Section 6 presents a parallel algorithm for SMTs.
Extraction of the correct answer is discussed in Section 7. Computational
Results are presented in Section 8 and Future Work and open problems are
presented in Section 9.

2 The First Solution

A typical problem-solving approach is to begin with the simple cases and
expand to a general solution. As was seen in Section 1, the trivial three
point problem had already been solved in the 1600’s, so all that remained
was the work toward a general solution. As with many interesting problems
this is harder than it appears on the surface.

The method proposed by the mathematicians of the mid-seventeenth
century for the three point problem is illustrated in Figure 1. This method
stated that in order to calculate the Steiner Point given points A, B, and
C, you first construct an equilateral triangle (ACX) using the longest edge
between two of the points (AC) such that the third (B) lies outside the
triangle. A circle is circumscribed around the triangle, and a line is con-
structed from the third point (B) to the far vertex of the triangle (X). The
location of the Steiner Point (P ) is the intersection of this line (BX) with
the circle.

The next logical extension of the problem, going to four points, is at-
tributed to Gauss. His son, who was a railroad engineer, was apparently
designing the layout for tracks between four major cities in Germany and
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Figure 1: AP + CP = PX.

was trying to minimize the length of these tracks. It is interesting to note
at this point that a general solution to the SMT problem has recently been
uncovered in the archives of a school in Germany [27].

For the next thirty years after Kössler and Jarńık presented the general
form of the SMT problem, only heuristics were known to exist. The heuris-
tics were typically based upon the Minimum-Length Spanning Tree (MST),
which is a tree that spans or connects all vertices whose sum of the edge
lengths is as small as possible, and tried in various ways to join three vertices
with a Steiner Point. In 1968 Gilbert and Pollak [26] linked the length of
the SMT to the length of a MST. It was already known that the length of
an MST is an upper bound for the length of an SMT, but their conjecture

stated that the length of an SMT would never be any shorter than
√
3
2 times

the length of an MST. This conjecture, was recently proved [17], and has
led to the MST being the starting point for most of the heuristics that have
been proposed in the last 20 years including a recent one that achieves some
very good results [30].

In 1961 Melzak developed the first known algorithm for calculating a
SMT [45]. Melzak’s algorithm was geometric in nature and was based upon
some simple extensions to Figure 1. The insight that Melzak offered was the
fact that you can reduce an n point problem to a set of n−1 point problems.
This reduction in size is accomplished by taking every pair of points, A and
C in our example, calculating where the two possible points, X1 and X2,
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would be that form an equilateral triangle with them, and creating two
smaller problems, one where X1 replaces A and C, and the other where X2

replaces A and C. Both Melzak and Cockayne pointed out however that
some of these sub-problems are invalid. Melzak’s algorithm can then be
run on the two smaller problems. This recursion, based upon replacing two
points with one point, finally terminates when you reduce the problem from
three to two vertices. At this termination the length of the tree will be the
length of the line segment connecting the final two points. This is due to
the fact that BP +AP +CP = BP +PX. This is straightforward to prove
using the law of cosines, for when P is on the circle, ∕ APX = ∕ CPX = 60∘.
This allows the calculation of the last Steiner Point (P) and allows you to
back up the recursive call stack to calculate where each Steiner Point in that
particular tree is located.

This reduction is important in the calculation of an SMT, but the algo-
rithm still has exponential order, since it requires looking at every possible
reduction of a pair of points to a single point. The recurrence relation for
an n-point problem is stated quite simply in the following formula:

T (n) = 2 ∗

(

n

2

)

∗ T (n− 1).

This yields what is obviously a non-polynomial time algorithm. In fact
Garey, Graham, and Johnson [18] have shown that the Steiner Minimal
Tree problem is NP-Hard (NP-Complete if the distances are rounded up to
discrete values).

In 1967, just a few years after Melzak’s paper, Cockayne [11] clarified
some of the details from Melzak’s proof. This clarified algorithm proved to
be the basis for the first computer program to calculate SMTs. The program
was developed by Cockayne and Schiller [15] and could compute an SMT
for any placement of up to 7 vertices.

3 A Proposed Heuristic

3.1 Background and Motivation

By exploring a structural similarity between stochastic Petri nets (see [46]
and [50]) and Hopfield neural nets (see [28] and [36]), Geist was able to pro-
pose and take part in the development of a new computational approach for
attacking large, graph-based optimization problems. Successful applications
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of this mechanism include I/O subsystem performance enhancement through
disk cylinder remapping [23, 24], file assignment in a distributed network to
reduce disk access conflict [22], and new computer graphics techniques for
digital halftoning [21] and color quantization [20]. The mechanism is based
on maximum-entropy Gibbs measures, which is described in Reynold’s dis-
sertation [54], and provides a natural equivalence between Hopfield nets and
the simulated annealing paradigm. This similarity allows you to select the
method that best matches the problem at hand. For the SMT problem the
first author implemented the Simulated Annealing approach [30].

Simulated Annealing [43] is a probabilistic algorithm that has been ap-
plied to many optimization problems in which the set of feasible solutions
is so large that an exhaustive search for an optimum solution is out of the
question. Although Simulated Annealing does not necessarily provide an op-
timum solution, it usually provides a good solution in a user-selected amount
of time. Hwang and Richards [38] have shown that the optimal placement
of s Steiner Points to n original vertices yields a feasible solution space of
the size

2−n

(

n

s+ 2

)

(n− s− 2)!

s!

provided that none of the original points have degree 3 in the SMT. If the
degree restriction is removed they showed that the number is even larger.
The SMT problem is therefore a good candidate for this approach.

3.2 Adding One Junction

Georgakopoulos and Papadimitriou [25] have provided an O(n2) solution to
the 1-Steiner problem, wherein exactly one Steiner Point is added to the
original set of points. Since at most n − 2 Steiner Points are needed in
an SMT solution, repeated application of the algorithm offers a “greedy”
O(n3) approach. Using their method, the first Steiner Point is selected by
partitioning the plane into Oriented Dirichlet Cells, which they describe in
detail. Since these cells do not need to be discarded and recalculated for each
addition, subsequent additions can be accomplished in linear time. Deletion
of a candidate Steiner Point requires regeneration of the MST, which Shamos
showed can be accomplished in O(n log n) time if the points are in the
plane [51], followed by the cost for a first addition (O(n2)). This approach
can be regarded as a natural starting point for Simulated Annealing by
adding and deleting different Steiner Points.
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3.3 The Heuristic

The Georgakopoulos and Papadimitriou 1-Steiner algorithm and the Shamos
MST algorithm are both difficult to implement. As a result, Harris chose
to investigate the potential effectiveness of this Annealing Algorithm using
a more direct, but slightly more expensive O(n3) approach. As previously
noted, all Steiner Points have degree 3 with edges meeting in angles of 120∘.
He considered all

(

n

3

)

triples where the largest angle is less than 120∘, com-
puted the Steiner Point for each (a simple geometric construction), selected
that Steiner Point giving greatest reduction, or least increase in the length of
the modified tree (increases are allowed since the Annealing Algorithm may
go uphill) and updated the MST accordingly. Again, only the first addition
requires this (now O(n3)) step. He used the straightforward, O(n2) Prim’s
algorithm to generate the MST initially and after each deletion of a Steiner
Point.

The Annealing Algorithm can be described as a non-deterministic walk
on a surface. The points on the surface correspond to the lengths of all
feasible solutions, where two solutions are adjacent if they can be reached
through the addition or deletion of one Steiner Point. The probability of
going uphill on this surface is higher when the temperature is higher but
decreases as the temperature cools. The rate of this cooling typically will
determine how good your solution will be. The major portion of this algo-
rithm is presented in Figure 2. This non-deterministic walk, starting with
the MST has led to some very exciting results.

