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Abstract 
This paper uses Kharitonov stability theory and the 

theory of algorithms to efficiently compute frequency 
response bounds for control system design.  We limit the 
analysis to the simple case of a plant transfer function 
with denominator uncertainty to gain insight into the 
determination of tracking, robust stability, and actuator 
bounds.  A coordinate transformation allows us to reduce 
the computational time for the problem.  We divide the 
compensator plane into separate regions with each region 
sharing the critical points of a value set needed in the 
computation of frequency response bounds.  Our analysis 
demonstrates the importance of estimating asymptotic 
bounds on computational time as is standard in 
algorithmic analysis.  We apply our algorithms to a two-
simple examples. 

 
I. Introduction 
 

In quantitative feedback theory (QFT), the frequency 
domain design of control systems is accomplished by 
robustly satisfying a set of performance inequality 
constraints.  QFT and related methodologies provide an 
integrated design procedure to satisfy tracking, robust 
stability, actuator, sensitivity, and other performance 
constraints in the presence of parameter uncertainty.  As 
originally proposed, QFT required extensive experience 
to obtain good results [1].  Today, computer programs 
have made it accessible to the average control engineer 
[2].  However, the computational cost of determining 
feasible compensators becomes prohibitive as the number 
of uncertain parameters increases. 

Several researchers have developed useful algorithms to 
reduce the time required to calculate the bounds used in 
QFT design [3], [4], [5], [6], [7].  In [3], the authors use 
value sets known from Kharitonov stability theory [8] to 
compute the tracking bounds for affine uncertainty in the 
numerator and denominator.  In [4], QFT bounds are 
expressed as quadratic constraints to simplify their 
determination.  Longdon and East [5] provide a 
geometrical technique for bound computation with the 
transfer function value set approximated by a polygon.  It 
is well known that the value set of an affine polynomial is 
a polygon and the approach they provide can give only 
sufficient conditions for satisfying the design constraints. 

Fadali and LaForge [6] introduced the notation and 
tools of algorithmic analysis to the computation of QFT 

bounds.  The analysis was restricted to the simple case of 
a system with denominator uncertainty and a numerator 
known with arbitrary accuracy.  In [7], Fadali and 
LaForge give optimal algorithms for computing QFT 
bounds for interval numerator and denominator 
polynomials.  These two papers demonstrate that to assess 
the relative usefulness of newly proposed algorithms, it is 
essential to obtain asymptotic bounds on their 
computational time and to formally prove their 
correctness as is standard practice in algorithmic design. 

The authors of [3] and [5] observed that the magnitude 
of the sum of a test compensation value (complex 
number) and a plant value set is the distance between the 
value set and the negative of the compensation value.  
This observation is the key to significant computational 
savings.  For example, the upper bound on the closed loop 
frequency response (stability robustness bound) can be 
calculated by determining the minimum distance to a 
value set.  Lower bound computation can be calculated by 
determining the maximum distance to a value set.  The 
classical ratio tracking bound for QFT is an upper bound 
on the ratio of the maximum distance to the minimum 
distance to the value set. 

In this paper, we further examine the simple problem 
solved in [6] and exploit the same observation.  We show 
that in special cases the complex plane can be divided into 
regions where the farthest and closest points of the value 
set remain unchanged.  A coordinate transformation 
simplifies the evaluation of both the stability robustness 
and tracking bounds by reducing the problem to one 
where the bounds are symmetric about the value set.  The 
inverse transformation yields the required bounds, and the 
entire computation is achieved in constant time.  These 
concepts are explained in this paper and demonstrated 
using two simple examples. 

This paper is organized as follows:  First, we examine 
the tracking and stability robustness bounds for a system 
with interval denominator uncertainty. Next, we introduce 
the coordinate transformation that simplifies the 
computation of the required QFT bounds and show that 
the complex plane can be divided into twelve regions 
(three when symmetry is considered) each of which has a 
fixed farthest and closest point in the rectangular value 
set. We then discuss the computational time [9] of the 
new algorithm as compared to [6] and to the standard 
gridding approach [2], [10].  Finally, we apply the new 
concepts to two simple examples. 



II. Frequency Response Bounds 
 

Consider a single-input-single-output system comprised 
of a plant and a feedback compensator.  The closed-loop 
transfer function (CLTF) for the system is given by 

)(),,(1)( 1 ωωω jKqpjPT += −  (1) 

where P is the uncertain plant transfer function, K is a 
compensator transfer function, and p and q are vectors of 
uncertain parameters for the numerator and denominator 
polynomials, respectively.  We now discuss some design 
bounds commonly used in the literature.  For a more 
complete account of these and other bounds, the reader is 
referred to the literature on QFT [1], [2]. 

