Design and Implementation of a Web Portal
for a NeoCortical Simulator*

Kishor K. Waikul

Dept. of Computer Science

University of Nevada
Reno, NV 89557

E. Courtenay Wilson

Frederick C. Harris, Jr.

Lianjun Jiang

Dept. of Computer Science

University of Nevada
Reno, NV 89557

Philip H. Goodman

Dept. of Computer Science Dept. of Computer Science Dept. of Internal Medicine

University of Nevada
Reno, NV 89557

University of Nevada
Reno, NV 89557

University of Nevada
Reno, NV 89557

fredh@cs.unr.edu

Abstract

Over the last several years of research, we have de-
veloped a large-scale biologically realistic neocortical
neural network simulator. The simulator’s effective-
ness as a research tool has been limited due to ac-
cessibility and ease of use. The web portal for the
neocortical simulator provides online access from any-
where in the world at any time. Its GUI interface
allows users to build and simulate networks in a very
short period of time. This portal was built using PHP,
Mysql, and a back-end running Apache on a Red Hat
Linux machine.

1 Introduction

Researchers in the Brain Computation Lab at the
University of Nevada have spent the last several years
exploring the ways in which the brain performs com-
putation and communication. This research was done
in order to simulate correctly that computation and
communication. The third version of our neocortical
simulator (NCS3) is our current and most accurate
simulation so far [7, 8, 9].

Although NCS3 provided the opportunity for excit-
ing research, its use was limited due to machine access
requirements and its text-based input. These limita-
tions together with our desire to increase our research
collaboration led us to design the first version of a
Web-based GUI portal for NCS3.

*This work was partially funded by the Office of Naval Re-
search under ONR Grant N 000140010420

The rest of this paper is outlined as follows: In
Section 2 we present the background of NCS3. In Sec-
tion 3 we explain the design of our Web portal as well
as its implementation. We present security issues in
Section 4. Finally, we cover conclusions and future
work in Section 5.

2 Background of NCS3

Currently there are two major tools being utilized
by researchers to model neural activity: NEURON][2]
and GENESIS[5]. These tools are used primarily to
model single cells or small networks of cells in an ex-
tremely detailed manner. Because of the fine detail
of activity within the single neuron, the overall net-
work of cells in both NEURON and GENESIS is very
sparsely connected. Thus, the parallel implementa-
tions of these simulations utilize a coarse-grain paral-
lelism approach, in which one multi-compartment cell
is modeled on one processor. Such an example was re-
cently published in Neurocomputing[4], where a single
Purkenje cell was allocated to a single processor on a
Cray T3E.

The primary goal of NCS3 is to create a novel classi-
fier based on a biologically realistic neocortical neural
network. Parallel processing of this very large-scale,
object-oriented simulator is key for approaching real-
time simulation of synaptic and neocortical network
dynamics. Clustering algorithms applied to the dense
cell-connection matrix enable load-balancing and data
parallelism by organizing highly connected groups of

cells onto a particular node thus reducing the perfor-
mance cost of inter-nodal communication.

The choice for an object-oriented design for this
simulator was made because the biological brain
is segmented into distinct, but interrelated, parts.
The object-oriented paradigm allows the simulator
to model objects generically, changing their behavior
through the input parameters without affecting the
underlying object functionality. In this way, a user
can rapidly model multiple brain regions merely by
changing input parameters. It also allows the user to
scale the network size more easily.

Most importantly, the object-oriented system en-
ables us to model the relationships among neurons
within a given cortical community. It is this aspect
that distinguishes this model from other simulators.
While other tools are excellent for modeling single-cell
networks, this simulator is able to model very large-
scale networks of highly connected neurons. Because
learning and memory occur through the relationships
among active neurons, this simulator may provide a
tool for developing and testing of learning algorithms
of communities of cells.

The sequential implementation was finished at the
end of the summer of 2000. Once this implementa-
tion was completed, it was evaluated and tested for
biological realism and accuracy. This was accom-
plished by comparing our results with published and
accepted results for channels[3], compartments[5], and
synapses[1, 6].

The sequential implementation was then changed
into a parallel implementation[7, 8, 9]. At this point
in our research, we have tested our implementation
on three architecture platforms. The first platform is
a dual-processor Sun Enterprise server with 2GB of
shared memory. The second platform is a Beowulf
cluster of 8 Pentium II 400 machines with dual 100
Mbs Ethernet connections to a Bay network switch.
The third platform is a new machine we have con-
structed for this project that is a a cluster with 60
Pentium IIT 1-Gigahertz processors, 120 GB of RAM,
and a Myrinet II interconnect network.

