Software Specification of the GORT Environment for 3D Modeling

Thoren McDole, Haipin Cua, Chang Huang, Leon Kania, Sergiu Dascalu, Fred Harris

Department of Computer Science
University of Nevada, Reno, NV 89557
Email: {dascalus, fredh}@cs.unr.edu

Abstract

This paper presents the UML specification of the
GORT (GL Object Rendering and Transfor-
mation) environment for 3D modeling. GORT is
an efficient, easy to use CAD-like 3D modeling
tool that supports both the creation of scenes
using graphical objects and the generation of
code that represents the scenes. Planned as
open source software, GORT will facilitate the
visual design of 3D objects and their
environments and will provide the basis for
several advanced extensions. GORT'’s
requirements, both functional and non-functional
are presented in the paper and excerpts from
the UML specification of the GORT software are
included. Directions of further research and
development are also described.

Keywords: CASE tool, software specifications,
UML, GL, 3D modeling.

1 Introduction

GORT (GL Object Rendering and Transfor-
mation) is an environment designed to enable
programmers to virtually model graphical objects
and render graphical scenes created to source
code. GORT software includes a comprehensive
toolkit that allows the creation of a multitude of
objects through the use of a variety of powerful
features. The environment will provide users
with both the ability to modify graphical objects
on varying levels of complexity and the
capability of customizing materials and textures
of objects. GORT will also provide powerful
methods for the creation of complex objects by
applying various modeling operations to simple
graphical primitives. The planned set of GORT
operations include facilities such as object
intersection, object addition, and object
subtraction.

What sets GORT apart from other existing
modeling programs, for instance 3D Studio Max
[1] or ProE [2], is that it is designed around the
idea of automatic code generation.

In particular, the ability to create source
code for scene representation will greatly assist
graphics programmers with their understanding
and use of a new graphical API. Time consu-
ming tasks such as comprehending subtle
nuances involved in setting up normals, viewing
volumes, selecting materials, adjusting lighting,
and specifying camera angles will be
significantly simplified by the ability of observing
the visual effects of changes to code in near real
time. In addition, GORT generated code could
be used in a wide variety of graphics appli-
cations in which the developer desires to spend
as short as possible time in the consuming tasks
of object creation and manipulation [3].

In order to build GORT, a software
development process based on a simplified
version of the UP (the Unified Process [4]) and
using as supporting notation UML (the Unified
Modeling Language) [5] has been used. In
particular, we have relied on the approach and
notation presented by Arlow and Neustadt in [6].
The first version of GORT, currently in its
implementation phase, is expected to be ready
by mid-May. The inclusion of a number of
practical extensions is planned for this year and
work on the environment as well on the
application of GORT to a variety of case studies
is envisaged to continue beyond the timeframe
of year 2003. In this paper we present the
specification of the GORT software tool, a
specification that encompasses both the set of
initial requirements for the environment and the
principal elements of the software model. We
have found that by applying a rigorous,
systematic, yet efficient software engineering
approach many of the uncertain elements of the
tool have been clarified in a timely manner.

This paper, in its remaining part, is
structured as follows: Section 2 provides more
details about GORT, Section 3 presents a
selection of the more important (both functional
and non-functional) requirements for GORT,
Section 4 presents the tool’s software model in
terms of both behavior (use cases and
scenarios) and structure (class diagram),
Section 5 briefly surveys several directions of

page 1 of 7

further development, and Section 6 concludes
the paper with a summary of our work and a
note on the current status of the GORT project.

2 GORT: A Brief Overview

GORT is a virtual 3D modeling environment
dedicated to assisting software developers in
creating advanced graphical interfaces. There
are two main areas of applicability on which we
have focused GORT’s development. First, it can
be used as a practical aid in the education of
programmers learning the OpenGL API [7] by
allowing them to visually connect the abstract
aspects of the API with their visual counterparts.
Second, it provides an efficient tool for graphical
interface designers, a tool that allows both
efficient composition of visual interfaces and
generation of 3D user interface code.

GORT has features that are set to readily
assist programmers in creating a wide variety of
models, from basic to complex. These models,
utilizing GORT’s ability to output code, can be
used to build more complex models or sceneries
and can be included as a part of another
application. This facility provides a means for a
programmer to quickly and easily develop
applications capable of modeling complex
physical systems. It also allows GORT to be
useful in a variety of fields, including chemistry,
physics, engineering, robotics, animation, and
computer game development.

