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Abstract

We present a Genetic Algorithm to solve the Steiner
Minimal Tree Problem. The Steiner Minimal Tree
Problem is a network optimization problem in which
we are able to add points to the network in order to
minimize its length. The Genetic Algorithm searches
for the number and location of these new points. Pre-
liminary results are promising.
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1 Introduction.

Minimizing a network’s length is one of the old-
est optimization problems in mathematics and, conse-
quently, it has been worked on by many of the lead-
ing mathematicians in history. In the mid-seventeenth
century a simple problem was posed: Find the point
P that minimizes the sum of the distances from P to
each of three given points in the plane. Solutions to
this problem were derived independently by Fermat,
Torricelli and Cavalieri. They all deduced that either
P is inside the triangle formed by the given points and
that the angles at P formed by the lines joining P to
the three points are all 120°, or P is one of the three
vertices and the angle at P formed by the lines joining
P to the other two points is greater than or equal to
120°.

The method proposed by the mathematicians of the
mid-seventeenth century for the three point problem
is illustrated in Figure 1. This method stated that in
order to calculate the point P given points A, B, and
C, you first construct an equilateral triangle (ACX)
using the longest edge between two of the points (AC)
such that the third (B) lies outside the triangle. A
circle is circumscribed around the triangle, and a line is
constructed from the third point (B) to the far vertex
of the triangle (X). The location of the point (P) is
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Figure 1: AP + CP = PX.

the intersection of this line (BX) with the circle.

In the nineteenth century a mathematician at the
University of Berlin, named Jakob Steiner, studied this
problem and generalized it to include an arbitrarily
large set of points in the plane. This generalization
created a star when P was connected to all the given
points in the plane, and is a geometric approach to the
2-dimensional center of mass problem.

In 1934 Kossler and Jarnik generalized the net-
work minimization problem even further [10]: Given
n points in the plane find the shortest possible con-
nected network containing these points. This gener-
alized problem, however, did not become popular un-
til the book, What s Mathematics, by Courant and
Robbins [2], appeared in 1941. Courant and Robbins
linked the name Steiner with this form of the problem
proposed by Kossler and Jarnik, and it became known
as the Steiner Minimal Tree problem. The general
solution to this problem allows multiple points to be
added, each of which is called a Steiner Point, creating
a tree instead of a star.

Much is known about the exact solution to the
Steiner Minimal Tree problem. Those who wish to
learn about some of the spin-off problems are invited



to read the introductory article by Bern and Gra-
ham [1], the excellent survey paper on this problem by
Hwang and Richards [8], or the recent volume in The
Annals of Discrete Mathematics devoted completely
to Steiner Tree problems [9]. Some of the basic pieces
of information about the Steiner Minimal Tree prob-
lem that can be gleaned from these articles are: (i) the
fact that all of the original n points will be of degree
1, 2, or 3, (ii) the Steiner Points are all of degree 3,
(iil) any two edges meet at an angle of at least 120°
in the Steiner Minimal Tree, and (iv) at most n — 2
Steiner Points will be added to the network.

While the Steiner Minimal Tree (SMT) problem is
itself quite interesting, it also has a number of appli-
cation areas. Some of these include: Laying telephone
cable between a number of cities; laying pipe between
points; connecting a number of computers together us-
ing the least amount of cable necessary.

The current algorithms in use for solving the SMT
problem take a large amount of time to compute a
non-trivial solution [5, 6]. It is for this reason that
we have developed a Genetic Algorithm (GA) to solve
the problem. The GA we developed has provided a
great improvement in the time it takes for computa-
tion of SMTs, dropping the time from many hours to
under 20 minutes. We are able to produce an accept-
able answer for the 100 point problem, where accept-
able means a SMT of shorter length than the Minimal
Spanning Tree over the same points. For those read-
ers interested in GAs, Goldberg [4] and Davis [3] are
the important works in this field to read, while previ-
ous work in applying GAs to different aspects of the
Steiner Tree Problem are presented in Hesser [7] and
Julstrom [11].

In Section 2 we go into depth on the Genetic Al-
gorithm we developed. In Section 3 Results are pre-
sented. Conclusions and Future Work are presented
in Section 4.

2 The Genetic Algorithm

A Genetic Algorithm is an algorithm based upon
the process of natural selection and genetics. It com-
bines survival of the fittest with random, but struc-
tured, information exchange among members of the
population. There are four distinct points in which
GAs differ from more traditional search techniques.
These are:

1. They work with an encoding of the problem pa-
rameters, not the parameters themselves.

2. They search through a population of points, not
a single point.

3. They use objective function information (payoff),
not derivatives or other secondary information.

4. They use probabilistic transition rules, not deter-
ministic.

When using a GA, the parameters are usually en-
coded as a bit string. A GA begins with an instan-
tiated population of individuals, in which each indi-
vidual’s encoded string is generated at random. The
members of the population then undergo Reproduc-
tion, Crossover, and Mutation. It is these three pro-
cesses that provide the strength of the GA as a search
technique.

Reproduction selects members of the current gener-
ation and mates them. Selection is based on fitness of
an individual, where fitness is a measure of how close
each member of this population is to the correct solu-
tion. This provides the next generation with members
that incorporate a better solution then the previous
generation and is modeled after survival of the fittest.
The members selected in this manner are called par-
ents, and the new members of the next generation are
called children

Crossover mates the encodings of the parents to
generate children. A traditional GA uses one-point
crossover, where a point on the chromosome (the bit
string representing the encoding) is selected at random
and the parents swap their strings from the selected
point to the end of the chromosome. This swapping of
material models chromosome crossover in the nucleus
of cells.

