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Abstract
Determining the crossing number of a graph is an important problem with
applications in areas such as circuit design and network configuration. In this paper we
present the first parallel algorithm for solving this combinatorial optimization problem.
This branch-and-bound algorithm, which adds and deletes crossings in an organized
fashion, presents us with the opportunity to verify many conjectures which are decades
old, as well as pursuing future work in efficient circuit design.

1 Introduction

Optimal circuit layout and network design are two problems that are becoming more
important as the number of computers grows rapidly and their capabilities increase.
Unfortunately the applications are obvious but the theory available to help solve the
problem is quite deficient. Determining the crossing number of a graph is a problem whose
solution could improve the state of the theory in this important application area. It is this
importance that has driven our work in finding the minimum crossing number of a graph.

Informally, the crossing number of a graph G, denoted v(G), is the minimum number
of crossings among all good drawings of G in the plane, where a good drawing has the
following properties:

(a) No edge crosses itself

(b) No pair of adjacent edges cross

(c) Two edges cross at most once

(d) No more than two edges cross at one point

Although the problem is easily stated and has been well studied, not much is known
about it. Erdos and Guy [5] put together a survey of what was known in 1973, and Turan
discussed it via his Brick Factory Problem [17]. However, it was not until 1983 that Garey
and Johnson [6] proved that finding the minimum crossing number of a graph was an NP-
Complete problem. When this happened, work turned away from finding the minimum
crossing number of a graph to other related problems. These have ranged from a return
to the rectilinear crossing problem [8, 16] to the maximum crossing number of a graph or
subgraph [9], to the thrackle conjecture [2].

We now wish to turn the attention of this paper back to the minimum crossing number
of a graph. In Section 2 we review some notation and definitions we build on throughout
the paper. In Section 3 we outline Edmonds’ Rotational Embedding Scheme which is a
vital part of our proposed algorithm. In Section 4 we discuss depth first search and branch
and bound algorithms and in Section 5 we present the first sequential algorithm for the
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problem. The parallel algorithm is discussed in Section 6 and Conclusions and Future Work
are presented in Section 7.

2 Notation and Definitions

We now define some terms from topological graph theory which will be used through the
rest of this paper. In general these definitions are as in [1].

For our purposes a compact-orientable 2-manifold, or simply a surface, may be thought
of as a sphere, or a sphere with handles. The genus of the surface is the number of handles.

An embedding of a graph G on a surface S is a drawing of G on S in such a manner
that edges intersect only at a vertex to which they are both incident.

A region in an embedding is called a 2-cellif any simple closed curve in that region can
be continuously deformed or contracted in that region to a single point. An embedding is
called a 2-cell embedding if all the regions in the embedding are 2-cell.

An algebraic description of a 2-cell embedding was observed by Dyck [3] and Heffter[11].
This description is referred to as a Rotational Embedding Scheme which will be covered in
Section 3

And finally, the relationship between the number of regions of a graph and the surface
on which it is embedded is described by the well-known generalized Fuler’s Formula [1]:

DEFINITION 2.1. Let G be a connected graph with p vertices and q edges with a 2-cell
embedding on the surface of genus n having r regions. Then p—q+r = 2 — 2n.

3 Rotational Embedding Scheme

With these definitions as a background, we now look at the Rotational Embedding Scheme,
first formally introduced by Edmonds [4] in 1960 and then discussed in detail by Youngs [18]
a few years later. The following is the formal statement of the Rotational Embedding
Scheme as given in [1] on pages 130-131.

DEerINITION 3.1. Let G be a nontrivial connected graph with V(G) = {v1,v2, ..., vp}.
For each 2-cell embedding of G on a surface there exists a unique p-tuple (m1,73,..., 7)),
where for i = 1,2, ...,p, m : V(i) — V(i) is a cyclic permutation that describes the
subscripls of the vertices adjacent to v;. Conversely, for each such p-tuple (m1,73,..., 7)),

there exists a 2-cell embedding of G on some surface such thalt for v = 1,2,...,p the
subscripts adjacent to v; and in the counterclockwise order about v;, are given by ;.

For example consider Figure 1 which gives a planar embedding of a graph. From this
graph we obtain the following counterclockwise permutations associated with each vertex:

m = (6,4,2) m=(1,4,3)
T3 = (2,4) T =(3,2,1,5)
Ty = (4,6) T = (5, 1)

From these permutations we can obtain the edges of the graph and the number of
regions of the graph. For instance, this graph has 4 regions. The edges for one of these
regions can be traced as follows:

1) Start with edge (1,2)

2) Go to permutation 73 and find out who follows 1, and it is 4. Therefore the
second edge is (2,4).