Modeling simple to complex models is
possible through GORT’s advanced drawing and
editing features. Drawing features include the
ability to create simple primitives such as
spheres, cones, cylinders, pyramids, boxes, and
planes. Editing features include the ability to
take the above mentioned primitives and extend
them through matrix transformations and object
intersection, union, and subtraction.

GORT’s GUI consists primarily of four view
ports: top, front, right, and perspective, that
provide the user views from various angles.
These, however, are only the default views. A
user can customize these views by using other
preset angles or by adding cameras inside the
scene. GORT has a unique feature in which the
user can view the models in the perspective
view much like being inside the scene and being
able to “walk” around the objects.

One of GORT’s main functions is to assist
programmers in the understanding of the
OpenGL API. It allows the learner to connect
abstract ideas such as lights, cameras, and
viewing volumes with visual objects such as a

light bulb, a camera object, and a box. The
learner will be able to view the code generated
from a scene and understand the association
between graphical elements and the code that
produced them.

The ability to generate compileable code
from a scene is also a major function of GORT.
The native file type for GORT projects is highly
extensible. GORT parses this file and produces
C and OpenGL code but additional types of
output modules may also be developed that
could produce C++ or Java code as well as use
other graphics APl such as DirectX [8].

Through systematic UP and UML-based
development of its model, GORT has significant
in-built flexibility. Its operational capabilities can
be extended with new functions and features
without affecting the architecture of its software.
This makes possible the incorporation of future
add-ons as well as links to external tools.
Several extensions to GORT that we are
currently considering are discussed in Section 5
of the paper.

3 Requirements

Before starting the specification of GORT’s
software model, we have defined a series of
functional and non-functional requirements that
should be satisfied by the first working version of
GORT. In the following, using the concise,
practical style suggested in [6], the most
important requirements for GORT are
presented. Due to space limitations, we present
here only a simplified version of these require-
ments.

3.1 Functional Requirements

GORT's most important functional
requirements are listed below. Nevertheless, we
believe they could provide a fairly complete
picture of the tool’s capabilities in its current,
initial version. For traceability during the
software development process each functional
requirement has a number and is denoted using
the format <r#>.

R1 The software shall provide an interface for
basic file management for native GORT file
types.
rR1.1 Basic file management shall include
“new,” “open,” “save,” and “save as”.

R1.2 The software shall provide a CRC
(cyclic redundant check) mechanism for
validating file types.

page 2 of 7

R2 The software shall provide an interface for
basic edit capabilities of primitives.

R2.1 Basic edit capabilities shall include

“cut,” “copy,” “paste,” “select,” “inverse select,” and

“delete.”

R3 The software shall allow advanced edit
capabilities of primitives.

R3.1 Advanced edit capabilities shall
include addition and subtraction of two
objects.

R3.2 Advanced edit capabilities shall also
include an option for finding the
intersection of two objects.

R3.3 Advanced edit capabilities shall also
include an option for “grouping” and
“ungrouping” primitives.

r4 The software shall allow transformations of
primitives.

R4.1 Transformations include “translate,”
“rotate,” “scale,” and “skew.”

rR4.2 The software shall provide a “picking
mechanism.”

R5 The software shall keep a history list of the
user’s action for “undo” and “redo.”

R6 The software shall allow “view ports” control.
R6.1 “View ports” control shall include “zoom

in,” “zoom out,” “pan,” and “dragging.”

rR7 The software shall provide definitions for six
primitives.

R7.1 The six primitives shall be box, sphere,
cone, cylinder, pyramid, and plane.

rR8 The software shall provide a drawing
mechanism.

R8.1 The software shall allow any of the
primitives indicated in r7.1 to be
drawn in any of the view ports.

r8.2 The software shall provide a “rubber
banding” mechanism.

R9 The software shall provide a material editor
and a mechanism that allows materials to be
applied to objects.

rR10The software shall provide an interface to
allow the user to manipulate and change
primitive default properties.

R11The software shall provide an “export file”
interface and mechanism that converts
native GORT file types into C and OpenGL
code.