3.4 Results

Before discussion of large problems, a simple introduction into the results
from a simple six point problem is in order. The Annealing Algorithm is
given the coordinates for six points: (0,0), (0,1), (2,0), (2,1), (4,0), (4,1).
The first step is to calculate the MST, which has a length of 7, as shown in
Figure 3. The output of the Annealing Algorithm for this simple problem
is shown in Figure 4. In this case the Annealing Algorithm calculates the
exact SMT solution which has a length of 6.616994.

Harris proposed as a measure of accuracy the percentage of the differ-
ence between the length of the MST and the exact SMT solution that the
Annealing Algorithm achieves. This is a new measure which has not been
discussed (or used) because exact solutions have not been calculated for
anything but the most simple layouts of points. For the six point problem
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#define EQUILIBRIUM ((accepts>=100 AND rejects>=200) OR

(accepts+rejects > 500))

#define FROZEN ((temperature < 0.5) OR ((temperature < 1.0)

AND (accepts==0)))

while(not(FROZEN)){
accepts = rejects = 0;

old energy = energy();

while(not(EQUILIBRIUM)){
operation = add or delete();

switch(operation){
case ADD:

ΔE = energy change from adding a node();

break;

case DELETE:

ΔE = energy change from deleting a node();

break;

}

if(rand(0,1) < emin{0.0,−ΔE/temperature}){
accepts++;

old energy = new energy;

}else {
/* put them back */

undo change(operation);

rejects++;

}
}
temperature = temperature*0.8;

}

Figure 2: Simulated Annealing algorithm.
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(0,0) (0,1) (2,0) (2,1) (4,0) (4,1)

Figure 3: Spanning tree for 6 point problem.

Figure 4: 6 point solution.

discussed above this percentage is 100.0% (the exact solution is obtained).

After communicating with Cockayne, data sets were obtained for exact
solutions to randomly generated 100 point problems that were developed
for [14]. This allows us to use the measure of accuracy previously described.
Results for some of these data sets provided by Cockayne are shown in
Table 1.

An interesting aspect of the Annealing Algorithm that cannot be shown
in the table is the comparison of execution times with Cockayne’s program.
Whereas Cockayne mentioned that his results had an execution cut-off of 12
hours, these results were obtained in less than 1 hour. The graphical output
for the first line of the table, which reaches over 96% of the optimal value,
appears as follows: the data points and the MST are shown in Figure 5, the
Simulated Annealing Result is in Figure 6, and the Exact SMT Solution is
in Figure 7. The solution presented here is obtained in less than 1

10 tℎ of the
time with less than 4% of the possible range not covered. This indicates
that one could hope to extend our Annealing Algorithm to much larger
problems, perhaps as large as 1, 000 points. If you were to extend this
approach to larger problems then you would definitely need to implement the
Georgakopoulos-Papadimitriou 1-Steiner Algorithm and the Shamos MST
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Figure 5: Spanning tree.

Algorithm.

4 Problem Decomposition

After the early work by Melzak [45], many people began to work on the
Steiner Minimal Tree problem. The first major effort was to find some
kind of geometric bound for the problem. In 1968 Gilbert and Pollak [26]
showed that the SMT for a set of points, S, must lie within the Convex Hull
of S. This bound has since served as the starting point of every bounds
enhancement for SMTs.

As a brief review, the Convex Hull is defined as follows: Given a set of
points S in the plane, the Convex Hull is the convex polygon of the smallest
area containing all the points of S. A polygon is defined to be convex if a line
segment connecting any two points inside the polygon lies entirely within
the polygon. An example of the Convex Hull for a set of 100 randomly
generated points is shown in Figure 8.

Shamos in his PhD thesis [55] proposed a Divide and Conquer algorithm
which has served as the basis for many parallel algorithms calculating the
Convex Hull. One of the first such approaches appeared in the PhD thesis by
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Table 1: Results from 100 point problems.

Exact Solution Spanning Tree Simulated Annealing Percent Covered
6.255463 6.448690 6.261797 96.39%
6.759661 6.935189 6.763495 98.29%
6.667217 6.923836 6.675194 96.89%
6.719102 6.921413 6.721283 99.01%
6.759659 6.935187 6.763493 98.29%
6.285690 6.484320 6.289342 98.48%

Figure 6: Simulated Annealing solution.
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Figure 7: Exact solution.

Figure 8: The Convex Hull for a random set of points.
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Chow [8]. This approach was refined and made to run in optimal O(log n)
time by Aggarwal et al. [1], and Attalah and Goodrich [2].

The next major work on the SMT problem was in the area of problem
decomposition. As with any non-polynomial algorithm, the most important
theorems are those that say “If property P exists, then the problem may
be split into the following sub-problems.” For the Steiner Minimal Tree
Problem property P will probably be geometric in nature. Unfortunately,
decomposition theorems have been few and far between for the SMT prob-
lem. In fact, at this writing there have been only three such theorems.

4.1 The Double Wedge Theorem

The first decomposition theorem, known as the Double Wedge Theorem,
was proposed by Gilbert and Pollak [26]. This is illustrated in Figure 9 and
can be summarized quite simply as follows: If two lines intersect at point
X and meet at 120∘, they split the plane into two 120∘ wedges and two 60∘

wedges. If R1 and R2 denote the two 60∘ wedges, and all the points of S
are contained in R1

∪

R2, then the problem can be decomposed. There are
two cases to be considered. In case 1 X is not a point in S; therefore, the
Steiner Minimal Tree for S consists of the SMT for R1, the SMT for R2,
and the shortest edge connecting the two trees. In case 2 X is a point in S;
therefore, the Steiner Minimal Tree for S is the SMT for R1 and the SMT
for R2. Since X is in both R1 and R2 the two trees are connected.

R1 R260  60

  120

120

X

Figure 9: An illustration of the Double Wedge.
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4.2 The Steiner Hull

The next decomposition theorem is due to Cockayne [12] and is based upon
what he termed the Steiner Hull. The Steiner Hull is defined as follows: let
P1 be the convex Hull. Pi+1 is constructed from Pi by finding an edge (p, r)
of Pi that has a vertex (q) near it such that ∕ pqr ≥ 120∘ and there is not a
vertex inside the triangle pqr. The final polygon, Pi, that can be created in
such a way is called the Steiner Hull. The algorithm for this construction is
shown in Figure 10. The Steiner Hull for the 100 points shown in Figure 8
is given in Figure 11.

The initial Steiner Polygon, P1, is the Convex Hull.

Repeat

Create Next Steiner Polygon Pi+1 from Pi by

1) find a set of points pqr ∈ S such that:

p and r are adjacent on Pi

∕ pqr ≥ 120∘

∕ ∃ a point from S in the triangle pqr

2) remove the edge pr.

3) add edges pq and qr.

Until(Pi == Pi+1)

Steiner Hull = Pi

Figure 10: The Steiner Hull algorithm.

After defining the Steiner Hull, Cockayne showed that the SMT for S
must lie within the Steiner Hull of S. This presents us with the following
decomposition: The Steiner Hull can be thought of as an ordered sequence
of points, {p1, p2, . . . , pn}, where the hull is defined by the sequence of line
segments, {p1p2, p2p3, . . . , pnp1}. If there exists a point pi that occurs twice
in the Steiner Hull, then the problem can be decomposed at point pi. If a
Steiner Hull contains such a point, then the Steiner Hull is referred to as
degenerate. This decomposition is accomplished by showing that the Steiner
Hull splits S into two contained subsets, R1 and R2, where R1 is the set of
points contained in the Steiner Hull from the first time pi appears until the
last time pi appears, and R2 is the set of points contained in the Steiner
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Figure 11: The Steiner Hull for a random set of 100 points.

Hull from the last time pi appears until the first time pi appears. With this
decomposition it can be shown that S = R1

∪

R2, and the SMT for S is
the union of the SMT for R1 and the SMT for R2. This decomposition
is illustrated in Figure 12. Cockayne also proved that the Steiner Hull
decomposition includes every decomposition possible with the Double Wedge
Theorem.

