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Determining the crossing number of a graph is an important problem
with applications in areas such as circuit design and network configu-
ration [17]. It is this importance that has driven our work in finding
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Abstract

In this paper we present a branch-and-bound algorithm for
finding the minimum crossing number of a graph. We begin with
the vertex set and add edges by selecting every legal option for
creating a crossing or not. After each edge is added we determine
if the resulting partial graph is planar. We continue adding edges
until either all edges have been added or we reach a point where
the graph cannot be completed as started. At this point we
backtrack to see if the graph can be drawn with fewer crossings
by selecting other options when adding edges.
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Introduction

the minimum crossing number of a graph.

Informally, the crossing number of a graph G, denoted v(G), is the
minimum number of crossings among all good drawings of G in the

plane, where a good drawing has the following properties:
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a) No edge crosses itself

(a)
(b) No pair of adjacent edges cross
(c) Two edges cross at most once
(

d) No more than two edges cross at one point

Although the problem is easily stated and has been well studied,
not much is known about the general solutions. Erdés and Guy [8] put
together a survey of what was known in 1973, and Turan discussed it
via his Brick Factory Problem [25]. However, it was not until 1983 that
Garey and Johnson [9] proved that finding the minimum crossing num-
ber of a graph was an NP-Complete problem. Because of the difficulty
of this problem, work turned away from finding the minimum crossing
number of a graph to sub-problems and other related problems.

With regard to the sub-problems, there has been work on product
graphs ranging from the product of C, and graphs of order four [1]
to C3 x C, [22], Cy x C4 [5], C5 x C5 [21], and C5 x C,, [16]. There
has also been work in the area of bipartite graphs with the results
of K3, [20], K5, [15], and the torroidal crossing number of K, ,,[12]
having been found. In 1991 Beinstock published work [2] relating the
crossing number of a graph to the arrangement of pseudolines,a topic
well studied by combinatorialists.

There have also been several related problems that have been stud-
ied over the years. Some of these range from the rectilinear crossing
problem [11, 23, 24] to the maximum crossing number of a graph or
subgraph [10, 13] to the thrackle conjecture [4].

We now wish to turn the attention of this paper back to the mini-
mum crossing number of a graph. In Section 2 we review some nota-
tion and definitions we build on throughout the paper. In Section 3 we
outline Edmonds’ Rotational Embedding Scheme which gives us the
foundation for our proposed algorithm. In Section 4 we discuss depth-
first search and branch-and-bound algorithms and in Section 5 present
our proposed algorithm. Conclusions and future work are presented in
Section 6.

2 Notation and Definitions

We now define some terms from topological graph theory which will
be used through the rest of this paper. These definitions are as in [3].
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For our purposes, a compact-orientable 2-manifold, or simply a sur-
face, may be thought of as a sphere or a sphere with handles. The genus
of the surface is the number of handles.

An embedding of a graph G on a surface S is a drawing of G on S
in such a manner that edges intersect only at a vertex to which they
are both incident.

A region in an embedding is called a 2-cell if any simple closed
curve in that region can be continuously deformed or contracted in that
region to a single point. An embedding is called a 2-cell embedding if
all the regions in the embedding are 2-cell.

An algebraic description of a 2-cell embedding was given by Dyck [6]
and Heffter[14]. This description is referred to as a Rotational Embed-
ding Scheme which will be covered in Section 3.

Finally, the relationship between the number of regions of a graph
and the surface on which it is embedded is described by the well-known
generalized Fuler’s Formula [3]:

Let G be a connected graph with p vertices and ¢ edges
with a 2-cell embedding on the surface of genus n having r
regions. Then p— g+ r =2 — 2n.

3 Rotational Embedding Scheme

With these definitions as background, we now look at the Rotational
Embedding Scheme, first formally introduced by Edmonds [7] in 1960
and then discussed in detail by Youngs [26] a few years later. The
following is the formal statement of the Rotational Embedding Scheme
as given in [3] on pages 130-131.

Let GG be a nontrivial connected graph with V(G) = {vy, vq,
..., vp}. For each 2-cell embedding of G on a surface there
exists a unique p-tuple (mq,7g,...,7,), where for ¢ = 1,2,
ooy p, o2 V(i) — V() is a cyclic permutation that de-
scribes the subscripts of the vertices adjacent to v;. Con-
versely, for each such p-tuple (mq,mg,...,7,), there exists
a 2-cell embedding of G on some surface such that for
v = 1,2,...,p the subscripts of the vertices adjacent to
v; and in the counterclockwise order about v;, are given by
5.
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For example, consider Figure 1 which gives a planar embedding of
a graph. From this graph we obtain the following counterclockwise
permutations associated with each vertex:

m o= (6,4,2) 7w =(1,4,3)
T3 = (2,4) T4 = (3,2, 1,5)
71'52( ,6) 71'6:(5,1)
3
15 4
6¢ 5

Figure 1: A planar embedding of a graph

From these permutations we can obtain the edges of the graph
and the number of regions of the graph. For instance, this graph has 4
regions. The edges for one of these regions can be traced as follows:

1) Start with edge (1,2)
2) From permutation 7, determine which vertex follows 1; it
is 4. Therefore the second edge is (2,4).
3) From permutation 74 determine which vertex follows 2; it
is 1. Therefore the third edge is (4,1).
4) From permutation m; determine which vertex follows 4; it
is 2. This yields edge (1,2) which was the original edge, so
we are finished.
The region we considered is bounded by the edges (1,2), (2,4), and
(4,1). The other regions and associated edges can be found in a similar
manner.