Mutation provides for the generation of new infor-
mation or the regeneration of possibly lost information
due to selection. This process is modeled after radia-
tion mutation of chromosomes in the cells nucleus [4].

In developing the GA for this problem, we made
many design changes to the traditional GA. Specif-
ically we changed the style of the encoding, altered
the way crossover and mutation work and provided
for population regeneration due to sub-optimal con-
vergence.

Encoding: Our encoding consisted of an array of
x and y coordinates representing the location of the
Steiner Points and some extra flags used in Steiner
Point generation and tree validity testing. Instead of
crossing over at random bit positions, we decided to
crossover the chromosomes at point boundaries. This
provided us with the means of keeping known Steiner



Points, as opposed to creating random non-Steiner
points.

Roulette wheel selection proved to be too random,
causing the GA to not converge to any specific solu-
tion. For this reason we chose to use CHC selection
with a probability of crossover (Pc) = 0.95 and a prob-
ability of mutation (Pm) = 0.05. These settings pro-
vided us with the best results.

Crossover: Simple one-point crossover proved to be
a little too inefficient, so we decided to move to two-
point crossover. The idea behind two-point crossover
is that we select two points on the chromosome ran-
domly and then swap the information between the
two points. We selected this method to provide us
with some control over locality problems concerning
the Steiner Points.

Mutation: Mutation was another area in which
modification was necessary. Since our encoding did
not allow us to just mutate simple on/off bits, it was
necessary to alter it. In our GA, mutation does two
things: 1. If the chromosome is full, select a point at
random and remove it. 2. Generate a new point and
add it to the chromosome.

Population Regeneration: Our first tests with the
GA showed that we were unable to generate an exact
solution. We realized that not as many different possi-
ble Steiner Points as we needed were being generated.
As an attempt to fix this problem, we implemented
two different population regeneration schemes, both
based on the length of population convergence. The
two types of regeneration are (1) Random regeneration
and (2) Cataclysmic regeneration. Random regenera-
tion is when the bottom 80% of the population regen-
erates their encoded strings at random. Cataclysmic
regeneration is when the bottom 95% of the popula-
tion regenerates their encoded strings as mutations of
the top 5%. While random regeneration proved useful
and will be kept as a viable tool, cataclysmic regener-
ation provided little or no help in generating an exact
solution.

3 Results

The parameters that we found to work the best are
given in Table 1. We found these population size set-
tings by comparing the information provided by evalu-
ating the maximum performance while running this on
a 4 x 4 Grid. The input and spanning tree for the 4 x

Probability of Crossover 0.95
Probability of Mutation 0.05
Population Size 75
Generations 100-200

Table 1: Best Parameter Settings

Figure 2: 4 x 4 Spanning Tree

4 Grid are presented in Figure 2, and the GA output is
given in Figure 3. We then used these settings to gen-
erate our solution to a 100-point problem. Our results
are presented in Table 2. It is important to note that
our GA results were computed from non-relaxed trees
(the steienr points are not in the exact position, but
the tree is structured properly). This is due to the fact
that in the crossover operations trees are combined
and placement of points is not re-calculated. Relax-
ation of the trees would provide an even larger decrease
in length.

GA solutions for test data sets.
(Given as Tree length, % of MST Length)

16 point 100 point
Grid problem Random problem
MST Solution | 3.00000 100% | 6.44869 100%
SMT Solution | 2.73205 91% | 6.25546 97%
GA Solution 2.85757 95% | 6.37021 98.8%

Table 2: GA Solution Comparisons



Figure 3: 4 x 4 Genetic Algorithm

Figure 4 presents the 100 point input set for the
problem while Figures 5 and 6 show the output of
the Genetic Algorithm for 100 points and the exact
solution for this 100 point problem.

While looking at the information from the GA, we
began to realize that it was usually generating sub-
optimal solutions. We believe this is because we are
not generating as many different Steiner Points as are
necessary to find an exact solution. This is why we
chose two-point crossover and population regenera-
tion. Unfortunately these techniques provided only
marginal performance improvement. We believe that
the problem lies in how we generate Steiner Points,
not in how the GA operators work. If this is true, we
can gain considerably in run time by the elimination,
or at least scaling back of, population regeneration.

4 Conclusions and Future Work

While the solutions provided from our GA for the
test data sets are not exact, We believe that our GA
holds much promise for finding good solutions to the
SMT problem. With more work and an improvement
in the Steiner Point generation algorithm, we hope we
can produce near exact solutions in the future.

The future work for this problem extends in many
areas. First we want to try to fix the problems that
we are having with our Steiner Point generation. This
could be done through a few different ways. The
best (and probably the hardest) would be to treat the
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Figure 4: 100 point Input

Figure 5: 100 point Genetic Algorithm



Figure 6: 100 point exact solution

points as logical points in a tree structure, where they
logically connect other vertices, but do not have a co-
ordinate location until the length of the tree is calcu-
lated. This would take care of the relaxation prob-
lem discussed earlier. The second item of future work
would be to extend the GA to a parallel environment,
as was described in [12], so that we can attack larger
problems. The third direction for future work, which
is probably the hardest, is to extend the SMT prob-
lem to 3 dimensions. This attack, while being the
hardest, will probably yield some interresting commu-
nication networks for building construction, and other
3 dimensional spaces.
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