Parallel Inversion of Polynomial Matrices

Alina Solovyova-Vincent
Computer Science

Frederick C. Harris, Jr.
Computer Science

M. Sami Fadali
Electrical Engineering

University of Nevada, Reno University of Nevada, Reno University of Nevada, Reno

Reno, NV 89557
alina@cs.unr.edu

Abstract

This paper presents an overview of different meth-
ods proposed in the last several decades for comput-
ing the inverse of a polynomial matrix, concentrating
on Bustowicz’s algorithm. A detailed description of
Bustowicz’s algorithm and its sequential implementa-
tion is followed by the presentation of a new parallel
algorithm, based on Buslowicz’s. The distributed and
shared memory versions of this parallel algorithm are
discussed, and the resulting computation times are an-
alyzed and compared.
keywords: parallel algorithm, polynomial matrix in-
version

1 Introduction

The problem of inverting polynomial matrices (or,
more generally, rational matrices) has been under in-
vestigation for over half of a century. This research
is well motivated because the computation of such in-
verses is needed in many fields. For instance, in mul-
tivariable control systems, a system is often described
by a matrix of rational transfer functions. The prob-
lem of finding the inverse of a rational matrix arises
in analysis and design using the inverse Nyquist array
method [21, 27], in parameterization design of linear
decoupling controllers [19, 25], in robust stability anal-
ysis [10], and in design using the QFT method [13, 21].
The inversion of polynomial matrices is also required
in various fields of control system synthesis [15, 29].
Furthermore, the inversion of rational matrices is re-
quired in the analysis and synthesis of passive and
active RLC networks for inversion of admittance or
impedance matrices [16] and in the analysis of power
systems using the method of diakoptics [1]. When a
rational matrix is expressed as a ratio of a numera-
tor polynomial matrix and a denominator scalar poly-
nomial, the computation of the inverse essentially re-

Reno, NV 89557
fredh@cs.unr.edu

Reno, NV 89557
fadaliQee.unr.edu

duces to the computation of the inverse of a polyno-
mial matrix [20]. Thus, in many cases, the problem of
finding the inverse of a rational matrix can be solved
by inverting the corresponding polynomial matrix.
The rest of this paper is outlined as follows: Sec-
tion 2 introduces definitions and notations and pro-
vides the overview of other existing inversion methods
along with their advantages and disadvantages. It also
introduces Bustowicz’s algorithm and outlines reasons
for selecting this algorithm as the basis for a paral-
lel implementation. Section 3 describes the details of
the sequential implementation of the algorithm as well
as the changes necessary to parallelize it. Discussions
of the shared memory and distributed memory par-
allel implementations complete this section. Section
4 presents and analyzes the results of the sequential
and parallel versions of the program. Conclusions and
directions for future work are provided in Section 5.

2 Notation, Literature Review, and
Buslowicz’s Algorithm

2.1 Introduction of Notation

A polynomial matrix is a matrix which has poly-
nomials in all of its entries. Consider a polynomial
matrix H(s) of degree n

H(S) =Hps" + Hn—lsnﬁl + Hn_28n72 + ...+ Hy,

where H; are r X r constant square matrices, i =
0,...,n. An example of such a matrix is

[s+2 s$$+3sP+s
H(S) - 53 82 +1

In this case, the degree of the polynomial matrix is
n = 3, and the size of the matrix H; is » = 2. For this
example,

= O

11
=l 0]
0 3

me=lo 3]m= [0]

H(s) is considered column proper if its highest degree
coefficient matrix H,, is non-singular [29]. H(s) is row
proper if its transpose, H” (s), is column proper.

The notation used to denote the inverse of a matrix
is H~!(s). Only unimodular matrices (i.e., polynomial
matrices with a non-zero determinant that is indepen-
dent of s) have inverses that are themselves polynomial
matrices [22].