In their work on 100 point problems, Cockayne and Hewgill [14] men-
tion that approximately 15% of the randomly generated 100 point problems
have degenerate Steiner Hull’s. The Steiner Hull shown in Figure 11 is not
degenerate, while that in Figure 12 is.

4.3 The Steiner Hull Extension

The final decomposition belongs to Hwang, Song, Ting, and Du [40]. They
proposed an extension to the Steiner Hull as defined by Cockayne. Their
extension is as follows:
If there exist four points a, b, c, d on a Steiner Hull such that:

1. a, b, c, d form a convex quadrilateral,
2. there does not exist a point from S in the quadrilateral (a, b, c, d),
3. ∕ a ≥ 120∘ and ∕ b ≥ 120∘,
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Figure 12: An illustration of the Steiner Hull decomposition.

4. the two diagonals (ac) and (bd) meet at O, and ∕ bOa ≥ ∕ a+ ∕ b−150∘,
then the SMT for S is the union of the SMTs for R1 and R2 and the edge ab
where R1 is the set of points contained in the Steiner Hull from c to b with
the edge bc, and R2 is the set of points contained in the Steiner Polygon
from a to d with the edge ad. This decomposition is illustrated in Figure 13.

These three decomposition theorems were combined into a parallel algo-
rithm for decomposition presented in [29].

 O R1R2

a   b

cd

Figure 13: An illustration of the Steiner Hull extension.
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5 Winter’s Sequential Algorithm

5.1 Overview and Significance

The development of the first working implementation of Melzak’s algorithm
sparked a move into the computerized arena for the calculation of SMTs. As
we saw in Section 2, Cockayne and Schiller [15] had implemented Melzak’s
Algorithm and could calculate the SMT for all arrangements of 7 points.
This was followed almost immediately by Boyce and Seery’s program which
they called STEINER72 [6]. Their work, done at Bell Labs could calculate
the SMT for all 10 point problems. They continued to work on the problem
and in personal communication with Cockayne said they could solve 12 point
problems with STEINER73. Yet even with quite a few people working on
the problem, the number of points that any program could handle was still
very small.

As mentioned towards the end of Section 2, Melzak’s algorithm yields
invalid answers and invalid tree structures for quite a few combinations
of points. It was not until 1981 that anyone was able to characterize a
few of these invalid tree structures. These characterizations were accom-
plished by Pawel Winter and were based upon several geometric construc-
tions which enable one to eliminate many of the possible combinations pre-
viously generated. He implemented these improvements in a program called
GeoSteiner [61]. In his work he was able to calculate in under 30 seconds
SMTs for problems having up to 15 vertices and stated that “with further
improvements, it is reasonable to assert that point sets of up to 30 V-points
could be solved in less than an hour [61].”

5.2 Winter’s Algorithm

Winter’s breakthrough was based upon two things: the use of extended
binary trees, and what he termed pushing. Winter proposed an extended
binary tree as a means of constructing trees only once and easily identifying
a Full Steiner Tree (FST: trees with n vertices and n− 2 Steiner Points) on
the same set of vertices readily.

Pushing came from the geometric nature of the problem and is illustrated
in Figure 14. It was previously known that the Steiner Point for a pair of
points, a and b, would lie on the circle that circumscribed that pair and
their equilateral third point. Winter set out to limit this region even further.
This limitation was accomplished by placing a pair of points, a′ and b′, on
the circle at a and b respectively, and attempting to push them closer and
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a b

 a’
b’

Figure 14: An illustration of Winter’s pushing.

closer together. In his work Winter proposed and proved various geometric
properties that would allow you to push a′ towards b and b′ towards a. If
the two points ever crossed then it was impossible for the current branch of
the sample space tree to contain a valid answer.

Unfortunately, the description of Winter’s algorithm is not as clear as
one would hope, since the presence of goto statements rapidly makes his
program difficult to understand, and almost impossible to modify. Winter’s
goal is to build a list of FSTs which are candidates for inclusion in the final
answer. This list, called T list, is primed with the edges of the MST, thereby
guaranteeing that the length of the SMT does not exceed the length of the
MST.

The rest of the algorithm sets about to expand what Winter termed as
Q list, which is a list of partial trees that the algorithm attempts to com-
bine until no combinations are possible. Q list is primed with the original
input points. The legality of a combination is determined in the Construct
procedure, which uses pushing to eliminate cases. While this combination
proceeds, the algorithm also attempts to take newly created members of
Q list and create valid FSTs out of them. These FSTs are then placed onto
T list.

This algorithm was a turning point in the calculation of SMTs. It
sparked renewed interest into the calculation of SMTs in general. This
renewed interest has produced new algorithms such as the Negative Edge
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Algorithm [58] and the Luminary Algorithm [37]. Winter’s algorithm has
also served as the foundation for most computerized computation for calcu-
lating SMTs and is the foundation for the parallel algorithm we present in
Section 6.

5.3 Algorithm Enhancements

In 1996, Winter and Zachariasen presented GEOSTEINER96 [62, 63] an en-
hancement to their exact algorithm that strongly improved the pruning and
concatenation techniques of the GEOSTEINER algorithm just presented.
This new algorithm modified the pruning tests to exploit the geometry of
the problem (wedge property, bottleneck Steiner distances) to yield effec-
tive and/or faster pruning of non-optimal full Steiner trees (FSTs). Fur-
thermore, efficient concatenation of FSTs was achieved by new and strong
compatibility tests that utilize pairwise and subset compatibility along with
very powerful preprocessing of surviving FSTs. GEOSTEINER96 has been
implemented in C++ on a HP9000 workstation and solves randomly gen-
erated problem instances with 100 terminals in less than 8 minutes and
up to 140 terminals within an hour. The hardest 100 terminal problem
was solved in less than 29 minutes. Previously unsolved public library in-
stances (OR-Library [3, 4]) have been solved by GEOSTEINER96 within
14 minutes. The authors point out that the concatenation of FSTs still
remains the bottleneck of both GEOSTEINER96 and GEOSTEINER algo-
rithms. However, the authors show that FSTs are generated 25 times faster
by GEOSTEINER96 than by EDSTEINER89.

In their follow up work [59], Winter and Zachariasen presented perfor-
mance statistics for the exact SMT problem solved using the Euclidean
FST generator from Winter and Zachariasen’s algorithm [62, 63] and the
FST concatenator of Warme’s algorithm [60]. Optimal solutions have been
obtained by this approach for problem instances of up to 2,000 terminals.
Extensive computational experiences for randomly generated instances [100-
500 terminals], public library instances (OR-Library[100-1000 terminals] [3,
4], TSPLIB[198-7397 terminals] [35]), and difficult instances with special
structure have been shared in this work. The computational study has been
conducted on an HP9000 workstation; the FST generator was implemented
in C++ and the FST concatenator was implemented in C using CPLEX. Re-
sults indicate that 1) Warme’s FST concatenation solved by branch-and-cut
is orders of magnitude faster than backtrack search or dynamic programming
based FST concatenation algorithms.; and 2) The Euclidean FST generator
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is more effective on uniformly randomly generated problem instances than
for structured real-world instances.

6 A Parallel Algorithm

6.1 An Introduction to Parallelism

Parallel computation is allowing us to look at problems that have previously
been impossible to calculate, as well as allowing us to calculate faster than
ever before problems we have looked at for a long time. It is with this in
mind that we begin to look at a parallel algorithm for the Steiner Minimal
Tree problem.

There have been volumes written on parallel computation and parallel
algorithms; therefore, we will not rehash the material that has already been
so excellently covered by many others more knowledgeable on the topic, but
will refer the interested readers to various books currently available. For
a thorough description of parallel algorithms, and the PRAM Model the
reader is referred to the book by Joseph JáJá [41], and for a more practical
approach to implementation on a parallel machine the reader is referred to
the book by Vipin Kumar et al. [44], the book by Michael Quinn [52], or
the book by Justin Smith [56].

