
Software Specification of
A Mining Truck Simulator and Trainer

Frederick C. Harris, Jr., Yan W. Ha, Dianne M. Yumul, Joshua S. Estes, Christopher E. Miles

Department of Computer Science

University of Nevada, Reno, NV 89557
Email: fredh@cs.unr.edu

Abstract

In the surface mining industry, the cost of
workplace-related accidents is high in terms of
downtime and equipment repair. Training
operators how to safely inspect and operate
their vehicles is the major part of any training
program. Traditional training methods are often
expensive, ineffective, or even life-threatening.
As a result, the mining industry is constantly
searching for better training methods for their
employees. This paper outlines the motivation
for, and the development of, a virtual reality
(VR) based Mine Truck Simulator and Trainer,
which will cut costs and provide a risk-free
interactive learning environment. It further
discusses the specific requirements, functional
and non-functional, with the aid of the Unified
Modeling Language (UML). Directions of
further research and development are also
described.

Keywords: Software specifications, UML, VR,
Mining, Simulator.

1 Introduction

Mining trucks are the leading source of
serious injuries in the Mining Industry. Since
1994 mining vehicle accidents have been the
primary cause of fatalities in the industry and in
2001 mining vehicle accidents accounted for
more than fifty percent of the fatalities. The
Mining Safety Health Administration has voiced
their concern, stressing the need for and also
requiring extensive training of mine vehicle
operators to reduce workplace accidents. Many
mining companies have responded to these new
ideas by introducing new management

philosophies [1]. But the instruction available, in
the form of videotapes, manuals, and seminars,
are not sufficient as they lack the trainee-to-
vehicle interaction that is vital in developing the
skills required to safely operate the equipment.
The actual driving of the mining truck by the
trainee, which is another option available, is
dangerous if done in a production setting, or it is
expensive if the vehicle must be taken out of
production.

Our software, the Mining Truck Simulator
and Trainer (MTST), will be an efficient and
cost-effective alternative to train drivers to
safely operate a mining truck. MTST is Virtual
Reality (VR) based to provide a realistic and
interactive environment. VR training tools have
recently become popular because of their
effectiveness and flexibility [2]. Studies have
also shown that VR trained personnel perform
required tasks to the standards sooner and
maintain that ability [3].

Two previous VR based projects developed
at the University of Nevada, Reno, are the Mine
Vehicle Inspection Simulator (MVIS) and the
Mine Vehicle Driving Simulator (MVDS) [4, 5].
MVIS presented a variety of 3D mining
vehicles, and gave the user the ability to interact
with the vehicles in order to inspect them for
possible flaws. The MVDS provided a virtual
world to train drivers. This project’s
achievements are the basic physics model of the
mining truck, the modeling of the open-pit
surface mine, and the dynamic hazard
placement. Our project is closely related to
MVDS, but we intend to develop more flexible
software by implementing a physics model for
the truck, a realistic representation of an open-
pit surface mine, a networking interface to allow
multiple users, and an intuitive graphical user
interface.

This paper presents our project, the Mining
Truck Simulator and Trainer (MTST) and
describes, with the use of the Unified Modeling
Language (UML) [6], its requirements and use-
case specification. UML is used for specifying,
visualizing and documenting artifacts of a
software system. It allows the software system
to be modeled as a set of interacting objects,
making it applicable to object oriented systems
and business processes.

The rest of this paper is organized as
follows: in Section 2 we provide a general
description of the software. In Section 3 we list
the functional and non-functional requirements
of MTST. We provide the Use Case model in
Section 4, and the class diagram in Section 5.
Finally, we cover the conclusions and future
extensions to MTST in Section 6.

2. General Description

The goal of MTST is to provide a virtual
world where trainees can perform typical driving
tasks involved in open-pit surface mining. A
number of scenarios will be available for the
simulation to replicate different conditions and
settings found in various open pit mines. We
will integrate an intuitive graphical user
interface to make the editing of a scenario as
well as start-up and termination of the training
session easy for the trainer and trainees. The
training session will be conducted under the
supervision of a trainer who can monitor,
evaluate, and communicate with the trainees
during the session. A networking interface will
allow multiple trainees to perform various tasks
in coordination with each other in the same open
pit mine.

Before the training session, a scenario can
be chosen for modification by the Scenario
Manager. The Scenario Manager can place
various dynamic and static hazards into the mine
by simply selecting a hazard from a list and
identifying the desired location. Other options
available are setting the start and finish points,
the load and unload locations, as well as setting
the simulation weather.