3 The Design

As we mentioned earlier, the motivation for this
work was to provide global access for increased collab-
oration as well as an intuitive user interface. In this
section we present the features the user sees from the
GUTI interface, the administrative tools that allow con-
trol of the portal, the database design issues, and the
portal’s communication with NCS3.

3.1 Application Features

In the design of this portal, we wished to present
the user with a traditional pull-down menu interface
that would provide ease of use and promote the use of
NCS3. The main sections of this interface include file
options, object configuration, simulation run options,
and results analysis.

Files options: The integrated interface provided by
our portal allows users starting from scratch to be able
to design and run simulations within a few minutes.
The simulations can be designed via the object con-
figuration described later or created manually and up-
loaded through the file-upload option. This feature
was provided to allow the use of NCS3 apart from the
GUTI design tool.

Because one of our primary goals is collaboration,
all users can view the configuration files designed
by other users; however, deletion and modification
are limited to the owner of the configuration. The
view /export option allows you to view the output of
the simulation or to check its runtime status. The
deletion of these jobs requires the owner’s password
(for security reasons). The logout option terminates
your session with the portal and clears any non-saved
session data.

Object configuration: The objects menu provides
tools for creating all the objects individually. The ob-
jects are classified into two broad categories: elemental
objects, which are independent of any other objects,
and hierarchical objects, which are made up of other
objects. Elemental objects require a form input to set
their parameters, and hierarchical objects require an
intuitive graphical interface.

The form-based implementation of the reference ob-
jects stems from the assumption that most of the ob-
jects require only a slight modification of parameters
in order to study a variety of real world scenarios. An-
other feature of the form-based objects is the online
help provided for each parameter for the clear under-
standing of the valid input format and the significance
of that parameter.

The graphical interface for the hierarchical objects
allows the user to build objects out of other objects.
This graphical interface is implemented in PHP and
Java, backed by a Mysql database. Users of this portal
can reuse any object created by any other user. This
hierarchical structure proceeds all the way up to the
entire brain and is illustrated in Figure 1.

.. New brain
Created by : waikul Created When : 12 Jun 2001, 17:11:03

From Host: 134,

BUETRICLGIE N Select referece from list

& oran list of the existing
Selectbrain =

ok TIPE > Untiled_wakil (Clicktoctangs) o) HIPD U
W F8V-> 10000 (Clickto change) is replicated and
C DURATION-> 1.0 (Clickto change) tS::nT:doﬁasn?igcord
——[E] INTERACTIVE-> NO (Cllck1o changs) it name =
IGNORE_EMPTY -» NO {Clickto changa) Untitled_<user_id=

[E] SEED-» 8280521 (Clickto change)

You'can use the existing
brains ta make naw brain
by changing only the

values you need.

Objects Control Panel

chy Save

B edic
L _| REPORT
] REPORT_1 (clickto delete) Delete
21 REPORT_2 (elick 1o delete) Refresh
-~ Click o add new repart
..... SAVE_SYM-» (Clickto change)
Status Messages
-~ RELOAD_SYN-» (Clickto change)

VISUAL D (clickto delete)
VISUAL_T (click to delete)

Hiera

Figure 1: Object Configuration.

Simulation run options: Running a simulation re-
quires selection of the server on which the simulation
will run and selection of the brain setting input file,
which is either uploaded or created as just described.
The interface also provides an option for selecting the
number of nodes on which the simulation is to run.
Another option provides for email notification of job
completion.

Result analysis: The result analysis option pro-
vides the required interface for plotting the data ob-
tained from simulation.

When we began this research most graphical anal-
ysis was generated locally with MATLAB, but we
wanted to give the user a web-based analysis tool. We
implemented the results analysis with a plot program
written in PHP. This program does calculation on the
web server and generates a small PNG format graph,
which is sent to the user. Because most of the time
in the PHP program is spent on the calculation fol-
lowed by the transfer of a small PNG graphics file, we
end up with much better performance than we would
have with a Java-applet approach, where the data file
(which is huge) would have to be transferred to the
client side and then analyzed. Another advantage is
that the plotting program will also keep a cache for
recently calculated data file.

3.2 Administrative Tools
In addition to the user interface, we also added ad-

ministrative control via the portal. This control in-
volves job monitoring, object formatting, and portal

database administration.

Job monitoring: This part of the administrative
tool set allows monitoring of jobs and browsing all the
jobs currently running. The administrator is allowed
to change the priority of a job waiting in the queue.
(The priority of the job is the unique number associ-
ated with the job by which all the jobs are sorted and
submitted to the simulator. The highest priority job
is submitted first to the simulator.) This monitoring
tool also allows deleting a job from the waiting queue
or deleting a running job. Figure 2 shows the inter-
face the portal administrator would use to accomplish
these tasks.