6.2 Overview and Proper Structure

When attempting to construct a parallel algorithm for a problem the sequen-
tial code for that problem is often the starting point. In examining sequential
code, major levels of parallelism may become self-evident. Therefore for this
problem the first thing to do is to look at Winter’s algorithm and convert
it into structured code without gotos. The Initialization (Step 1) does not
change, and the translation of steps 2 through 7 appears in Figure 15.

Notice that the code in Figure 15 lies within a for loop. In a first
attempt to parallelize anything you typically look at loops that can be split
across multiple processors. Unfortunately, upon further inspection, the loop
continues while p<q and, in the large if statement in the body of the loop,
is the statement q++ (line 30). This means that the number of iterations is
data dependent and is not fixed at the outset. This loop cannot be easily
parallelized.

Since the sequential version of the code does not lend itself to easy par-
allelization, the next thing to do is to back up and develop an understanding
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/* Step 2 */
1 for(p=0; p<q; p++){
2 AP = A(p);
3 /* Step 3 */
4 for(r=0; ((H(p) > H(r)) AND (r!=q)); r++){
5 if((H(p) == H(r)) AND (r<p))
6 r = p;
7 if(Subset(V(r), AP)){
8 p star = p;
9 r star = r;
10 for(Label = PLUS; Label <= MINUS; Label++){
11 /* Step 4 */
12 AQ = A(q);
13 if(Construct(p star,r star,&(E(q)))){
14 L(q) = p;
15 R(q) = r;
16 LBL(q) = Label;
17 LF(q) = LF(p);
18 H(q) = H(p) + 1;
19 /* next line is different */
20 Min(q) = max(Min(p)-1,H(r));
21 if(Lsp(p) != 0)
22 Lsp(q) = Lsp(p)
23 else
24 Lsp(q) = Lsp(r)
25 if(Rsp(r) != 0)
26 Rsp(q) = Rsp(r)
27 else
28 Rsp(q) = Rsp(p)
29 q star = q;
30 q++;

31 /* Step 5 */
32 if(Proper to Add Tree to Tlist(q star)){
33 for all(j in AP with Lf(R(q star)) < j){
34 SRoot(t) = j;
35 Root(t) = q star;
36 t++;
37 }
38 }
39 }
40 /* Step 6 */
41 p star = r;
42 r star = p;
43 }
44 }
45 }
46 }

Figure 15: The main loop properly structured.
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of how the algorithm works. The first thing that is obvious from the code
is that you select a left subtree and then try to mate it with possible right
subtrees. Upon further examination we come to the conclusion that a left
tree will mate with all trees that are shorter than it, and all trees of the
same height that appear after it on Q list, but it will never mate with any
tree that is taller.

6.3 First Approach

The description of this parallel algorithm is in a master–slave perspective.
This perspective was taken due to the structure of most parallel architectures
at the time of its development, as well as the fact that all nodes on the Q list
need a sequencing number assigned to them. The master will therefore be
responsible for numbering the nodes and maintaining the main Q list and
T list.

The description from the slave’s perspective is quite simple. A process is
spawned off for each member of Q list that is a proper left subtree (Winter’s
algorithm allows members of Q list that are not proper left subtrees). Each
new process is then given all the current nodes on Q list. With this infor-
mation the slave then can determine with which nodes its left subtree could
mate. This mating creates new nodes that are sent back to the master, as-
signed a number and added to the master’s Q list. The slave also attempts
to create an FST out of the new Q list member, and if it is successful, this
FST is sent to the master to be added to the T list. When a process runs
out of Q list nodes to check it sends a request for more nodes to the master.

The master also has a simple job description. It has to start a process
for each initial member of the Q list, send them all the current members of
the Q list and wait for their messages.

This structure worked quite well for smaller problems (up to about 15
points), but for larger problems it reached a grinding halt quite rapidly. This
was due to various reasons such as the fact that for each slave started the
entire Q list had to be sent. This excessive message passing quickly bogged
down the network. Secondly in their work on 100 point problems Cockayne
and Hewgill [14] made the comment that T list has an average length of 220,
but made no comment about the size of Q list, which is the number of slaves
that would be started. From our work on 100 point problems this number
easily exceeds 1, 000 which means that over 1, 000 processes are starting,
each being sent the current Q list. From these few problems, it is quite easy
to see that some major changes needed to be made in order to facilitate the
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calculation of SMTs for large problems.

6.4 Current Approach

The idea for a modification to this approach came from a paper by Quinn
and Deo [53], on parallel algorithms for Branch-and-Bound problems. Their
idea was to let the master have a list of work that needs to be done. Each
slave is assigned to a processor. Each slave who requests work, is given some,
and during its processing creates more work to be done. This new work is
placed in the master’s work list, which is sorted in some fashion. When a
slave runs out of work to do, it requests more from the master. They noted
that this leaves some processors idle at times (particularly when the problem
was starting and stopping), but this approach provides the best utilization
if all branches are independent.

This description almost perfectly matches the problem at hand. First,
we will probably have a fixed number of processors which can be determined
at runtime. Secondly we have a list of work that needs to be done. The hard
part is implementing a sorted work list in order to obtain a better utilization.
This was implemented in what we term the Proc list, which is a list of the
processes that either are currently running or have not yet started. This list
is primed with the information about the initial members of Q list, and for
every new node put on the Q list, a node which contains information about
the Q list node, is placed on the Proc list in a sorted order.

The results for this approach are quite exciting, and the timings are
discussed in Section 8.

7 Extraction of the Correct Answer

7.1 Introduction and Overview

Once the T list discussed in Section 5 is formed, the next step is to extract
the proper answer from it. Winter described this in step 7 of his algorithm.
His description stated that unions of FSTs saved in T list were to be formed
subject to constraints described in his paper. The shortest union is the SMT
for the original points.

The constraints he described were quite obvious considering the defi-
nition of an SMT. First, the answer had to cover all the original points.
Second, the union of FSTs could not contain a cycle. Third, the answer is
bounded in length by the length of the MST.
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Figure 16: T list for a random set of points.

This led Winter to implement a simple exhaustive search algorithm over
the FSTs in T list. This approach yields a sample space of size O(2m)
(where m is the number of trees in T list) that has to be searched. This
exponentiality is born out in his work where he stated that for problems
with more than 15 points “the computation time needed to form the union
of FSTs dominates the computation time needed for the construction of the
FSTs [61].” An example of the input the last step of Winter’s algorithm
receives (T list) is given in Figure 16. The answer it extracts (the SMT) is
shown in Figure 17.

7.2 Incompatibility Matrix

Once Cockayne published the clarification of Melzak’s proof in 1967 [11]
and Gilbert and Pollak published their paper giving an upper bound the
the SMT length in 1968 [26] many people were attracted to this problem.
From this time until Winter’s work was published in 1985 [61] quite a few
papers were published dealing with various aspects of the SMT Problem, but
the attempt to computerize the solution of the SMT problem bogged down
around 12 vertices. It wasn’t until Winter’s algorithm was published that the
research community received the spark it needed to work on computerized

24



Figure 17: SMT extracted from T list for a random set of points.

computation of the SMT problem with renewed vigor. With the insight
Winter provided into the problem, an attempt to computerize the solution
of the SMT problem began anew.

Enhancement of this algorithm was first attempted by Cockayne and
Hewgill at the University of Victoria. For this implementation Cockayne
and Hewgill spent most of their work on the back end of the problem, or
the extraction from T list, and used Winter’s algorithm to generate T list.
This work on the extraction focused on what they termed an incompatibil-
ity matrix. This matrix had one row and one column for each member of
T list. The entries in this matrix were flags corresponding to one of three
possibilities: compatible, incompatible, or don’t know. The rationale behind
the construction of this matrix is the fact that it is faster to look up the
value in a matrix than it is to check for the creation of cycles and improper
angles during the union of FSTs.