Rational matrices are matrices whose entries are ra-
tional functions in s, which are non-singular at s = 0.
A rational function can be expressed as Hd~!, where
H is a polynomial matrix and d is a scalar polynomial.
Thus the problem of inverting a rational matrix can
be reduced to inverting a polynomial matrix.

2.2 Literature Review

We begin with a review of the special case of in-
verting the resolvent matrix [sI, — H], where I is
the unit matrix and H is an r X r matrix of con-
stants. A process for finding [sI, — H] ' is well doc-
umented and is known as Leverrier’s algorithm [18].
Leverrier’s algorithm as well as multiple extensions
of this method (i.e., Leverrier-Faddeev algorithm [11],
Souriau-Frame-Faddeev algorithm [26], etc.) serve as
a basis for several matrix inversion techniques that fol-
low.

A number of different approaches for the inversion
of polynomial matrices have been proposed over the
past years. The assumptions made by different au-
thors vary, and the results do not always have the
same form. One of the first papers on this topic by
Kosut [17] gives a direct algorithm based on a general-
ization of the Leverrier method. His method contains
many polynomial operations and is not very general.

Munro and Zakian [22] used the approach sug-
gested by Kosut for the inversion of rational poly-
nomial matrices by the Souriau-Frame-Faddeev algo-
rithm. They considered two distinct methods in their
paper: one based on the Gaussian elimination algo-
rithm and the other one based on the Faddeev algo-
rithm. Both methods involve performing direct com-
putation of the adjoint matrix obtained by polynomial
operations. However, their methods have downfalls in
that such operations are lengthy, require a “large de-
gree of involved bookkeeping” [22], and are known to

cause numerical problems. In addition, operations in
the field of rational functions utilized in both methods
are not suitable for computer programming.

Downs [4, 5] presented another approach, based on
exact Gaussian elimination for matrices with integer
coefficients. His method still contained many polyno-
mial operations. Almost at the same time, Emre et
al. [9] proposed a method of inversion of rational ma-
trices based on Cramer’s rule. The primary motivation
for introducing this new method was to avoid polyno-
mial arithmetic and to establish an algorithm system-
atically dealing with constant matrices. This approach
required only simple arithmetic. Their method origi-
nally required restrictive assumptions that the polyno-
mial matrix H (s) is non-singular at s = 0 and that the
determinant is known at the outset. The problem of
polynomial cancellation was not taken into account by
Emre et al. Downs was the one to point out the many
restrictions and problems of their approach. In a series
of papers that followed [6, 7, 8], most of these prob-
lems were resolved. Another point worth mentioning
is that the inversion presented by Emre et al. was car-
ried out by computing the determinants recursively.
This inversion method requires that the determinants
of (n+ 1)r constant matrices be evaluated in order to
compute the determinant of a polynomial matrix H (s)
of order r whose degree is n. Computation time for
this method is large for large r and n.

Inouye [14] approached the problem of inverting
polynomial matrices by generalizing Fadeev’s recursive
formula. His method is an extension of the Souriau-
Frame-Faddeev algorithm. It does not require prereq-
uisite determinants and requires operations with only
constant matrices. It simultaneously determines the
adjoint matrices and the coefficients of the determi-
nants. The author showed that his algorithm is “faster
than the existing ones.” One of the disadvantages of
his method is that it works only for row- or column-
proper polynomial matrices. It also gives the inverse
in the minimal degree form only if the polynomial ma-
trix to be inverted is not a special form, but it cannot
ensure that the denominator and inversion numerator
matrix obtained will be irreducible for a general case.

Num [23], and much later Schuter and Hippe [28],
proposed finding the inverse by generalizing known
polynomial interpolation approaches. Both techniques
require a careful choice of base points in order to avoid
ill-conditioned equations. Both methods require com-
plex computations. Another problem with interpola-
tion methods is that only upper bounds for the de-
grees of the determinant and the adjoint are usually
available. The interpolation thus involves redundant

equations and polynomials with unnecessarily high de-
grees.