[posttime >l[<= =l gays

shaow Finished jobs: Running jobs: W waiting jobs: B

user id:[server: | brain name: |

[ET——

Rl (|

Finished jobs:(Go to Running Jobs

waikul hercules 1 frankenstein 4Jun 01, 15:30:43 4 lun 01,15:33:43 Done gaspac ListFiles

james last Brain_webtest 17 Jul01,18:42:20 17 Jul 01, 18:43:20 Done cortex List Files
I james try@ Brain_webtest 18Jul01,11:2455 181001, 11:25:55 Done cortex ListFiles
[jiang last brainzeell 27 Jul 01, 15:12:00 27 Jul04, 15:17:00 Done cortex List Files
C jiang 2 MyauditoryCortex 301ul 01, 12:28:53 300Ul 01, 12:29:50 Done cortex List Files
I~ jiang thi MyauditoryCortex 2 Aug 01, 4:57:09 2 Aug 01, 4:58:13 Done cortex List Files
[jiang 2 MybuditoryCortex 2 Aug01,19:46:36 2 Aug 01, 13:47:57 Done cortex List Files
I Check all Delete selected jobs

Current running johs:
Mo running jobs
Current waiting jobs

Ho waiting jobs

Figure 2: Job Monitoring.

Object format edit: This option is used for chang-
ing the way an attribute is structured in the input
setting file. The fields that can be edited are the con-
tent type (for example, the data type in the table), the
boundary settings used to validate the parameters, the
description that appears in the pop-up help, and the
number of space-separated values for the parameter (if
this parameter is an array). Data from this record is
dynamically loaded for the validation of the parameter
through the JavaScript events.

Mysql administration: We have also included in
the administrative GUI interface a third-party pro-
gram for administering the Mysql database. This tool
is especially useful considering its ease of use and the
options provided (like ordering of the columns within
the table, which requires significant command line
work on the database itself).

3.3 Database Design Issues

The database is a container for tables. There is a
table for each of the individual objects, and the table
names are constrained by some conventions to simplify
the implementation of the web interface. The column
names of the tables also follow conventions so that
they can be easily handled by the generic code.

Other issues we have encountered include the enor-
mous size of the result data generated by the sim-
ulator. The size of this data file is found to be in
megabytes. The result data is thus stored in a com-
pressed form.

3.4 Communication Issues

One important issue that arose during the design of
the interface for NCS3 was how to control and monitor
remotely the simulator running on clusters. The obvi-
ous concerns of this issue are the security, reliability,
and efficiency of the communication. Our design satis-
fies these requirements using the database to perform
a 3-way communication.

The simulator needs to be started with a shell script
that contains several parameters for different jobs.
One way to reduce the information needed to be sent
to the cluster is to generate the scripts dynamically on
the head node of the clusters. This is done by a dae-
mon running on the head node. This daemon’s main
function is to collect necessary information from the
database, create the shell script for that particular job,
and run the script. The database is well designed so
that all the required parameters and input files for a
simulation are stored in the database. The direct com-
munication between the user and the daemon can be
simplified to a flag to tell the daemon to run the next
job in the queue. In this way, there is no security and
reliability issue on the direct communication between
user and the daemon, and those concerns are moved
to the communication between the database and the
daemon, both of which should be kept on a secure net-
work. The current implementation uses a TCP socket
to send a simple “connect” message from the user to
the daemon. The daemon then goes to the database
to find the next job in queue and run it if the resource
is available. We use Mysql for our database, which by
itself provides compression, efficient management, and
secure connections.

The daemon on the head node also monitors the
running jobs and the system’s resources. Each simula-
tion runs in a unique directory. The daemon monitors
the directory and uploads the new files generated into

the database. It redirects the output of the simula-
tor into a log file. When the simulation is finished or
terminated with an error, a message with proper in-
formation will be appended to the end of the log. The
daemon then detects the end of the log and updates
the information into the database. The user can get
all the information about the simulation through the
web interface, and the web page can be updated by
querying the database for new information.

4 Security Issues

The overall security can be viewed in three different
perspectives: application-level security, system-level
security, and user-level security.

4.1 Application-Level Security

All the transactions can be encrypted using the se-
cure socket layer (SSL) through an https port, which
requires buying an expensive certificate. This project
was tested successfully with a sample test certificate
provided by the OpenSSL; however, actually buying
a certificate is currently not an option because of the
overall scope and limited number of current users of
this application. In order to prevent the attacks that
typically come to a web application, the web server is
separated from the simulator. The web server and the
database run on the same machine. The web server
and the simulator communicate through a socket dis-
cussed later. This kind of topology is called a fire-
fence.