The first value calculations for this matrix were straightforward. If two
trees do not have any points in common then we don’t know if they are
incompatible or not. If they have two or more points in common then they
form a cycle and are incompatible. If they have only one point in common
and the angle at the intersection point is less than 120∘ then they are also
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incompatible. In all other cases they are compatible.

This simple enhancement to the extraction process enabled Cockayne
and Hewgill to solve all randomly generated problems of size up to 17 vertices
in a little over three minutes [13].

7.3 Decomposition

The next focus of Cockayne and Hewgill’s work was in the area of the de-
composition of the problem. As was discussed earlier in Section 4, the best
theorems for any problem, especially non-polynomial problems, are those of
the form “If property P exists then the problem can be decomposed.” Since
the formation of unions of FSTs is exponential in nature any theorem of this
type is important.

Cockayne and Hewgill’s theorem states: “Let A1 and A2 be subsets of
A satisfying (i) A1

∪

A2 = A (ii) ∣A1
∩

A2∣ = 1 and (iii) the leaf set of each
FST in T list is entirely contained in A1 or A2. Then any SMT on A is the
union of separate SMTs on A1 and A2 [13].” This means that if you break
T list into biconnected components, the SMT will be the union of the SMTs
on those components.

Their next decomposition theorem allowed further improvements in the
calculation of SMTs. This theorem stated that if you had a component
of T list left from the previous theorem and if the T list members of that
component form a cycle, then it might be possible to break that cycle and
apply the previous algorithm again. The cycle could be broken if there
existed a vertex v whose removal would change that component from one
biconnected component to more than one.

With these two decomposition theorems, Cockayne and Hewgill were able
to calculate the SMT for 79 of 100 randomly generated 30 point problems.
The remaining 21 would not decompose into blocks of size 17 or smaller, and
thus would have taken too much computation time [13]. This calculation
was implemented in the program they called EDSTEINER86.

7.4 Forest Management

Cockayne and Hewgill’s next work focused on improvements to the incompat-
ibility matrix previously described and was implemented in a program called
EDSTEINER89. Their goal was to reduce the number of don’t know’s in
the matrix and possibly remove some FSTs from T list altogether.
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They proposed two refinements for calculating the entry into the in-
compatibility matrix and one Tree Deletion Theorem. The Tree Deletion
Theorem stated that if there exists an FST in T list that is incompatible
with all FSTs containing a certain point a then the original FST can be
deleted since at least one FST containing a will be in the SMT.

This simple change allowed Cockayne and Hewgill to calculate the SMT
for 77 of 100 randomly generated 100 point problems [14]. The other 23
problems could not be calculated in less than 12 hours and were therefore
terminated. For those that did complete, the computation time to generate
T list had become the dominate factor in the overall computation time.

So the pendulum had swung back from the extraction of the correct
answer from T list to the generation of T list dominating the computation
time. In Section 8 we will look at the results of the parallel algorithm
presented in Section 9 to see if the pendulum can be pushed back the other
way one more time.

8 Computational Results

8.1 Previous Computation Times

Before presenting the results for the parallel algorithm presented in Sec-
tion 6, it is worthwhile to review the computation times that have preceded
this algorithm in the literature. The first algorithm for calculating FSTs was
discussed in a paper by Cockayne [12] where he mentioned that preliminary
results indicated his code could solve any problem up to 30 points that could
be decomposed with the Steiner Hull into regions of 6 points or less.

As we saw in Section 2, the next computational results were presented by
Cockayne and Schiller [15]. Their program, called STEINER, was written
in FORTRAN on an IBM 360/50 at the University of Victoria. STEINER
could calculate the SMT for any 7 point problem in less than 5 minutes of
cpu time. When the problem size was increased to 8 it could solve them if 7
of the vertices were on the Steiner Hull. When this condition held it could
calculate the SMT in under 10 minutes, but if this condition did not hold it
would take an unreasonable amount of time.

Cockayne called STEINER a prototype for calculating SMTs and al-
lowed Boyce and Serry of Bell Labs to obtain a copy of his code to improve
the work. They improved the code, renamed it STEINER72, were able to
calculate the FST for all 9 point problems and most 10 point problems in
a reasonable amount of time [6]. Boyce and Serry continued their work
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and developed another version of the code that they thought could solve
problems of size up to 12 points, but no computation times were given.

The breakthrough we saw in Section 5 was by Pawel Winter. His program
called GEOSTEINER [61] was written in SIMULA 67 on a UNIVAC-1100.
GEOSTEINER could calculate SMTs for all randomly generated sets with
15 points in under 30 seconds. This improvement was put into focus when
he mentioned that all previous implementations took more than an hour
for non-degenerate problems of size 10 or more. In his work, Winter tried
randomly generated 20 point problems but did not give results since some of
them did not finish in his cpu time limit of 30 seconds. The only comment
he made for problems bigger than size 15 was that the extraction discussed
in Section 7 was dominating the overall computation time.

The next major program, EDSTEINER86, was developed in FORTRAN
on an IBM 4381 by Cockayne and Hewgill [13]. This implementation was
based upon Winter’s results, but had enhancements in the extraction pro-
cess. EDSTEINER86 was able to calculate the FST for 79 out of 100 ran-
domly generated 32 point problems. For these problems the cpu time for
T list varied from 1 to 5 minutes, while for the 79 problems that finished
the extraction time never exceeded 70 seconds.

Cockayne and Hewgill subsequently improved their SMT program and
renamed it EDSTEINER89 [14]. This improvement was completely focused
on the extraction process. EDSTEINER89 was still written in FORTRAN,
but was run on a SUN 3/60 workstation. They randomly generated 200 32-
point problems to solve and found that the generation of T list dominated
the computation time for problems of this size. The average time for T list
generation was 438 seconds while the average time for forest management
and extraction averaged only 43 seconds. They then focused on 100 point
problems and set a cpu limit of 12 hours. The average cpu time to generate
T list was 209 minutes for these problems, but only 77 finished the extraction
in the cpu time limit. These programs and their results are summarized in
Table 2.

8.2 The Implementation

8.2.1 The Significance of the Implementation

The parallel algorithm we presented has been implemented in a program
called PARSTEINER94 [29, 32]. This implementation is only the second
SMT program since Winter’s GEOSTEINER in 1981 and is the first parallel
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Table 2: SMT Programs, authors, and results.

Program Author(s) Points

STEINER Cockayne & Schiller 7
Univ of Victoria

STEINER72 Boyce & Serry 10
ATT Bell Labs

STEINER73 Boyce & Serry 12
ATT Bell Labs

GEOSTEINER Winter 15
Univ of Copenhagen

EDSTEINER86 Cockayne & Hewgill 30
Univ of Victoria

EDSTEINER89 Cockayne & Hewgill 100
Univ of Victoria

PARSTEINER94 Harris 100
Univ of Nevada

code. The major reason that the number of SMT programs is so small is
due to the fact that any implementation is necessarily complex.

PARSTEINER94 currently has over 13,000 lines of C code. While there
is a bit of code dealing with the parallel implementation, certain sections of
Winter’s Algorithm have a great deal of code buried beneath the simplest
statements. For example line 13 of Figure 15 is the following:

if(Construct(p_star,r_star,&(E(q)))){.

To implement the function Construct() over 4, 000 lines of code were nec-
essary, and this does not include the geometry library with functions such
as equilateral third point(), center of equilateral triangle(),
line circle intersect(), and a host more.

Another important aspect of this implementation is the fact that there
can now be comparisons made between the two current SMT programs.
This would allow verification checks to be made between EDSTEINER89
and PARSTEINER94. This verification is important since with any complex
program it is quite probable that there are a few errors hiding in the code.
This implementation would also allow other SMT problems, such as those we
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will discuss in Section 9, to be explored independently, thereby broadening
the knowledge base for SMTs even faster.