In 1980 Bustowicz [24] published a paper with a
method that is similar to the method proposed by In-
ouye [14] but more general in that it works for any non-
singular polynomial matrix (as opposed to only row-
or column-proper matrices). Bustowicz’s recursive al-
gorithm computes the inverse by Cramer’s rule, explic-
itly calculating the adjoint matrix and the determinant
starting from the coefficient matrices. It requires op-
erations with only constant matrices. The drawback
of Buslowicz’s algorithm is that the irreducible form
cannot be ensured in general.

Still another approach was developed indepen-
dently by Zhang [30] and Chang et al. [3]. They both
used a division algorithm for polynomial matrices to
compute the inverse in irreducible form; however, their
algorithms had increased computational complexity.

Fragulis et al. [12] proposed an algorithm that is a
generalization of the Leverrier-type algorithm. The in-
verse is calculated using the recursive formula. Their
approach does not seem to be significantly different
from the one proposed by Bustowicz and does not pro-
vide any clear advantage over it.

The method of finding the inverse of a polynomial
matrix based on state space realizations is used by
Lin and Hsieh [20]. They compute neither the deter-
minant nor the adjoint matrix. This method does not
yield the exact solution, but experiments show that
the algorithm gives accurate results for rational ma-
trices that arise in the analysis and design of linear
multivariable control systems.

2.3 Buslowicz’s Algorithm

2.3.1 Advantages of Bustowicz’s Algorithm

As mentioned in Section 2.2, Bustowicz based his
approach for finding the inverse of a polynomial matrix
on a generalization of Fadeev’s recursive formula. A
similar method was proposed by Inouye [14] in 1979,
and it was the fastest and most general method at
that time. Buslowicz’s algorithm is even more gen-
eral, does not require knowledge of the determinant
at the outset, and works for any non-singular polyno-
mial matrix. The only operations required are those
on constant matrices.

There were several reasons for choosing this method
for implementation. First, methods proposed be-
fore Bustowicz published his paper were obviously less
general. Second, we wanted to implement an exact
method, thus eliminating available algorithms that use
approximations or interpolations such as [23], [28] and

[20]. Two other newer methods [3, 30], provide only
slight improvement of the results in that they yield
the inverse in the already irreducible form. However,
both authors agree that their algorithms require ad-
ditional “complex computations”. Finally, Buslowicz
claimed that his algorithm was suitable for computer
programming [24]. We agreed with this assessment
and also saw a potential for great speedup in the par-
allel implementation.

2.3.2 The Algorithm

One of the general ways to compute the inverse of
a matrix H(s) is to evaluate the expression given by
- adj H(s)
H (s) =222 1
() det H(s)’ ()
where adj H(s) denotes the adjacent matrix H(s),
which is found as

n(r—1)
adjH(s) = Y Qus*, Qre R (2)
k=0
and o
det H(s) = Zak5k7 a€R. (3)
k=0

The problem of finding the inverse of a polynomial
matrix comes down to finding an efficient method for
calculating matrices Qx, k =0,1,...,n(r — 1), and the
coefficients ag, k = 0,1, ..., rn, from the given matrices
H;, i=0,1,..,n.

Bustowicz showed in his paper that the matrices @
of adj H(s) can be computed as

Qk = (_1)T+1RT—1,k7 k= 07]-7 ...,n(r - 1)7 (4)
and the coefficients ay, of det H(s) can be found using
the formula

—1 r+1
ar = %trth, k=0,1,...,nr (5)

where tr denotes the trace of a matrix.