Because we are primarily interested in the development 
of new computational tools for frequency response 
bounds, we focus our attention on the simplest 
meaningful problem for which those tools can be 
explored.  We consider the case of a plant transfer 
function with denominator uncertainty 
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The maximum CLTF magnitude is therefore given by 
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The worst-case magnitude ratio is 
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Let C = xc+ j yc be the product of K and N and rewrite (5) 
as 
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It will be convenient to rewrite (6) in the form 
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where Cm = −C = (−xc, −yc) =(x, y).  We now observe that 
the magnitudes in (3)-(7) involve distances between the 
values of the complex number D and the complex number 
Cm [3].  Thus, determining QFT tracking bounds is 
equivalent to determining the ratio of the maximum to 
minimum distance between the point Cm and the set D. 

In addition, robust stability requires satisfying 
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For cascade compensation, (7) is unchanged, but the right 
hand side of (9) is multiplied by |K|.  Similarly, the lower 
bound 
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The tracking bound (7) yields an upper bound similar to 
(8) and a lower bound similar to (10).  However, the 
computation of (8) and (10) is simpler.  Furthermore, it is 
identical with the constant Mp and Ml used for (8) and 
(10), respectively.  In later sections we use Mlp to denote 
either constant as we discuss our computational 
procedure. 

Let D be the nth order interval polynomial 
D(s; q) = an(q) sn + an − 1(q) sn − 1 + … + a0(q) (12) 
with uncertainty bounds a a , i = 0, 1,…, n.  
Then the value set associated with the uncertain 
polynomial is the Kharitonov rectangle D� with 
generating polynomials [8] 
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Refer to Figure 1; (x, y) ∈ D� if and only if 
x− ≤ x ≤ x+ , y− ≤ y ≤ y+  (14) 

where x+ (resp. x−) denotes the real component of D++ 
(resp. D−−) and y+ (resp. y−) denotes the imaginary 
component of D++ (resp. D−−).  

We show that the maximum and minimum magnitude 
corresponds either to an extreme point of the value set D� 
or to a point on an edge of D�.  Algorithmic computation 
of the minimum magnitude, maximum magnitude, and 
worst-case ratio is now tractable. 
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Fig. 1 Kharitonov rectangle D�. 

 
III. Coordinate Transformation and the Maximum 
and Minimum Distance 
 

To determine the stability robustness and tracking 
bounds for a system with denominator uncertainty, we 
obtain the maximum and minimum distances between a 



test point Cm = (x, y) and the Kharitonov rectangle D�. We 
use the notation 
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The plane can be divided into 12 regions.  Within 
region i, there is a unique point ∈D� at maximum 

distance from Cm and a unique point ( ∈D� at 
minimum distance.  We do not consider the interior of the 
Kharitonov rectangle since it corresponds to unstable 
systems. 
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Before we show the results of dividing the plane into 
regions, we discuss a coordinate transformation to reduce 
the subdivision of the complex plane for compensation 
boundary calculation to one where we have symmetry that 
can be exploited to reduce computation.  We transform 
the compensation to (x, y) using 









−








−=








↔








−








−=









av

av

c

c

av

av

c

c

y
x

y
x

y
x

y
x

y
x

y
x

  

III
Re{D}

Im{D}

D++

D--

D-+

D+-

II

xf

I

−yf

yf

−xf
 

Fig. 2 The transformed Kharitonov rectangle. 
 

The transformed region has as its origin the center of 
the Kharitonov rectangle as shown in Figure 2.  Only the 
three regions where x and y are both positive need be 
considered because of the symmetry resulting from the 
transformation.  For each point (x, y) on a boundary, 
symmetry yields the set of boundary points {(x,y), (−x,y), 
(x,−y), (−x,−y)}.  Transforming back to the original 
coordinates, we have the four points {(−x−xav,−y−yav), 
(x−xav,−y−yav), (−x−xav,y−yav), (x−xav,y−yav)}. 
 