3.2 Non-Functional Requirements

Non-functional requirements for GORT
include primarily constraints on the
environment’s implementation. Following is the
list of these requirements, denoted using the
format <T#>:

T1 The software shall be written in C and C++.

T2 The software shall utilize GTK+ 2.0 API with
GL extensions, OpenGL APIl, and the
Standard Template Library (STL).

T3 The software shall utilize an XML parser.

T4 The native GORT file type shall be in XML
format.

75 The software shall have a graphical user
interface.

T5.1 The graphical user interface shall be
divided into five sections: Menu Bar,
Tabbed Toolbar, Property Box, View ports
Section, and Status Bar.

T5.2 The Menu Bar shall have the following
options: “file,” “edit,” “modify,” “draw,”
“options,” “render,” and “help”.

T5.3 The Tabbed Toolbar shall have the
following tabs: “objects,” “view,”
“lights,” “cameras,” “render,” and
“export”.

T5.4 The View Ports Sections shall be divided
into four sections: Front, Left, Top, and
Perspective View.

T5.5 The Property Box shall have forms
appear based on the selected object.

T5.6 The Status Bar shall display warning,
actions, and other messages.

T6 The primitives shall have two definitions:
parametric and implicit.

77 The software shall provide an interface to
display future expansions for GORT.

4 UML Specification

Based on the above lists of requirements,
the UML-model of GORT has been built. In the
following we present excerpts from both the
behavioral part (use cases and scenarios) and
the structural part of GORT (part of the system’s
larger class diagram).

4.1 Use Cases and Scenarios

Using the UML-notation, the UP-based
approach described, and the guidelines
presented in [6] we have drawn the use case
diagram of GORT (Fig.1), have detailed all use
cases (examples are given in Fig. 2 and Fig. 3),
and specified a comprehensive set of scenarios
(examples are given in Fig. 4 and Fig. 5). Based
on these use cases and scenarios, other UML
diagrams that describe system behavior and
structure have been drawn, including the class
diagram which is presented (partially) in Fig. 6.

page 3 of 7

GORT Software System

] ManageFies BasicFileEdit

[{ Controliewport
b

Programmer

&

Figure 1 GORT: Use Case Diagram

Use case: AdvanceEditObject

ID: UC3

Actors: Programmer

Use case: ManageFiles

ID: UCH

Actors: Programmer

Flow of Events:

1. The use case starts when the user selects one of the
options from the file menu.

2. If user selects “new”:

2.1. If the software just started no events will take
place.

2.2. If there is a current file open, the software will ask
if user wishes to save current opened file, discard
it, or to cancel.

3. If user selects “open”:

3.1. If there is a current file open, the software will ask
if the user wishes to save current opened file,
discard it, or to cancel.

3.2. If there is no current opened file, the file selection
form pops up.

4. If the user selects “save”;

4.1. If the file is being saved for the first time, the file
save form will pop up and ask the user for a file
name.

4.2. If the file is not being saved for the first time, then
the software saves the file without asking for a
file name.

5. If the user selects “save as”;

5.1. The file save form will pop up and ask the user for

a file name.

Flow of Events:

1. The use case starts when the user selects an advance
edit function from the edit menu.
2. If the user selects “union”;

2.1. If there are exactly two objects selected then the
first object selected inserts the other object into
its union list.

2.2. If there are more than two objects or exactly one
object selected an error message is issued.

3. If the user selects “subtract”:

3.1. If there are exactly two objects selected then the
first object selected inserts the other object into
its subtract list.

3.2. If there are more than two objects or exactly one
object selected an error message is issued.

4., If the user selects “intersect”;

4.1. If there are exactly two objects selected then the
first object selected inserts the other object into
its intersect list.

4.2, If there are more than two objects or exactly one
object selected an error message is issued.

5. If the user selects “group”

5.1. If there are more than one selected objects then
the first selected object inserts all the others
object into its group list.

6. If the user selects “ungroup”:

6.1. If there is exactly one object selected then the
selected object looks into its group list.

6.1.1. If there are objects in the selected objects
group list, the objects in the list gets moved
to the GORT draw object list.

Alternative Flow 1:

1. The user may exit the program at any given time.

Alternative Flow 1:
1. The user may exit the program at any given time.

Alternative Flow 2:
1. The user may decide to go initiate this use case by
either canceling or moving to another use case.