When the Main Menu appears, it will list the
options available to the trainer and trainee. The
trainer will be able to initialize the session,

select a scenario (which includes a mine and
other hazards), and start the session. The option
to initialize the session establishes the network
connection, which enables multiple trainees to
join the session as well as enabling trainer—
trainee communication. The option to start the
session closes the Main Menu and starts the
Simulator. The Simulator enables the trainer to
monitor and evaluate the performance of the
trainees, and communicate with them through a
chat box.

The trainees must join the session in the
Main Menu, which transfers them to the
Simulator. The Simulator will then present a
virtual world and enable interaction in real-time.
The virtual world will be the open-pit surface
mine selected by the trainer. It will include a
variety of weather effects, such as rain and fog,
and hazards present in that environment. Inside
the virtual world, the trainees must accomplish
typical tasks, which consist of driving the truck,
loading and unloading rock and soil on the
specified locations, maneuvering difficult ramps
and encountering obstacles. In order to make the
driving as simple and realistic as possible, a
steering wheel and pedals are utilized as the
trainees input devices. However, the keyboard
and mouse (or a joystick) can also be used. The
accurate physics of the truck will be modeled for
the simulation so as to imitate its actual
acceleration, deceleration, and turning radius.

At the end of the simulation, the trainer will
have the option to browse through the
performance reports of the trainees, print the
selected reports, and terminate the training
session. Upon termination or shutdown, the
network connection will be closed and
communication will be disabled. The Main
Menu will then appear for the next session.

All the above functionality will be
implemented with the aid of the Torque game
engine [7]. Torque is a professional development
platform which features TCP/UDP networking
capabilities, a 3D visual API, physics and
collision models, and a C++ like scripting
language for the development of a virtual world.

3. Requirements Specification

The Mining Truck Simulator and Trainer
will offer many capabilities and will have an
intuitive interface to make it easier for the end
users of the product. The Functional
Requirements lists the behavior of the system,
while the Non-functional Requirements lists a
number of specific properties the software
should have [8].

3.1 Functional Requirements

MTST’s most important functional
requirements are listed below. Nevertheless, we
believe they could provide a fairly complete
picture of the tool’s capabilities in its current,
initial version. For traceability during the
software development process each functional
requirement has a number and is denoted using
the format <R#>.

R1 The system shall provide an interface for

the scenario manager to create a scenario
and save the scenario.

R2 The system shall provide an interface for
the scenario manager to edit a scenario
and save the edited scenario.

R3 The system shall provide an interface for
the trainer to select a scenario for a
training session.

R4 The system shall provide an interface for a
trainee to join the training session.

R5 The system shall provide a multiple-user
networking environment for group
training sessions.

R6 The system shall provide a monitoring
system to alert the trainer if triggered by
pre-defined events, such as hitting a
hazard.

R7 The system shall provide a monitoring
system to monitor the session, generate a
report, and send a report to the trainer.

R8 The system shall provide a text-based
communication interface for the trainer to
communicate with the trainees, and for the
trainees to communicate with each other.

R9 The system shall provide weather effects,
such as fog, and rain.

R10 The system shall provide a first person
view from inside the truck.

R11 The system shall provide a responsive
instrument panel.

R12 The system shall provide a means to drive
the truck.

R13 The system shall provide objects to run
into.

R14 The system shall provide a means to load
the truck.

R15 The system shall provide an interface for
the trainer to initialize the session.

R16 The system shall provide an interface for
the trainer to start the session

R17 The system shall provide a means for the
trainer to enable a chat during the session.

R18 The system shall provide an interface for
the trainer to end the session and
shutdown the program.

3.2 Non-functional Requirements

Non-functional requirements for MTST
include primarily constraints on the
environment’s implementation. Following is the
list of these requirements, denoted using the
format <T#>:

T1 The system shall use the Torque Engine.
T2 The system shall run in real-time.
T3 The system shall be realistic in every

feasible aspect.
T4 The system shall run on Mac OS X,

Linux, and Windows.

4. UML Specification

Based on the above lists of requirements, the

UML-model of MTST has been built. In the
following we present excerpts from both the
behavioral part (use cases and scenarios) and the
structural part of the MTST (part of the system’s
larger class diagram).