4.2 User-Level Security

This application is a trusted environment, which
means the users can choose objects configured by the
other users; however, they can not delete or change ob-
jects created by other users. Each user is a registered
member who is authenticated by the administrator us-
ing one of the administrative options. Security at the
user level is maintained by using session keys. Dele-
tion operations require a password for each activity.
User passwords are stored encrypted in the database.

4.3 System-Level Security

Attacks on web portals usually focus on the web
server. In order to reduce the vulnerability of our
portal we have taken several steps including remov-
ing unused associations (e.g. associations for CGI
Perl scripts); removing unused programs (especially

command interpreters and shells); applying security
patches to the OS, web server, and database as they
are made available; and regularly checking the server
logs.

5 Conclusions and Future Work

Currently we have implemented the web portal for
NCS3 as described. This has allowed an increase
in collaboration in brain research and will permit us
to expand that collaboration further. The option of
building the brain simulation with the GUI interface
or uploading your own data file has been received fa-
vorably by new, as well as experienced, users. The
work is far from over.

While considering the security of the web por-
tal used in this application, the possible use of SSL
(https: secure http) was investigated, implemented,
and tested, but was not put into the production code.
Because the expected load on the portal was thought
to be limited, this security step was not given priority
over the cost of the digital certificate. However, if the
audience grows, moving to SSL will be necessary. SSL
will encrypt and decrypt the transactions between the
client and server.

Currently the kind of online help being provided is
static HTML content and any change in the format of
the attribute makes necessary a series of changes in the
help file (which can be tedious). This problem can be
avoided by creating a Java-applet-based hierarchical
help (similar to the objects hierarchy), which is loaded
from the table containing shorthand help on objects
and formatted properly using the same general format.
Additional help files can be generated in a similar way.
This enhancement would ease the modification of the
help data.

Message passing through the socket is currently
minimized to a simple “connect” message to wake up
the daemon. In the future, if we set the daemon
to wake up automatically every several seconds, the
socket communication can be discarded. Thus the or-
ganization will become linear rather than the current
triangle relationship between the web server, database,
and NCS3. At that stage the jobs will be queued in the
database (the job table), and the daemon will wake up
to dispatch a new job when an old job is done (or af-
ter some amount of idle time). Because all the status
information will be stored in the database, there is no
need for direct communication between NCS3 and the
web server.

References

[1] Anirudh Gupta, Yun Wang, and Henry Markram.
Organizing principles for a diversity of GABAergic
interneurons and synapses in the neocortex. Sci-
ence, 287:273-278, January 14 2000.

[2] M.L. Hines and N.T. Carnevale. The NEURON
simulation environment. Neural Computation,
9:1179-1209, 1997.

[3] Dax A. Hoffman, Jeffery C. Magee, Costa M. Col-
bert, and Daniel Johnston. K™ channel regulation
of signal propogation in dendrites of hippocampal
pyramidal neurons. Nature, 387:869-875, June 26
1997. Correction in volume 390 pg 199.

[4] F.W. Howell, J. Dyhrfjeld-Johnsen, R. Maex,
N. Goddard, and E. De Schutter. A large-scale
model of the cerebellar cortex using pgenesis. New-
rocomputing, 32-33:1041-1046, 2000.

[5] Christof Koch and Idan Segev. Methods of Neu-
ronal Modeling. MIT Press, Cambridge, MA, 2nd
edition, 1998.

[6] Walter Senn, Henry Markram, and Misha
Tsodyks. An algorithm for modifying neurotrans-
mitter release probability based on pre- and post-
synaptic spike timing. Neural Computation, to ap-
pear. Accepted February 16, 2000.

[7] E. Courtenay Wilson. Parallel implementation of a
large scale biologically realistic neocortical neural
network simulator. Master’s thesis, University of
Nevada, Reno, Computer Science Dept., August
2001.

[8] E. Courtenay Wilson, Frederick C. Harris, Jr., and
Phil Goodman. Implementation of a biologically
realistic parallel neocortical-neural network simu-
lator. In Proceedings of the Tenth SIAM Conf.
on Parallel Processing for Scientific Computing,
March 12-14 2001.

[9] E. Courtenay Wilson, Frederick C. Harris, Jr., and
Phil Goodman. A large-scale biologically-realistic
cortical simulator. In Proceedings of SC2001,
November 10-16 2001.