The important thing to note is the converse portion of the Rota-
tional Embedding Scheme - that every collection of vertex permuta-
tions corresponds to an embedding on some surface. Given a set of
permutations, we can trace the edges of the regions and determine the
genus of the surface on which the graph is embedded.
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One of the authors developed a computer program to generate all
vertex permutation schemes for a graph [19]. The program then counts
the regions of the resulting embedding and, using Fuler’s formula, de-
termines if a given graph has a planar embedding. The code for this
program can be found in [18] and has motivated us to keep track of
regions in the construction of a graph drawing, which is the basis for
our proposed algorithm presented in Section 5.

4 Depth-First Search with Branch-and-Bound

If the solution space of a problem can be mapped to a tree, where each
interior vertex is a partial solution, edges toward the leaves are options
that refine the partial solution, and the leaves are complete solutions,
then there are various algorithms that can search the tree to find the
optimal solution. A depth-first search (DFS) algorithm is one such
algorithm which, as its name implies, searches more deeply into the
tree for a solution whenever possible. Once a path is found from the
root to a leaf representing a solution, the search backtracks to explore
the nearest unsearched portion of the tree. This continues until the
entire tree has been traversed.

The branch-and-bound portion allows us to change one simple part
of the DFS algorithm. When the cost to get to a vertex v exceeds the
cost of the current optimal solution, we then tell the DFS algorithm
not to traverse the subtree having v as its root.

This method exhaustively covers the entire search space even after
finding an initial solution without covering those sections of the search
space that lead to solutions that are guaranteed to cost more than the
current optimal solution. When the entire tree is covered, the current
optimal solution is the globally optimal solution.

5 Proposed Algorithm

For our proposed algorithm we map the solution space from the cross-
ing number problem onto a tree and search for the minimum crossing
number with a DFS with branch-and-bound. The root of our tree cor-
responds to the vertex set. The root has |F| (the number of edges)
branches coming out of it. Each branch corresponds to the first edge
that is added to the graph. The next level of the tree has |E| — 1
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branches coming out of each node. The tree is | F| levels deep, and the
path to each leaf corresponds to a unique permutation ordering for the
edges.

We begin by selecting edge (7, j). We use Euler’s Formula to deter-
mine if the edge can be added from vertex ¢ to vertex 7 without any
crossings. (We do this by keeping track of the number of regions in
the graph as it is constructed.) If so, we add the edge and select the
next edge. If not, we choose an edge that has already been added to
cross. (This may be the only edge crossed, or the first edge in a long
list of edges to be crossed). Once we decide that edge (7, j) is to cross
edge (k,l) we create a new vertex m, remove edge (k,/), add partial
edges (k,m), (m,l), and (¢, m), and then draw edge (m, j) in the same
fashion.

When drawing an edge, we remember that an edge cannot cross
itself, that no pair of adjacent edges cross, and that two edges cross
at most once. We also keep track of all partial edges and remember
that they are actually part of an edge. In the scenario described in
the previous paragraph, we would have to remember that edge (¢, m)
is part of edge (¢, 7).

Let us demonstrate the algorithm with K5 as our example. Kj
has 10 edges. The first 9 are added directly without crossing another
edge. This partial graph is shown in Figure 2. When the last edge is
considered, Euler’s Formula indicates that the resulting graph cannot
be embedded on the plane. Therefore, we must add the edge (7, 7) with

Figure 2: First 9 edges of K5 with no crossings
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at least one crossing.

At this stage we select edge (k,[) to cross, insert vertex m, remove
edge (k,l), and add partial edges (k,m), (m,!1), and (¢,m). The graph
is as shown in Figure 3. Once these partial edges have been drawn the
algorithm tries to draw the rest of edge (7,j) without any crossings
and succeeds. Figure 4 shows this drawing of K5 with one crossing.

Figure 4: One drawing of K5 with 1 crossing at m

The algorithm then backtracks with a new bound of one crossing.
It will then back up through the rest of the tree and try all other parts
of the tree. However, once the algorithm has determined that it cannot
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add an edge without any crossings, it will not try any further down
that branch since the best drawing so far has one crossing. It will finish
when it has exhausted all possibilities. In the case of K5, no possibility
will result in a drawing with zero crossings.

6 Conclusions and Future Work

We have presented a proposed algorithm for calculating the minimum
crossing number of a graph. This could also be extended to finding
the maximum crossing number by making minor modifications to the
search algorithm. We could also find all possible drawings with the
minimum crossing number, or we could remove the bound and enu-
merate all possible drawings of a graph.

The first step in the future work is to implement this algorithm and
test it on some known graphs. Once that is accomplished, we would
be able to determine if the order of the edges matters in reaching the
correct answer more quickly. The order may be important for graphs
in general, but it may not for certain classifications (such as K,).
Once that has been determined, we would like to calculate the crossing
number for several families which are important in circuit design, such
as Ky, K(, ), and various others. The last item on the list (which
would not be done last) would be to parallelize this process. This would
greatly speed up the calculations since parallel DFS branch-and-bound
algorithms can achieve super-linear speedup.
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