4.1 Use Cases and Scenarios

The Use Case diagram is another way of
presenting and specifying the requirements of a
system or software. It shows two types of
objects, the actors and the use cases. The actors

are the characters played by the people or other
systems that use the software, in our case we
have the Scenario Manager, the Trainer, and the
Trainee. The use cases are the various functions
and tasks the system performs. Because UML is
flexible, it allows for more than one use case
diagram to expand a particular use case.

Using the UML-notation, the UP-based
approach and the guidelines presented in [8] we
have drawn the use case diagram of MTST.
Figure 1 shows the main use case diagram.
Each use case has sub use cases, for example the
sub use case for the Simulator is illustrated in
Figure 2. We have also detailed all use cases
(examples are given in Fig. 3 and Fig. 4), and
specified a comprehensive set of scenarios
(examples are given in Fig. 5 and Fig. 6). Based
on these use cases and scenarios, other UML
diagrams that describe system behavior and
structure have been drawn, including the class
diagram from which an excerpt is presented in
Fig. 7.

EditorScenario Manager

Wrap-up

Trainer

Main Menu

Simulator

Trainee

Mining Truck Simulator and Trainer

Figure 1: The MTST: Use Case Diagram

Simulator

Interact

Fly-by Observation

Toggle Chat

View Monitoring Data

Trainee

Chat

Trainer

Figure 2: The Simulator: Use Case Diagram.

Use case: Main Menu—Start Session

ID: UC6

Actors: Trainer, Trainee
Preconditions:
1. A session is open via UC4.
2. An active scenario has been chosen via UC5.
3. All trainees have joined the session via UC6.
Flow of Events:
1. The trainer selects start.
2. The trainer moves from the main menu into

the simulation
2.1. The trainer is presented with the

simulation environment.
3. The trainees move from the main menu into

the simulation.
3.1. The trainees enter the virtual

environment
3.2. The trainees are given control of trucks

placed at the appropriate starting
locations.

3.3. Monitoring begins.
Postconditions:
1. The system transitions to simulation mode for

all actors.
2. The simulation is active.
3. Monitoring is active.

Figure 3: Main Menu—Start Session Use Case

Use case: Simulator—Interact

ID: UC11
Actors: Trainee (driver)
Flow of Events:
1. The driver receives instructions from trainer.
2. The driver drives the virtual truck in order to

complete the instructions.
2.1. The driver interacts with the virtual

world, navigating ramps paths and a
variety of obstacles.

2.2. The driver may approach the loader and
receive cargo.

2.3. The driver may go to the dumping
location and dump the cargo.

2.4. The monitoring system records statistics
about the driver's actions.

3. The simulation ends.
Postconditions:
1. The trainer receives the overall summary of

the monitoring system.
Alternative flow:
1. At any point the driver may quit the session.
Postconditions:
1. The virtual world has changed appropriately.

 Figure 4:The Simulator—Interact Use Case

Scenario for Use case: Simulator—Interact

ID: UC11/S01
Actors: Trainee (driver)
Primary Scenario:
1. The driver receives instructions from trainer.
2. The driver drives the virtual truck in order to

complete the instructions.
2.1. The driver interacts with the virtual

world, navigating ramps paths and a
variety of obstacles.

2.2. The driver approaches the loader and
receives cargo.

2.3. The driver goes to the dumping
location and dumps the cargo.

2.4. The monitoring system records
statistics about the driver's actions.

3. The simulation ends.
Secondary Scenarios:
IncorrectResponse & DriverDisconnect
Postconditions:
1. Trainer receives monitoring system summary.
2. The virtual world has changed appropriately.

 Figure 5: Primary and Secondary Scenarios for

the Simulator—Interact Case

Scenario for Use case: Simulator--Interact

Secondary Scenario: IncorrectResponse
ID: UC11/S02

Actors: Trainee
Preconditions:
1. The simulation is active.
Secondary Scenario:
1. The driver receives instructions from the

trainer.
2. The driver drives the virtual truck in order to

complete the instructions.
2.1. The driver interacts with the virtual

world, navigating ramps paths and a
variety of obstacles.

2.2. The driver collides with a hazard or
obstacle.

2.3. The driver does not receive cargo.
2.4. The driver goes to the wrong dumping

location.
2.5. The monitoring system records

statistics about the driver's actions.
3. The simulation ends.
Postconditions:
1. Trainer receives the overall summary of the

monitoring system.
2. The virtual world has changed appropriately

in response to the driver’s commands.