8.2.2 The Platform

In the design and implementation of parallel algorithms you are faced with
many decisions. One such decision is what will your target architecture be?
There are times when this decision is quite easy due to the machines at hand
or the size of the problem. In our case we decided not to target a specific
machine, but an architectural platform called PVM [19].

PVM, which stands for Parallel Virtual Machine, is a software package
available from Oak Ridge National Laboratory. This package allows a col-
lection of parallel or serial machines to appear as a large distributed memory
computational machine (MIMD model). This is implemented via two major
pieces of software, a library of PVM interface routines, and a PVM demon
that runs on every machine that you wish to use.

The library interface comes in two languages, C and Fortran. The func-
tions in this library are the same no matter which architectural platform you
are running on. This library has functions to spawn off (start) many copies
of a particular program on the parallel machine, as well as functions to allow
message passing to transfer data from one process to another. Application
programs must be linked with this library to use PVM.

The demon process, called pvmd in the user’s guide, can be considered
the back end of PVM. As with any back end, such as the back end of a
compiler, when it is ported to a new machine the front end can interface to
it without change. The back end of PVM has been ported to a variety of
machines, such as a few versions of Crays, various Unix machines such as Sun
workstations, HP machines, Data General workstations, and DEC Alpha
machines. It has also been ported to a variety of true parallel machines
such as the iPSC/2, iPSC/860, CM2, CM5, BBN Butterfly and the Intel
Paragon.

With this information it is easy to see why PVM was picked as the
target platform. Once a piece of code is implemented under PVM it can
be re-compiled on the goal machine, linked with the PVM interface library
on that machine, and run without modification. In our case we designed
PARSTEINER94 on a network of SUN workstations, but, as just discussed,
moving to a large parallel machine should be trivial.
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8.2.3 Errors Encountered

When attempting to implement any large program from another person’s
description you often reach a point where you don’t understand something.
At first you always question yourself, but as you gain an understanding of
the problem you learn that there are times when the description you were
given is wrong. Such was the case with the SMT problem. Therefore, to
help some of those that may come along and attempt to implement this
problem after us we recommend that you look at the list of errors we found
while implementing Winter’s Algorithm [29].

8.3 Random Problems

8.3.1 100 Point Random Problems

From the literature it is obvious that the current standard for calculating
SMTs has been established by Cockayne and Hewgill. Their work on SMTs
has pushed the boundary of computation out from the 15 point problems of
Winter to being able to calculate SMTs for a large percentage of 100 point
problems.

Cockayne and Hewgill, in their investigation of the effectiveness of ED-
STEINER89, randomly generated 100 problems with 100 points inside the
unit square. They set up a CPU limit of 12 hours, and 77 of 100 prob-
lems finished within that limit. They described the average execution times
as follows: T list construction averaged 209 minutes, Forest Management
averaged 27 minutes, and Extraction averaged 10.8 minutes.

While preparing the code for this project, Cockayne and Hewgill were
kind enough to supply us with 40 of the problems generated for [14] along
with their execution times. These data sets were given as input to the
parallel code PARSTEINER94, and the calculation was timed. The Wall
Clock time necessary to generate T list for the two programs appears in
Table 3. For all 40 cases, the average time to generate T list was less than
20 minutes. This is exciting because we have been able to generate T list
properly, while cutting an order of magnitude off the time.

These results are quite promising for various reasons. First, the parallel
implementation presented in this work is quite scalable, and therefore could
be run with many more processors, thereby enhancing the speedup provided.
Secondly, with the PVM platform used, we can in the future port this work
to a real parallel MIMD machine, which will have much less communication
overhead, or to a shared memory machine, where the communication could
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Table 3: Comparison of T list times.

Test Case PARSTEINER94 EDSTEINER89

1 650 8597

2 1031 13466

3 1047 15872

4 1687 17061

5 874 13258

6 1033 15226

7 1164 12976

8 1109 16697

9 975 15354

10 554 8650

11 660 9894

12 946 13057

13 858 13687

14 978 17132

15 819 11333

16 752 12766

17 896 13815

18 788 10508

19 618 10550

20 724 11193

21 983 11357

22 889 12999

23 1449 15028

24 890 14417

25 912 17562

26 1125 12395

27 943 15721

28 583 10014

29 1527 18656

30 681 10033

31 873 16401

32 791 10217

33 1132 18635

34 1097 18305

35 1198 19657

36 803 11174

37 923 15256

38 824 12920

39 826 12538

40 972 15570

Avg. 939 13748
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Figure 18: T list with more than 1 cycle.

all but be eliminated, and expect the speedup to improve much more.

It is also worth noting that proper implementation of the Cycle Break-
ing which Cockayne and Hewgill presented in [13], is important if extrac-
tion of the proper answer is to be accomplished. In their work, Cockayne
and Hewgill mentioned that 58% of the problems they generated were solv-
able without the Cycle Breaking being implemented, which is approximately
what we have found with the data sets they provided. An example of such
a T list that would need cycles broken (possibly multiple times) is provided
in Figure 18.

8.3.2 Larger Random Problems

Once the 100 point problems supplied by Cockayne and Hewgill had been
successfully completed, the next step was to try a few larger problems. This
was done with the hope of gaining an insight into the changes that would
be brought about from the addition of more data points.

For this attempt we generated several random sets of 110 points each.
The length of T list increased by approximately 38%, from an average of 210
trees to an average of 292 trees. The time to compute T list also increased
drastically, going from an average of 15 minutes to an average of more than
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40 minutes.

The interesting thing that jumped out the most was the increase in the
number of large bi-connected components. Since the extraction process must
do a complete search of all possibilities, the larger the component the longer
it will take. This is a classic example of an exponential problem, where
when the problem size increases by 1 the time doubles. With this increased
component size, none of the random problems generated finished inside a 12
hour cut off time.

This rapid growth puts into perspective the importance of the work pre-
viously done by Cockayne and Hewgill. Continuation of their work with
incompatibility matrices as well as decomposition of T list components ap-
pears at this point to be very important for the future of SMT calculations.

8.4 Grids

The problem of determining SMTs for grids was mentioned to the author
by Ron Graham. In this context we are thinking of a grid as a regular
lattice of unit squares. The literature has little of information regarding
SMTs on grids, and most of the information that is given is conjectured and
not proven. In Section 8.4.1 we will look at what is known about SMTs on
grids. In the following sub-sections we will introduce new results for grids
up through 7×m in size. These results presented are computational results
from PARSTEINER94 [29, 31, 32] which was discussed previously.

8.4.1 2×m and Square Grids

The first proof for anything besides a 2×2 grid came in a paper by Chung and
Graham [10] in which they proved the optimality of their characterization of
SMTs for 2×m grids. The only other major work was presented in a paper
by Chung, Gardner, and Graham [9]. They argued the optimality of the
SMT on 2× 2, 3× 3, and 4× 4 grids and gave conjectures and constructions
for those conjectures for SMTs on all other square lattices.

In their work Chung, Gardner, and Graham specified three building
blocks from which all SMTs on square (n × n) lattices were constructed.
The first, labeled ℐ, is just a K2, or a path on two vertices. This building
block is given in Figure 19-A. The second, labeled Y, is a Full Steiner Tree
(FST) (n vertices and n− 2 steiner points) on 3 vertices of the unit square.
This building block is given in Figure 19-B. The third, labeled X , is an FST
on all 4 vertices of the unit square. This building block is given in Figure 19-
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 (A)  (B)  (C)  (D) 

Figure 19: Building Blocks

C. For the generalizations we are going to make here, we need to introduce
one more building block, which we will label S. This building block is an
FST on a 3× 2 grid and appears in Figure 19-D.