Figure 2 GORT: The ManageFiles Use Case

Alternative Flow 2:

1. The user may decide to re-initiate this use case by either
canceling or moving to another use case.

Figure 3 GORT: The AdvanceEditObject Use Case

page 4 of 7

Scenarios for Use Case: Transform Objects

ID: UC12

Actors:User

Primary Scenario:

1. The use case begins when user selects a transform method
from menu “Modify” or clicks any one of transform item
form tool bar.

2. The user selects a transform method.

3. The system enters the transform state.

4. The user selects an object for transform.

5. The system displays this object's properties.

6. The user either enters a new data or drags the selected
object to a new position or derection.

7. The system displays the modified new object.

Secondary Scenarios:
InvalidNewData
OutofBounds
UndoTransform

Figure 4 GORT: Primary and Secondary
Scenarios for the TransformObjects Use Case

Scenarios for Use Case: DrawPrimitive

ID: UC16
Actors: User

Primary Scenario:

1. The use case begins when user selected an object from
create menu or clicks object tab from the toolbar.

2. The system displays the default objects

3. The user selects an object.

4. The system starts recording the mouse's movement.

5. The user clicks and holds mouse button at one point and
releases the button at another point.

6. The system records the two points and calculates the
parameters base on selected object.

7. The system displays this object and its properties.

8. The user modifies the object's properties.

9. The system displays the modified object.

Secondary Scenarios:
InvalidMouseClick
DataModificaton

ViewportModification

Figure 5 GORT: Primary and Secondary
Scenarios for the DrawPrimitive Use Case

4.2 Class Diagram

Due to its dimensions, we present in Fig. 6 only
a part of GORT’s class diagram (analysis level).
Also due to its dimensions we have placed it at
the end of the paper. Complete details on
attributes and, especially, on methods are
fleshed out in a larger class diagram (design
level), whose dimensions preclude its inclusion
in this paper. Nevertheless, we believe the
excerpt from the class diagram presented in Fig.
6 provides a good indication on the complexity
of GORT’s software.

5 Future Extensions

There are numerous possible extensions for this

tool that supports the practical and rapid

creation of 3D interfaces. At this point in time,
we consider extended GORT’s capabilities with
the following:

e Export to other formats, for instance formats
supported by 3D Studio Max, Corel, GIF,
jpeg, bitmap;

e Larger collection of objects: geo-sphere,
capsule, disc, torus, spirals, N-gons, curves,
2D objects, etc.;

e Advanced representation of primitives
including Bezier, NURBS and other spline
curves;

e Enhanced facilities for light specification and
camera manipulation;

e Animation, for instance in robotics and
movies (cartoons);

e Environmental effects: fog, combustions,
reflections, etc.;

e Advanced rendering techniques, e.g., ray
tracing;

e Multi-threading, for both simultaneous ren-
dering on multiple machines and simulta-
neous editing by multiple artists.

6 Conclusions

We have presented in this paper a software
tool, denoted GORT, intended to facilitate the
complex work of 3D user interface designers.
What distinguishes GORT s its extensibility,
which allows the addition of various facilities and
options, and its capability for code generation,
which provides an efficient instrument for 3D
graphics program representation that can be
easily incorporated in a large variety of software
products. In order to ensure a sound, rigurous
development of the GORT software, a

page 5 of 7

GORT

l-cumrentObject : unsigned int
|-displayCursor - unsigned int
|- freeStubs

l-objectH eap

[SaverlLoad Interpreter Object (GORT nativel

XML format)

Raw Data

Mative to OpenGL

(Open GL Translator Module

+decramentSelectiond) : bool
+resatl) : bool

+zreate NewObjact]) : bool
+deleteCumantObject) : bool
+selectObjact() : bool
+incrementSelection() : boal
+clearSelectedObjacts() | bool
+displayReset() : bool
+displayBegini) : boal
+displayEndi) : bool
+getEnviromnent() : bool
+setEnvironment() : bool
+addBitrmap() : bool
+deleteBitmap() : bool
+getBitmapList() : bool
[+savaeStata() : bool
+icadStata() : bool
+displayMexti) : <unspecifiad=

