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Radiation transport effects on X-ray line emission are important in modeling
spectroscopic-quality, synthetic spectra of mid- and high-Z tracer elements in hot dense
plasmas. Plasmas produced in the laboratory are usually in non-equilibrium, i.e. the ion-
ization balance and distribution of atomic-level populations are determined by a set of
collisional and radiative atomic processes. In these conditions radiation in the plasma and
the level-population distribution are interdependent and have to be self-consistently deter-
mined. This involves the simultaneous solution of a set of atomic kinetics rate equations
and the radiation transport equation, a problem which is non-linear and non-local. This
results in an integro-differential problem that in general can not be solved analytically [1].

The problem of non-equilibrium radiation transport is quite computationally intensive.
Within the last 15 years Lambda operator techniques have been introduced and have
produced robust iterative schemes [2]. We have utilized a combination of linearization
and the Lambda operator approach. Our model focuses on a spectral range that covers line
transitions relevant for spectroscopy diagnostics. We assume a plane parallel slab geometry
with no incident radiation on either side of the slab.

The basic outline of this iterative method can be described as follows: first we introduce
spatial discretization. Then for each spatial zone we: (1) linearize the atomic kinetic rate
equations; (2) replace one of the equations by a particle conservation condition, since the set
of atomic kinetic rate equations is redundant; (3) express radiation dependent terms in these
equations through population numbers using Lambda operator; this is an integral operator
based on a formal solution of the radiation transport equation; (4) solve the resulting system
for corrections to population numbers; (5) update the values of the population numbers and
the radiation field and then repeat all these steps until a convergence criterion is satisfied.

This procedure allows us to obtain the solution, i.e. the population numbers and
radiation field for each spatial zone. This method is robust and stable, does not require
a lot of memory, and it converges rapidly. The only disadvantage is that it is very
computationally intensive, mainly because of the complexity of the Lambda operator.

Several approximations and acceleration techniques have been developed to reduce the
computational time required for calculating the Lambda operator. Many of these methods
have been shown to reduce computational time significantly; unfortunately, these methods
also have several drawbacks. The first disadvantage is that the choice of an approximate
Lambda operator may depend on the physical problem under consideration. This hurts the
universality of the code. The second disadvantage is that, an approximate operator may
contain optimization parameters that can not be known a prior: but have to be found by
trial and error. Finally, a situation may arise in which by reducing computational time per
iteration one may have to pay the price of increasing the number of iteration steps. This
may result in a small improvement, no improvement, or worse yet, a longer running time.
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Because we wanted to keep our algorithm general, straightforward, and therefore
easy to modify, instead of trying the accelerations we attempted to exploit the power
of parallelization. This algorithm provides a very good opportunity for distributing tasks
among processing elements. Each iteration step consist of two steps: building the system
of equations Ax=Db (i.e. setting up matrix A and vector b), and solving it. The matrix’s
dimension is equal to the number of atomic levels times the number of discretization points
in space. The number of levels is determined by the physics of the problem and in many
cases is not very high. The number of spatial zones can also be kept small. The matrix
is not singular and therefore the system can be solved quite easily. What takes most of
the computational time is setting up the matrix and the right-hand-side vector. Each
non-zero element in the matrix contains a combination of triple integrals arising from the
Lambda operator. These are integrals in space, angle and frequency approximated by
Gauss-Legendre quadrature formulas. The first two sums can have a moderate number of
terms, but for the frequency integral we must use a fine grid to get high quality spectra.

From the physics point of view each row of the matrix shows how the population of
each particular atomic level in each spatial zone can be effected by all the other levels. The
rows of this matrix are completely independent and thus can be calculated by a separate
processor. Hence our main efforts have been focused on parallelization of the matrix set-up
because an almost perfect speed-up can be expected as long as the matrix dimension is
divisible by the number of processors, and each processor can be assigned the same amount
of work.

We started our work by writing a sequential version of the program. This was done for
two reasons. First we needed a working sequential code to serve as a diagnostic tool for
our parallel code, and second, we used the sequential code as a springboard for our parallel
development. The parallel code was developed and tested on our SGI Power Challenge
machine with 8 processors and shared memory. Close to linear speed-up has been achieved
as is shown in Figure 1.
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Fic. 1. Problem Speed-up vs. the Number of Processors Used
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