SMTs for grids of size 2 ×m have two basic structures. The first is an
FST on all the vertices in the 2 × m grid. An example of this for a 2 × 3
grid is given in Figure 19-D. The other structure is constructed from the
building blocks previously described. We hope that these building blocks,
when put in conjunction with the generalizations for 3×m, 4 ×m, 5 ×m,
6×m, and 7×m will provide the foundation for a generalization of m× n

grids in the future.

In their work on ladders (2 ×m grids) Chung and Graham established
and proved the optimality of their characterization for 2×m grids. Before
giving their characterization, a brief review of the first few 2 ×m SMTs is
in order. The SMT for a 2× 2 grid is shown in Figure 19-C, the SMT for a
2× 3 grid is shown in Figure 19-D, and the SMT for a 2× 4 grid is given in
Figure 20.

Chung and Graham [10] proved that SMTs for ladders fell into one of
two categories. If the length of the ladder was odd, then the SMT was the
FST on the vertices of the ladder. The SMT for the 2×3 grid in Figure 19-D
is an example of this. If the length of the ladder was even, the SMT was
made up of a series of (m2 − 1) Xℐ’s followed by one last X . The SMT for
the 2× 4 grid in Figure 20 is an example of this.

Figure 20: SMT for a 2× 4 Grid
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Figure 21: SMT for a 3× 3 Grid

8.4.2 3×m Grids

The SMT for 3 × m grids has a very easy characterization which can be
seen once the initial cases have been presented. The SMT for the 3× 2 grid
is presented in Figure 19-D. The SMT for the 3 × 3 grid is presented in
Figure 21.

From here we can characterize all 3 ×m grids. Except for in the 3 × 2
grid, which is an S building block, there will be only two basic building
blocks present, X ’s and ℐ’s. There will be exactly two ℐ’s and (m− 1)X ’s.
The two ℐ’s will appear on each end of the grid. The X ’s will appear in a
staggered checkerboard pattern, one on each column of the grid the same
way that the two X ’s are staggered in the 3 × 3 grid. The 3 × 5 grid is a
good example of this and is shown in Figure 22.

Figure 22: SMT for a 3× 5 Grid

8.4.3 4×m Grids

The foundation for the 4 × m grids has already been laid. In their most
recent work, Cockayne and Hewgill presented some results on Square Lattice
Problems [14]. They looked at 4×m grids for m = 2 to m = 6. They also
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looked at the SMTs for these problems when various lattice points in that
grid were missing. What they did not do, however, was characterize the
structure of the SMTs for all 4×m grids.

The 4× 2 grid is given in Figure 20. From the work of Chung, Gardner,
and Graham [9], we know that the SMT for a 4 × 4 grid is a checkerboard
pattern of 5 X ’s. This layout gives us the first two patterns we will need
to describe the 4 × m generalization. The first pattern, which we will call
pattern A, is the same as the 3 × 4 grid without the two ℐ’s on the ends.
This pattern is given in Figure 23. The second pattern, denoted as pattern
ℬ, is the 2× 4 grid in Figure 20 without the connecting ℐ. This is shown in
Figure 24.

Figure 23: 4×m Pattern A

Figure 24: 4×m Pattern ℬ

Before the final characterization can be made, two more patterns are
needed. The first one, called pattern C, is a 4× 3 grid where the pattern is
made up of two non-connected 2 × 3 SMTs, shown in Figure 25. The next
pattern, denoted by pattern D, is quite simply a Y centered in a 2× 4 grid.
This is shown in Figure 26. The final pattern, denoted by ℰ , is just an ℐ on
the right side of a 2× 4 grid. This is shown in Figure 27.

Now we can begin the characterization. The easiest way to present the
characterization is with some simple string rewriting rules. Since the 4× 2,
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Figure 25: 4×m Pattern C

Figure 26: 4×m Pattern D

4× 3, and 4× 4 patterns have already been given, the rules will begin with
a 4 × 5 grid. This grid has the string AC. The first rule is that whenever
there is a C on the right end of your string replace it with ℬDℬ. Therefore
a 4 × 6 grid is AℬDℬ. The next rule is that whenever there is a ℬ on the
right end of your string replace it with a C. The final rule is whenever there
is a DC on the right end of your string replace it with an ℰAℬ. These rules
are summarized in Table 4. A listing of the strings for m from 5 to 11 is
given in Table 5.

Figure 27: 4×m Pattern ℰ
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1 ℬ → C

2 C → ℬDℬ

3 DC → ℰAℬ

Table 4: Rewrite rules for 4×m Grids.

m = 5 6 7 8

String AC AℬDℬ AℬDC AℬℰAℬ

m = 9 10 11

String AℬℰAC AℬℰAℬDℬ AℬℰAℬDC

Table 5: String Representations for 4×m Grids

8.4.4 5×m Grids

For the 5 × m grids there are 5 building blocks (and their mirror images
which are donated with an ′) that are used to generate any 5 × m grid.
These building blocks appear in Figure 28, Figure 29, Figure 30, Figure 31,
and Figure 32.

Figure 28: 5×m Pattern A

With the building blocks in place, the characterization of 5×m grids is
quite easy using grammar rewrite rules. The rules used for rewriting strings
representing a 5×m grid are given in Table 6. The SMTs for 5× 2, 5× 3,
and 5 × 4 have already been given. For a 5 × 5 grid the SMT is made up
of the following string: ℰA′ℬD. As a reminder, the A′ signifies the mirror
of building block A. A listing of the strings for m from 5 to 11 is given in
Table 7.
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Figure 29: 5×m Pattern ℬ

Figure 30: 5×m Pattern C

Figure 31: 5×m Pattern D

Figure 32: 5×m Pattern ℰ
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1 C → ℬ′D′

2 D → A′ℰ
3 ℰ → AC

4 C′ → ℬD

5 D′ → Aℰ ′

6 ℰ ′ → A′C′

Table 6: Rewrite rules for 5×m Grids

m = 5 6 7 8

String ℰA′ℬD ℰA′ℬA′ℰ ℰA′ℬA′AC ℰA′ℬA′Aℬ′D′

m = 9 10 11

String ℰA′ℬA′Aℬ′Aℰ ′ ℰA′ℬA′Aℬ′AA′C′ ℰA′ℬA′Aℬ′AA′ℬD

Table 7: String Representations for 5×m Grids

8.4.5 6×m Grids

For the 6×m grids there are 5 building blocks that are used to generate any
6×m grid. These building blocks appear in Figure 33, Figure 34, Figure 35,
Figure 36, and Figure 37.

Figure 33: 6×m Pattern A

The solution for 6×m grids can now be characterized by using grammar
rewrite rules. The rules used for rewriting strings representing a 6×m grid
are given in Table 8. The basis for this rewrite system is the SMT for the
6× 3 grid which is AC. It is also nice to see that for the 6×m grids there is
a simple regular expression which can characterize what the string will be.
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Figure 34: 6×m Pattern ℬ

Figure 35: 6×m Pattern C

Figure 36: 6×m Pattern D

Figure 37: 6×m Pattern ℰ
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That regular expression has the form: A(ℬℰ)∗(C∣ℬD), which means that the
ℬℰ part can be repeated 0 or more times and the end can be either C OR
ℬD. A listing of the strings for m from 6 to 11 is given in Table 9.

1 C → ℬD

2 D → ℰC

Table 8: Rewrite rules for 6×m Grids

m = 6 7 8

String AℬℰℬD AℬℰℬℰC AℬℰℬℰℬD

m = 9 10 11

String AℬℰℬℰℬℰC AℬℰℬℰℬℰℬD AℬℰℬℰℬℰℬℰC

Table 9: String Representations for 6×m Grids

8.4.6 7×m Grids

For the 7×m grids there are 6 building blocks that are used to generate any
7×m grid. These building blocks appear in Figure 38, Figure 39, Figure 40,
Figure 41, Figure 42, and Figure 43.