Theorem 1.  Given a rectangular region D� and a test 
point (x, y), the farthest point in D� to (x, y) and the 
closest point in D� to (x, y) are as given in Table 1. 
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Table 1. Closest and Farthest Points for the 

Transformed Domain. 
Region ( )yx ((,  ( )yx )),  
I (x, yf) (−xf,−yf) 
II (xf, yf) (−xf,−yf) 
III (xf, y) (−xf,−yf) 

 

Proof: The distance D� to (x, y) is maximized or 
minimized by separately maximizing (  and 

or minimizing and , respectively. 
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complete Table 1. ■ 
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with the permissible region outside the boundary.  
Completing the squares gives the equation of the circle 
with center (c , c ) and radius cr x y
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In Regions I and III, one quadratic term in the 
denominator vanishes.  For Region I, (17) becomes 
( ) ( ) ( ) ( ) 021 2222222 =−+−−−−− yyBxxyyByyB )())(  (20) 
Completing the squares we have the hyperbola 
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where ( )1c 2 −−= ByyBry
() = cr with the x-related terms 

removed.  The hyperbola is symmetric about axes through 
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asymptotes through ( )ycx,)  and cy ± cry.  In Region III, we 
have similar hyperbolas with x and y interchanged and 

( ) rc=−1rx Bc = Bxx − 2()  with the y-related terms 
removed. 

Each boundary is valid only for the region for which the 
points  and (  apply.  In Region II, compensa-
tion is allowed outside the circle where the ratio is less 
than the specified value.  In the remaining regions, the 
allowable compensation is outside the hyperbolas. 
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From (9) or (11), we obtain a boundary by replacing the 
inequality with an equality  
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where Mlp denotes either the upper bound Mp or the lower 
bound Ml.  The boundary is a circle of center (  and 
radius N/Mlp.  The allowable region is outside the circle. 

yx ((,



The actuator bound is due to the maximum allowable 
compensation magnitude γmax at each frequency.  It is 
defined by the equation 

2
max

22 γ≤+ yx  (23) ( )
1

This boundary is a circle centered at the origin with radius 
γmax, and the allowable region is inside the circle. 
 
Theorem 2.  Let the points  and (  be known for 
a system with fixed numerator and interval denominator 
polynomial. The compensation boundaries and 
permissible regions are given by 
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1)  In Region II, the tracking boundary is a circle of 
radius cr centered at (−cx,−cy) with the permissible 
region outside the boundary.  In Region I, the tracking 
boundary is a hyperbola symmetric with respect to 
axes through ( )ycx −− ,)  with horizontal intercept at 

12 −±− Bx)  and asymptotes through ( )ycx −− ,)  and 
−cy±cry.  In Region III, the tracking boundary is a 
hyperbola symmetric with respect to axes through 

 with horizontal intercept at ( )ycx
)−− , 12 −± By)−  

and asymptotes through  and −cx±crx. ( ycx
)−− , )

)
2)  The upper or lower boundary is a circle of radius 

N/Mlp centered at  with the permissible region 
outside the boundary. 

( yx (( −− ,

3)  The actuator boundary is a circle of radius γmax 
centered at the origin with the permissible region 
inside the boundary. 

Proof: The results are obtained on replacing (x,y) by 
(−x,−y) in (16), (17), (18). ■ 
 
Remark 1:  Theorem 2 is valid only if we fix the farthest 
and closest points in the Kharitonov rectangle to a test 
point.  In Regions I and II this is not the case.  The result 
is that the robust stability boundaries in these regions are 
actually straight lines parallel to the adjacent edge of 
Kharitonov rectangle and tangent to the set of circles for 
the region. 

We assume that we remain in a single region so that the 
points for maximum and minimum distances are fixed to 
derive the following monotonicity properties. 

 
Theorem 3.  The function (1) is monotone increasing in 
Region I or III and is unimodal in Region II. 
Proof:  Differentiate the rational function of (16) and 
equate to zero to obtain the minima and maxima.  For 
Region I,  and , so that (16) reduces to xx =( fxx −=)
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This indicates a positive derivative with the inadmissible 
negative root x=−xf.  Differentiating with respect to y and 
equating to zero, we obtain 
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negative root 
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Because the derivatives are positive and have no positive 
real roots we conclude that the function is montone 
increasing. 

Interchanging x and y, we prove monotonicity in 
Region III.  In Region II, x  and , so that 
(16) becomes: 
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This yields the roots 
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One root is negative and is therefore inadmissible.  The 
second root is greater than xf and is therefore inside 
Region II.  Therefore, the function is unimodal in Region 
II.  For large x the function approaches its minimum value 
of unity.  We conclude that in Region II, the inadmissible 
region is in the vicinity of a maximum of the ratio R2 as 
shown in Figure 3.  Because the value of R2 as x → xf may 
be larger than B2, the intersection of the curve of Figure 3 
with the R2 = B2 line may occur at one or two points.  ■ 
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Fig. 3 Unimodal function in Region II. 
 