 Figure 6: Secondary Scenario for the
Simulator—Interact Case

4.2 Class Diagram

Due to its dimensions, we present in Fig. 7
only a part of the Mining Truck Simulator and
Trainer’s class diagram (analysis level). Also
due to its dimensions we have placed it later in
the paper. Complete details on attributes and,
especially, on methods are fleshed out in a larger
class diagram (design level), whose dimensions
preclude its inclusion in this paper.
Nevertheless, we believe the excerpt from the
class diagram presented in Fig. 7 provides a
good indication of the complexity of MTST.

5 Future Extensions

There are numerous possible extensions to
MTST to enhance its usability and capabilities.
Specifically we consider extending MTST’s
capabilities with the following:

• Providing a variety of mining vehicles for
trainees to operate.

• Better physics models with parameters for
all of these new vehicles.

• A better monitoring system such that the
trainer can tabulate what the trainee has
done as well as interact with the trainees.

• More obstacle hazard models that the
scenario manager can use.

• Sound for better immersion in the VR
environment and force-feedback steering
wheels.

• Better instrument panel design and
operability that provides more feedback to
the trainee.

• Mechanisms to generate summary reports on
the trainees as well as a database to collect
these.

• More mine models as well as tools to
convert them into an MTST format.

6 Conclusions

 We have presented in this paper a Mining
Truck Simulator and Trainer, an environment
intended to provide a comprehensive and
effective training tool for drivers of large mining
vehicles. This VR environment will provide
better experience with the most common issues
that trainees face, such as communicating with
the coordinators and the peers, maneuvering
through the mines, navigating through traffic,
dealing with weather, and overcoming the
difficulties springing from the size of these
vehicles. In order to ensure a sound, rigorous
development of the MTST software a systematic
construction process has been followed, leading
to the creation of a software model whose main
components at the specification level have been
presented in this paper.

Spring

determineForce() Static Object

Message

Trainer GUI

displaySessionData()

Message

Wheeled Vehicle Physics

forceToApply : vector

torqueToApply : vector

addForce()

Trigger()

Shock

determineForce()

Collision System

checkCollision()

Monitoring System

getSessionData()

Material Properties

Texture

AlphaMap

EmissiveLight

Bsp Mesh

PlanarMesh

Normals

Tex Coords

Wheeled Vehicle

Trigger()

Display

Attach()

Wheeled

Vehicle Tire

Channel Server

channels

getChannel()

setChannel()

Unloader

receiveMessage()

Loader

receiveMessage()

Monitor

noOfCollision : int

averageSpeed : float

noOfLoad : int

noOfUnload : int

Trigger()

Truck Physics

Trigger()

Front Tire Rear Tire

Truck

position

velocity

mesh : handle

particleEmitter : handle

mass : int

centerOfmass

wheelSpeed : float

maxSteeringAngle : float

drag : float

friction : float

bodyRestitution : float

engineTorque : float

engineBrake : float

brakeTorque : float

maxWheelSpeed : int

collisionHookThresh : float

physicsIntegration : int

impactSoundThresh : float

camera : float

create()

onAdd()

onCollision()

receiveMessage()
Map Trigger

activate()

2

4

1

1

4

1

0..*

1..*

1..*

1

1

1..*

1..*

1..*

1

1

1

1 1

1

1 1

1

1

0..*

1

1

1

1

1

0..*

1

1 1

1 11

1

1 1

1 1

Spring

determineForce() Static Object

Message

Trainer GUI

displaySessionData()

Message

Wheeled Vehicle Physics

forceToApply : vector

torqueToApply : vector

addForce()

Trigger()

Shock

determineForce()

Collision System

checkCollision()

Monitoring System

getSessionData()

Material Properties

Texture

AlphaMap

EmissiveLight

Bsp Mesh

PlanarMesh

Normals

Tex Coords

Wheeled Vehicle

Trigger()

Display

Attach()

Wheeled

Vehicle Tire

Channel Server

channels

getChannel()

setChannel()

Unloader

receiveMessage()

Loader

receiveMessage()

Monitor

noOfCollision : int

Spring

determineForce() Static Object

Message

Trainer GUI

displaySessionData()

Message

Wheeled Vehicle Physics

forceToApply : vector

torqueToApply : vector

addForce()

Trigger()

Shock

determineForce()

Collision System

checkCollision()

Monitoring System

getSessionData()

Material Properties

Texture

AlphaMap

EmissiveLight

Bsp Mesh

PlanarMesh

Normals

Tex Coords

Wheeled Vehicle

Trigger()