3) Go to permutation 74 and find out who follows 2, and it is 1. Therefore the
third edge is (4,1).

4) Go to permutation m; and find out who follows 4 and it is 2. This yields edge
(1,2) which was the original edge so we are finished.
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Fic. 1. A Planar embedding of a graph

The region we looked at was bounded by the edges (1,2), (2,4), and (4,1). The other regions
and edges can be found in a similar manner.

The important thing to note at this point is the converse portion of the Rotational
Embedding Scheme, that every collection of vertex permutations corresponds to an
embedding on some surface. Given a set of permutations, we can trace the edges and
determine the genus of the surface.

A computer program to generate all vertex permutation schemes for a graph was
developed in [14]. This program counts the regions of the resulting embedding and using
Euler’s formula determines if a given graph has a planar embedding. The code for this
program can be found in [13], and we will make extensive use of it in Sections 5 and 6.

4 Depth First Search with Branch-and-Bound

If the solution space of a problem can be mapped to a tree, where each interior vertex is
a partial solution, edges toward the leaves are options that refine the partial solution, and
the leaves are complete solutions, then there are various algorithms that can search the tree
to find the optimal solution. A Depth First Search (DFS) algorithm is one such algorithm
which, as its name implies, searches more deeply into the tree for a solution whenever
possible. Once a path is found from the root to a leaf representing a solution, the search
backtracks to explore the nearest unsearched portion of the tree. This continues until the
entire tree has been traversed.

The Branch and Bound portion allows us to change one simple part of the DFS
algorithm. When the cost to get to a vertex v exceeds the current optimal solution, we
then tell the DFS algorithm not to traverse the subtree having v as its root.

This method exhaustively covers the entire search space even after finding an initial
solution. However, it does not cover those sections of the search space that lead to solutions
that are guaranteed to cost more than the current optimal solution. When the entire tree
is covered the current optimal solution is the globally optimal solution.

5 The First Sequential Algorithm

When we began studying this problem we were amazed that we could not find a single
citation in the literature that discussed how to solve this problem algorithmically. Several
heuristics and conjectures were found [5, 6, 8, 17], but there were no algorithms. Therefore,
we began to work on a sequential algorithm for computing the minimum crossing number of
a graph. This past year one of us presented a proposed algorithm for sequentially calculating
the minimum crossing number of a graph [10].

In this algorithm we mapped the solution space of the crossing number problem onto a
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tree and then searched for the minimum crossing number with a branch and bound DFS.
First we begin with the vertex set for the graph in question and begin to add edges. After
each edge is added we determine whether the partial graph is still planar. This is done by
using the Rotational Embedding Scheme code described in Section 3. Once we cannot add
any edges and keep the partial graph planar we are ready to begin our mapping to the tree.

At this stage our partial graph is the root of our tree. The first option we have is
the many different ways to draw this graph. The code described in Section 3 will return
all possible planar embeddings of the partial graph. Therefore, the root of the tree has a
branch for each possible embedding.

Now we select the first embedding and begin to build the rest of its tree. We do this
by considering laying down the next edge (which will go from v; to v;). The first option
we have is which one of the k regions that v; is adjacent to should this edge leave through.
These regions represent the next layer of our tree. Omnce the region is selected, the next
option is which of the [ edges of that region the edge will cross. When we have made this
decision, we will create a cross vertex (degree 4) and place an edge from v; to the cross
vertex and then try to lay the edge from the cross vertex to v;. This may be possible
directly, or it may require more cross vertices.

For all the rest of the edges we lay them down in a similar manner, and when we have
finally laid them all down we have reached a leaf in the tree. At this point we have a cost
for the current solution which is the number of cross vertices we have added. This number
of crossings becomes the new bound. The DFS continues by backing up and trying other
decisions in the tree using the bound as a stopping criteria. We proceed until the entire
solution space is traversed.