The coordinate transformation is linear, and the 
boundaries retain their form.  However, the 
transformation reveals the following regarding the 
stability robustness boundary of Theorem 2. 

 
Theorem 4.  The upper and lower frequency response 
boundaries for the transformed domain in Regions I and 
III are straight lines parallel to the edges of the 



Kharitonov rectangle.  In Region II, the boundary is a 
circle of radius N/Mlp centered at (xf, yf). 
Proof: The upper (stability robustness) or lower boundary 
is given by (22) with  defined for Regions I, II, III.  
In Region I, 

( yx ((, )
( ) ( )fyx,=yx, (( , and the boundary is the 

vertical line lpfyy = MN+ .  Similarly, in Region III, 

the boundary is the vertical line lpf MNxx += .  In 
Region II, ( ) ( )ff yxy ,, =(

( )
x(

( )
, and the boundary is the 

circle ( )2lpMyy − 22
f Nxx =−+f  ■ 

 
Remark 2:  Transforming the rectangle using the inverse 
transformation of (22) gives a second rectangle centered 
at (−xav,−yav) with the symmetric boundaries about the 
rectangle. Hence, the boundaries and the permissible 
compensation can be plotted easily. 
Remark 3:  For fixed numerator and affine denominator 
uncertainty structure, the denominator value set is a 
polygon.  The upper and lower frequency response 
boundaries are made up of edges parallel to the edges of 
the polygon and circular arcs around the vertices.  For a 
multiaffine denominator, the convex hull of the value set 
is a polygon [7], and a somewhat conservative robust 
stability bound can be explicitly obtained. 
 
IV.  Algorithm for Feasible Compensation Region 
 

We now state the main algorithmic result of this paper. 
In (2) let the order of the numerator polynomial N be m 
and the order of the uncertain denominator polynomial D 
be n.  Horner's Rule evaluates these polynomials in time 
θ(m) resp. θ(n) ([8], ex. 1.2-4).  The numerator need be 
evaluated only once, but in order to compute the 
Kharitonov rectangle, the denominator is recomputed (in 
optimal time θ(n)) for each of nw sample frequencies ω.  
For fixed ω, Theorem 2 prescribes how to determine, in 
optimal time θ(1), a set of constraints defining the 
feasible region of compensation.  Thus, in time θ(nwn+m),  
the frequency-divided boundary of minimum magnitude 
compensations can be computed.  When, as is often the 
case, nw n is much greater than m, the running time is  
θ(nw n).  This compares favorably with the θ(nw nγ nφ n) 
running time of [6] and is certainly preferable to the θ(nq 

nw nγ nφ n) running time of the traditional gridding 
approach [9], where nq is the total number of grid points 
in the uncertain parallelepiped Q, nγ  is the number of grid 
points along the axis of compensation magnitude, and nφ  
is the number of points along the compensation phase 
axis. Since the numerator need be evaluated only once, 
the Rule of Products implies that the search as described 
runs in time θ(nqnwnγ nφn+m). 

To demonstrate the reduction in computational time 
achieved here, we examine the case of a plant transfer 
function with six uncertain parameters and ten grid points 

for each parameter nq=106.  For nγ = nφ = 10, the overall 
reduction achieved here is by a factor of one hundred 
relative to [6] and 108 relative to the gridding method! 

In the next section, we discuss two simple examples to 
illustrate our computational approach to bound 
determination.  We purposefully avoid more complex 
examples that would obscure the design procedure. 

 
V. Examples 
 
Example 1:  Position Control System 

Consider the position control system with motor and 
load transfer function ( ) ( )[ ]110 += sssG τ , where τ ∈[8, 
12].  The product of the numerator of the transfer function 
and the compensator K is C = 10K.  The denominator is 
an interval polynomial whose value set is the interval 
[−8ω2,−12ω2] on the straight line parallel to the real axis 
with imaginary intercept ω.  Here, the twelve regions of 
Figure 2 reduce to 6 and the three regions of Figure 4 
reduce to two.  The bounds for the system are shown in 
Figure 5 together with the value set for ω=1rad/s. 

For this example, cry is zero and the hyperbolas for 
Region I, reduce to a single point outside the respective 
region.  Region III, are not defined and need not be 
considered.  In Region II, the tracking boundaries are 
circular arcs with the permissible region outside the arcs.  
The stability robustness boundary comprises circular arcs 
of radius N/Mp = 5 and straight lines parallel to the value 
set.  The actuator bound is a circle of radius γact.  The 
feasible compensation region is inside the actuator 
boundary and outside both the tracking boundary and the 
stability robustness boundary. 

 
Fig. 5  Boundaries for  position control system. 