I
+getMextObjecti) : boal
+getEnvironment() : bool
[+addObject() : bool
+addEnvironmenti) : bool
+gatEmor) : boal

bool

Mative to other
formats

+XMLtoGLI) : bool

3D Studio Max Translator Module

ReadOnlyObject

+¥MLTolMaxi) : bool
+MaxToXML{) : boal

Other Conversion Modules)

probjectlocked : bodl

FrredravwFlag : bool
frfacetDisplayCursor : unsigned int
FrocurrentResolution[2] © unsigned int
Frype © unsigned int

VertexStruct

+vertex]] : float
+nomnall] : floal

FacetStruct

+type : unsigned charf
+vList

Associated Structs

EventStruct

+typa : unsigned char

+parameterBuffer * : unsigned charl

Other derived shapes...

#stub : ursigned int
Frparent : unsigned int
Frnatrix{][: float
ptoanter]] : float
FirotationVector] : float
BrmodifierObjects]]
frfacetlist

+resetDisplayFacetList() | bool
+gatDizplayFacet() : bool
+gatDisplayEventl) : bool
+gatDrawEvent() : boo
+gatObjectProperties() : bool
+gatObject Typa(l | char
+isLocked() : bool

+gatStubl) | unsigned int
Frinveriatrix) © bool
ptransform Point() : bool
piransform Paointinversed) : boal
pr=a il dentitybatri<() : bool
FrnomalizeVector() : bool
frerossProduck]) : bool

FaN

+XMLToCthert) : bool
+OtherToXML({) : boal

P -

LockObject (privileged accessor functons|

used by GORT class only)

WriteEnabled

+ratatal) | bool
+translate() : bool
+scalel) : bool
+addlntersectngObject() : boaol
+addSubtracting Object() : ool
+addSel ectedObject() : bool
+satChjocttam) : bool
+setChjectProperties)) : bool
HdrawObject() : bool
HgenerateMormals() : bool
H#parametricDaf() : biool
implicitDef () : loat

AN

+setObjectlock() : boo
+satStubl) | bool

Other derived shapes...

Sphera

[#generateMormalsi) : bool
#parameatricDaf) : bool
FimplicitDef) : fioat

s rawCbject() © bool

Fealculate Mormal() © bool

Cylinder

‘generateMommals() : booll
parametricDef() - boal
#implicitDef() : float
#drawCbjact]) : bool
FcalculateMommall) ©

bool

o=

Cone

HagenarataMormals() ; bool
EparamefiricDef{) : boal
EimplicitDef() : foat
FdrawObjecti) : bool
calculateMormal() : bool

Figure 6 GORT: The Class Diagram (partial)

systematic construction process has been
followed, leading to the creation of a software
model whose main components at the
specification level have been presented in this
paper.

A number of possible extensions have also
been described in the paper in support of our
believe that GORT will prove to be both a very
practical tool for the development of graphics-
intensive software and a very promising basis
for future research.

At this point in time, GORT’s UML analysis
model has been completed and the tool's
implementation is undergoing. The first working

version of this environment for 3D modeling is
expected to be available in about two months.
On a longer time frame, advanced functionality
along the lines presented in Section 5 will also
be incorporated in GORT.

References

[11 OpenGL Architecture Review Board,
OpenGL Programming Guide, Third Edition,
Addison-Wesley, 2002.

[2] PTC, Home of Pro/Engineer, available at:
http://www.ptc.com, accessed March 14,
2003.

page 6 of 7

[3] Myer, B.A., and Rossen, M.B., “Survey on

(4]

5]

User Interface Programming,” Proceedings
of the Conference on Human Factors in
Computer Systems, May 1992, Monterey,
CA, pp. 195-202.

Jacobson, I., Booch, G., and Rumbaugh, J.,
The Unified Software Development Process,
Addison-Wesley, 1999.

OMG’s UML Resource Page, available at:
http://www.omg.org/uml/, accessed March
14, 2003.

(6]

[7]

(8]

Arlow, J. and Neustadt, |., UML and the
Unified Process: Practical Object-Oriented
Analysis & Design, Addison-Wesley, 2002.
OpenGL - High Performance, available at:
http://www.opengl.org, accessed March 14,
2003.

Microsoft DirectX, available at:
http://www.microsoft.com/windows/directx/
accessed March 14, 2003.

page 7 of 7