Figure 38: 7×m Pattern A

The grammar rewrite rules for strings representing a 7×m grid are given
in Table 10. The basis for this rewrite system is the SMT for the 7× 5 grid
which is ℱA′ℰ ′ℱ ′. A listing of the strings for m from 6 to 11 is given in
Table 11.
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Figure 39: 7×m Pattern ℬ

Figure 40: 7×m Pattern C

Figure 41: 7×m Pattern D

Figure 42: 7×m Pattern ℰ

Figure 43: 7×m Pattern ℱ
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1 ℰ ′ℱ ′ → ℬA′ℱ
2 ℱ → CD

3 CD → Aℰℱ

4 ℰℱ → ℬ′Aℱ ′

5 ℱ ′ → C′D′

6 C′D′ → A′ℰ ′ℱ ′

Table 10: Rewrite rules for 7×m Grids

m = 6 7 8 9

String ℱA′ℬA′ℱ ℱA′ℬA′CD ℱA′ℬA′Aℰℱ ℱA′ℬA′Aℬ′Aℱ ′

m = 10 11 12
String ℱA′ℬA′Aℬ′AC′D′ ℱA′ℬA′Aℬ′AA′ℰ ′ℱ ′ ℱA′ℬA′Aℬ′AA′ℬA′ℱ

Table 11: String Representations for 7×m Grids

9 Future Work

9.1 Grids

In this work we reviewed what is known about SMTs on grids and then
presented results from PARSTEINER94 [29, 32] which characterize SMTs
for 3×m to 7×m grids. The next obvious question is what is the charac-
terization for an 8 × m grid, or an n × m grid? Well, this is where things
start getting nasty. Even though PARSTEINER94 cuts the computation
time of the previous best program for SMTs by an order of magnitude, the
computation time for an NP-Hard problem blows up sooner or later, and
8×m is where we run into the computation wall.

We have been able to make small chips into this wall though, and have
some results for 8 ×m grids. The pattern for this seems to be based upon
repeated use of the 8×8 grid which is shown in Figure 44. This grid solution
seems to be combined with smaller 8× solutions in order to build larger
solutions. However, until better computational approaches are developed
further characterizations of SMTs on grids will be very hard, and tedious.
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Figure 44: 8× 8

9.2 Further Parallelization

9.2.1 Algorithm Enhancements

There remains a great deal of work that can be done on the Steiner Minimal
Tree problem in the parallel arena. The first thing to consider is whether
there are other ways to approach the parallel generation of T list that would
be more efficient. Improvement in this area would push the computation
pendulum even further away from T list generation and towards SMT ex-
traction.

The next thing to consider is the entire extraction process. The initial
generation of the incompatibility matrix has the appearance of easy paral-
lelization. The forest management technique introduced by Cockayne and
Hewgill could also be put into a parallel framework, thereby speeding up
the preparation for extraction quite a bit.

With this initialization out of the way, decomposition could then be
considered. The best possible enhancement here might be the addition of
thresholds. As with most parallel algorithms, for any problem smaller than
a particular size it is usually faster to solve it sequentially. These thresholds
could come into play in determining whether to call a further decomposition,
such as the cycle decomposition introduced by Cockayne and Hewgill that
was discussed in Section 7.

The final option for parallelization is one that may yield the best re-
sults, and that is in the extraction itself. Extraction is basically a branch
and bound process, using the incompatibility matrix. This branch and bound
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is primed with the length of the MST as the initial bound, and continues
until all possible combinations have been considered. The easiest implemen-
tation here would probably be the idea presented in the paper by Quinn and
Deo [53] that served as the basis for the parallel algorithm in Section 6.

9.2.2 GPU Implementation

With games and visualization driving the evolution of graphics proces-
sors, the fixed functionality of the rendering pipeline once offered has been
steadily replaced by the introduction of programmable pipeline components
called shaders. These shaders not only allow the GPU to be used for
more elaborate graphical effects but also allow it to be used for more gen-
eral purpose computations. By storing general data as texture data, user-
programmed vertex and fragment shaders can transform the GPU into a
highly dataparallel multiprocessor[49].

In 2007, nVidia released CUDA [47], a programming language which
allows for direct GPGPU programming in a C-like environment. Modern
GPUs offer 512 processing cores [48], which is far more than any CPU cur-
rently provides. Many researchers have taken advantage of the environment
provided by CUDA to easily map their parallel algorithms to the GPU.

Of note is the work being done by Joshua Hegie [34]. In his thesis,
Hegie has mapped out an implementation of Winter’s work onto the GPU.
Preliminary results are very promising, and in the future work he maps out
a methodology for the use of multiple GPUs which will open the door for
much larger problems at a reasonable computation time.

9.3 Additional Problems

9.3.1 1-Reliable Steiner Tree Problem

If we would like to be able to sustain a single failure of any vertex, without
interrupting communication among remaining vertices, the minimum length
network problem takes on a decidedly different structure. For example, in
any FST all of the original vertices are of degree 1, and hence any one can
be disconnected from the network by a single failure of the adjacent Steiner
Point.

We would clearly like a minimum length 2-connected network. The an-
swer can be the minimum length Hamiltonian cycle (consider the vertices of
the unit square), but it does not need to be, as shown in the Θ graph given
in Figure 45.
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Figure 45: Theta graph.

Here we can add Steiner points near the vertices of degree 3, and reduce
the network length without sacrificing 2-connectivity. This is not just a sin-
gle graph, but is a member of a family of graphs that look like ladders, where
the Θ graph has only one internal rung. We hope to extend earlier work
providing constructions on 2-connected graphs [33] to allow effective appli-
cation of an Annealing Algorithm that could walk through graphs within
the 2-connected class.

9.3.2 Augmenting Existing Plane Networks

In practical applications, it frequently happens that new points must be
joined to an existing Steiner Minimal Tree. Although a new and larger
SMT can, in principle, be constructed which connects both the new and the
existing points, this is typically impractical. e.g. in cases where a fiber optic
network has already been constructed. Thus the only acceptable approach
is to add the new points to the network as cheaply as possible. Cockayne
has presented this problem which we can state as follows:

Augmented Steiner Network: Given a connected plane graph G =
(V,E) (i.e. an embedding of a connected planar graph in E2) and a set V ′ of
points in the plane which are not on edges of G, construct a connected plane
supergraph G” = (V ”, E”), such that V ” contains V

∪

V ′, E” contains E,
and the sum of the Euclidean lengths of the set of edges in E” − E is a
minimum. In constructing the plane graph G” it is permitted to add an
edge connecting a point in V ′ to an interior point of an edge in G. It is also
permitted to add Steiner points. Thus, strictly speaking, G” does not need
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Figure 46: An Optimal Forest.

to be a supergraph of G.

The Augmented Steiner Network Problem clearly has applications in
such diverse areas as canal systems, rail systems, housing subdivisions, irri-
gation networks and computer networks. For example, given a (plane) fiber
optic computer network G = (V,E) and a new set V ′ of nodes to be added
to the network, the problem is to construct a set F ′ of fiber optic links with
minimum total length that connects V ′ to G. The set F ′ of new links is
easily seen to form a forest in the plane, because the minimum total length
requirement ensures that there cannot be cycles in F ′.

As an example, consider the situation in Figure 46 where G consists of
a single, long edge and V ′ = v1, . . . , v8. The optimal forest F ′ consists of
three trees joining G at f1, f2 and f3. It is necessary that extra Steiner
points s1, s2 and s3 be added so that F has minimum length.

While we are aware of several algorithms for solving special cases of the
Augmented Existing Plane Network Problem, such as those by Chen [7] and
Trietsch [57] or the special case where the graph G consists of a single vertex,
in which case the problem is equivalent to the classical Steiner Minimal Tree
Problem, we are not aware of any algorithms or computer programs available
for exact solutions to the general form of this problem. Here, “exact” means
provably optimal except for round-off error and machine representation of
real numbers. Non-exact (i.e. heuristic) solutions are sub-optimal although
they may often be found considerably faster.
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