In order to understand this, let us walk through the algorithm with K5 as our example.
In Figure 2 we have the vertex set for the graph with all the edges added to the graph while
it can still remain planar.
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Fic. 2. Planar portion of Kx

At this stage the algorithm states that we are to take all remaining edges and try to lay
them down one at a time. This is fairly simple in this case since there is only one edge left
to be added and that is from vertex ¢ to vertex j. Now we have three choices, and these
are the three regions that vertex ¢ is adjacent to (R1, R2, and R3). We select R1 which
has 3 edges and find that we cannot legally cross 2 of the edges (since they are incident
with ¢), so there is only one choice. We then place a cross vertex on this edge and connect
an edge from ¢ to the cross vertex as shown in Figure 3. We then find out if we can draw
the edge from the cross vertex to j and keep the graph planar. In this case we can and we
are finished with this edge and have one crossing. This solution is shown in Figure 4. The
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Fia. 3. Beginning to lay down the alst edge for Ks
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Fia. 4. One drawing of K5 with 1 crossing

algorithm then backtracks and tries the other regions ¢ is adjacent to and finds out that
there are multiple ways to draw K5 with one crossing, but none with zero crossings.

6 A Parallel Algorithm and Implementation

The parallel algorithm for this preliminary work was very straightforward. In order to
obtain some initial results we did a basic static partitioning of the search tree among the
p processors in our parallel machine. This method, along with its benefits and drawbacks,
is discussed in detail in [12]. We figured we would attempt this first and see if it was
reasonable, and then modify it later to more dynamic methods after the feasibility was
determined.

The implementation of this algorithm was developed on and run on a network of
Pentium 133 machines running Linux. This network of machines was linked together into a
parallel cluster with PVM [7] using a host-node programming style. This configuration
was chosen for its ease of use and availability. In the future we wish to modify the
implementation to have dynamic partitioning of the search space and target a new
multiprocessor shared memory machine that has just become available.

For evaluation of this algorithm and its implementation we decided to use the family of
complete graphs, denoted K, as our test cases. This family was selected for a few reasons.
First it is one of the few families of graphs where there are some known answers since it is
well-studied family. Secondly, it is one of the few families with a conjectured formula for
the minimum crossing number. For complete graphs of size 10 and less, a simple formula
provides the minimum crossing number [8]:



This formula, which is conjectured by Richard Guy to be the exact answer for all n
[8], provided a ball park for an initial bounds when doing our branch-and-bound search.
The results of the sequential and parallel versions are shown in Table 1. This basically
shows that the computation times for Kg and K7 are so small that we do not have to
worry about the parallel implementation; however, Kg has a computation time that makes
it very desirable to compute its minimum crossing number, and that of larger members of

the family, in parallel.

TABLE 1

Computation time (in seconds) for K¢ - Kg with p processors

p=1|p=2|p=4
Kg 0 0 1
K 8 4 3
Ks | 12230 | 6251 | 3794

From this point on we dealt with Kg almost exclusively. We will attack Kg and others
in this family when we have finished some optimization that we will discuss in Section 7.
The numbers just presented for Kg yield the speedup given in Figure 5 and an efficiency

as given in Table 2.
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Fia. 5. Speedup for Kg as a function of p processors

The interesting thing to note is the time for Kg with four processors. For this
computation two of the slaves finished in almost identical times of about 3050 seconds,
while the other two were both around the final result of 3794 seconds. This detail points
out one of the major problems with static partitioning in tree search algorithms, and that
is lack of balanced workloads. For this reason we must consider dynamic partitioning of

the workload.



TABLE 2

Efficiency for Kg as a function of p processors

p= 1 p= 2 p= 4
| Ks | 1.0]0.9782 ] 0.8058

7 Conclusions and Future Work

We have presented a parallel algorithm for calculating the minimum crossing number of a
graph. This has been built upon the proposed sequential algorithm we presented in [10].
We have implemented this algorithm, and shown its capabilites by comparing the sequential
and the parallel versions on some of the initial members of the family of Complete Graphs
(K7 and Kg) that are not trivial.

We see this work continuing in various different ways. First we would like to construct a
package that will be able to automatically draw the resulting graphs which we can compute.
Secondly we would like to examine the computational method used in the sequential method
and see if there are portions that can be improved, since this could improve the parallel
version dramatically. This would range from looking at a best first search with a dynamic
queue of work as Quinn and Deo presented in [15] to looking at various graph theoretic
ways to legally prune the tree more effectively.

Then we would like to go back to calculate the crossing number for several families
which are very important when looking at circuit design, such as the rest of K, K, n),
and various others. We are hoping that at around K75 we will be able to show a counter-
example (as we did with the rectilinear crossing problem [16]) to the conjecture proposed
by Richard Guy [8] many years ago as the exact solution of this problem.
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