 
Example 2: Two-Parameter Uncertainty 
 
Consider the transfer function [ ]11)( 1

2
2 ++= sasasG  

where ai ∈[ ai
−, ai

+], i =1, 2.  For G(jω), the x and y 
coordinates of the denominator are in the ranges               
x ∈ [1 − a2

+ω2, 1 − a2
−ω2], y ∈ [a1

−ω, a1
+ω].  The QFT 



bounds are shown in Figure 4.   The permissible region is 
inside the circle of the actuator bound, outside the 
tracking bounds made up of hyperbolic and circular 
segments and outside the robust stability bounds.  We 
select a design point for each point on a frequency grid.  
We then fit the set of design points with a compensator.  
Finally, we check the compensated system to determine if 
all design constraints are satisfied.  We can also add the 
bounds of the form (10) to Figure 4 so that the designer 
can attempt to satisfy all design constraints with a single 
compensator.  If successful, the added cost of a prefilter 
can be avoided.  If not, we ignore the additional bound 
and design a loop compensator.  We then add a prefilter to 
achieve the desired performance. 

 
Fig. 4  QFT boundaries for the two-parameter system. 
 
V.  Conclusion 
 

The simple case considered in this paper demonstrates 
the considerable savings possible in the computation of 
QFT bounds using value sets, coordinate transformations, 
and subdivision of the compensator plane.  For a region 
where the farthest and closest points in the value set to a 
test point are determined, closed form expressions for the 
boundaries are obtained.  This allows the computation of 
the compensation bounds in time θ(nwn). 

For a system with a more complex denominator 
structure, the upper (robust stability) bound and the lower 
bound can be calculated as outlined in Remark 3.  These 
problems will be examined by the authors in more detail 
in future work.  However, it may be difficult to extend the 
results obtained here to tracking bounds expressed as a 
ratio of maximum to minimum frequency response.  This 
further justifies the move by QFT researchers [4] to 
abandon ratio tracking bounds and specify tracking using 
an upper and lower bound to simplify the design 
procedure and improve its computational efficiency. 

 
 

References 
 
[1] J. J. D'Azzo & C. H. Houpis (1988). Linear Control 

System Analysis and Design. McGraw-Hill Book 
Company, New York. 

[2] C. Borghesani, C., Y. Chait & O. Yaniv (1994). 
Quantitative feedback theory toolbox. The 
Mathworks Inc., Natick, MA. 

[3] M. Brown & I. R. Peterson (1991). Exact 
computation for the Horowitz bound for interval 
plants. 30th CDC, Brighton, England, pp. 2268-2273. 

[4] G. M. Rodriguez, Y. Chait & C. V. Hollot (1995). A 
new algorithm for computing QFT bounds. Proc. 
1995 ACC, Seattle, WA. 

[5] L. Longdon & D. J. East (1979). A simple 
geometrical technique for determining loop frequency 
response bounds which achieve prescribed sensitivity 
specifications. Int. J. Control, 30, pp. 153-158. 

[6] M. S. Fadali & L. E. LaForge, Algorithmic Analysis 
of Geometrically Computed QFT Bounds, Proc. 1996 
IFAC World Congress, Vol. H, pp. 297-302. San 
Francisco, CA, June, 1996. 

[7] M. S. Fadali and L. E. LaForge (2001). Linear time 
computation of feasible regions for robust 
Compensators, J. Robust and Nonlinear Control, 11, 
pp. 819-856. 

[8] B. K. Barmish, (1994). New Tools for Robustness of 
Linear Systems. Macmillan, NY, NY. 

[9] T. H. Cormen, C. E. Leiserson & R. L. Rivest (1993). 
Introduction to Algorithms. McGraw Hill, NY, NY. 

[10] El-Zayyat, K.(1994). VSC/QFT Robust Design of 
Systems with Bounded Uncertainties, Ph.D. Dissert., 
(M. S. Fadali, Advisor), UNR, Reno, NV. 


	M. Sami Fadali L. LaForgeFrederick C. Harris, Jr.
	
	
	Electrical EngineeringThe Right StuffComputer Science
	University of Nevada3341 Adler CourtUniversity of Nevada
	Reno, NV 89557Reno, NV 89503Reno, NV 89557


	Abstract

	I.Introduction
	Frequency Response Bounds
	III.Coordinate Transformation and the Maximum and Minimum Distance
	IV.  Algorithm for Feasible Compensation Region
	
	
	
	
	V. Examples
	Example 1:  Position Control System
	Example 2: Two-Parameter Uncertainty




	Conclusion
	References