Display

Attach()

Wheeled

Vehicle Tire

Channel Server

channels

getChannel()

setChannel()

Unloader

receiveMessage()

Loader

receiveMessage()

Monitor

noOfCollision : int

averageSpeed : float

noOfLoad : int

noOfUnload : int

Trigger()

Truck Physics

Trigger()

Front Tire Rear Tire

Truck

position

velocity

mesh : handle

particleEmitter : handle

mass : int

centerOfmass

wheelSpeed : float

maxSteeringAngle : float

drag : float

friction : float

bodyRestitution : float

engineTorque : float

engineBrake : float

brakeTorque : float

maxWheelSpeed : int

collisionHookThresh : float

physicsIntegration : int

impactSoundThresh : float

camera : float

create()

onAdd()

onCollision()

receiveMessage()
Map Trigger

activate()

2

4

1

1

4

1

0..*

1..*

1..*

1

1

1..*

1..*

1..*

1

1

1

1 1

1

1 1

1

1

0..*

1

1

1

1

1

0..*

1

1 1

1 11
averageSpeed : float

noOfLoad : int

noOfUnload : int

Trigger()

Truck Physics

Trigger()

Front Tire Rear Tire

Truck

position

velocity

mesh : handle

particleEmitter : handle

mass : int

centerOfmass

wheelSpeed : float

maxSteeringAngle : float

drag : float

friction : float

bodyRestitution : float

engineTorque : float

engineBrake : float

brakeTorque : float

maxWheelSpeed : int

collisionHookThresh : float

physicsIntegration : int

impactSoundThresh : float

camera : float

create()

onAdd()

onCollision()

receiveMessage()
Map Trigger

activate()

2

4

1

1

4

1

0..*

1..*

1..*

1

1

1..*

1..*

1..*

1

1

1

1 1

1

1 1

1

1

0..*

1

1

1

1

1

0..*

1

1 1

1 11

1

1 1

1 1

Figure 7: The MTST Class Diagram (partial)

A number of possible extensions have also
been described in the paper in support of our
belief that the Mining Truck Simulator and
Trainer will prove to be a very practical tool for
training new and experienced mining vehicle
operators.

At this point in time, the Mining Truck
Simulator and Trainer’s UML analysis model
has been completed and the tool’s
implementation is undergoing. The first working
version of this environment is expected to be
available in a few months. On a longer time
frame, advanced functionality along the lines
presented in Section 5 will also be incorporated
in the simulator.

References

[1] B. G. Staley, “Culture Shock-Changing

Attitudes to Safety in Mines.” In Proc.
Of Safety, Hygiene and Health in
Mining, pp. 263-273, Harrogate,
England, 1992, Institution of Mining
Engineers.

[2] James D. Foley, Andries van Dam,
Steven K. Feiner, John F. Hughes, and
Richard L. Phillips. Introduction to
Computer Graphics. Addison Wesley,
Reading, MA, 1997.

[3] CAE available at http://www.cae.com,
accessed April 24, 2003

[4] Damien Ennis, Benjamin Lucchesi,
Nerissa Oberlander, Keith Wesolowski,
Frederick C. Harris, Jr., and Pierre
Mousset-Jones, “Surface Mine Truck
Safety Training: A VR Approach to Pre-
Operational Vehicle Inspection” in Kadri
Dagelen, editor, Proceedings of
APCOM'99 Computer Applications in
the Mineral Industries 28th International
Symposium, pp. 811--818, October 20-
22, 1999, Colorado School of Mines,
Golden, Colorado.

[5] Benjamin Lucchesi, Nerissa Oberlander,
Frederick C. Harris, Jr., and Pierre
Mousset-Jones, “Surface Mine Truck
Safety Training: Scenario Setup for a
VR Driving Simulator,” in Q. Yang,

editor, Proceedings of the 12th
International Conference on Computer
Applications in Industry and
Engineering (CAINE '99), pp. 62-65,
Ramada Inn Downtown, Atlanta, GA,
November 4-6, 1999.

[6] OMG’s UML Resource Page, available
at: http://www.omg.org/uml/, accessed
March 14, 2003.

[7] Garage Games, Developers of the
Torque Game Engine, available at
http://www.garagegames.com/, accessed
April 24, 2003.

[8] J. Arlow and I. Neustadt, UML and the
Unified Process: Practical Object-
Oriented Analysis & Design, Addison-
Wesley, 2002.