The matrices R, 1 and G, appearing in the
above expressions are computed from the following it-
erative formulae:

Gixy = HoRi_1x+HiRi_ 1,1+ ..+ HuRi_1.P)

1
A = ——,tI‘Gi,k7 1= 1,2, ey Ty and (7)
)

Rz’,k = Gi,k+ITai,k, 1=1,2,...,r—1landk =0,1,...,in,
(8)

where ;]
For={ om0 tmizo O
and
Rip=0for j<Oork<Oork>jn. (10)

In addition,
Rey=Grr+ ILrary =0, k=0,1,...,mn. (11)

The algorithm proposed by Bustowicz for inversion
of the polynomial matrices then consists of the follow-
ing steps:

1. Using formulae (6)-(10), calculate G, a;r and
Ry for ¢ = 1,2,...,r —1 and k = 0,1,...,in,
and calculate from formula (4) the matrices
Qr for k=0,1,...,n(r—1).

2. Using formulae (4) and (2), calculate the matrix
adjH(s).

3. Calculate the matrices G,y for £ = 0,1,...,mn
from the formulae (6)-(8) and the coefficients a;
of the polynomial det H(s) from formula (5).

4. From formula (3) calculate the polynomial
det H(s).

5. Calculate the matrix H~!(s) from formula (1).

6. The computations could be checked using the fol-
lowing equation:

Grp+(—1)"apl, =0, k=0,1,...,rn.

Note: In the case where the polynomial matrix
has no inverse, the coefficients ar, k = 0,1, ...,rn,
calculated by formula (5) will be equal to zero.

3 Sequential and Parallel Algorithms
3.1 Sequential Algorithm

Before the sequential code is discussed in detail, we
introduce the variables that appear in the program.

e Each H; is an r x r matrix. n + 1 of them form
the matrix H(s), the inverse of which is to be
computed (see the first formula in 2.1). Each H;
is represented by a 3-dimensional array H[i|[z][y],
where ¢ = 0,1,...,m, x = 0,1,...,r—1 and y =
0,1,...,m—1.

e Each G, is an r x r matrix (see formula (6)
in 2.3.2), that is represented by a 4-dimensional
array G[i][k][x][y], where i = 0,2,..,r, k =
0,1,...,rn,z=0,1,...,r—landy =0,1,...,r—1.

e Each R, is an r X r matrix (see formulae (8)-
(11)), that is represented by a 4-dimensional array
RI[i][k][z][y], where i = 0,2,...,r, k = 0,1,...,rn,
z=0,1,..,r—landy=0,1,...,r — 1.

e Each a; is a coefficient (see formula (7)), that
is represented by a 2-dimensional array a[i][¥],
where 1 = 0,1,...,rand £k =0,1,...,rn.

e Each aj is a coefficient of detH (s) (see formula
(3)), that is represented by a 1-dimensional array
alphalk], where k = 0,1,...,rn.

e Each Q) is one of r x r matrices that compose
adjH (s) (see formula (2)). They are represented
by a 3-dimensional array Q[k][z][y], where i =
0,1,...,n,z=0,1,...,r—land y =0,1,...,r — 1.

e Ident[z][y] is an r X r unit matrix.

Several changes had to be made to the algorithm
outlined in Buslowicz’s paper. First of all, step 1 of
the algorithm (see Section 2.3.2) specifies the calcu-
lation of Gk, a;r and R;y, for ¢ = 1,2,...,r — 1 and
k=0,1,...,in. However, our algorithm separates this
step into two steps because different approaches are
required for calculating the variables for i = 1 and
i > 1. Thus, the algorithm first calculates G, a;
and R;, for ¢ =1 and k = 0,1, ...in and then contin-
ues with the rest of the calculations for ¢ > 1. Second,
as mentioned above, steps 1 and 3 of the algorithm
are combined. Computations of @)y are delayed until
everything else in steps 1 and 3 is calculated. Hence,
step 2 is also performed later in the program.

3.2 Parallel Algorithm

Armed with a working sequential version of
Buslowicz’s algorithm, we began analyzing program
dependencies in order to decide on parallelization tech-
niques. This section presents the details of the parallel
implementation of Bustowicz’s algorithm and outlines
the changes made and challenges encountered in the
process of parallelizing the sequential version of the
program.

The parallel algorithm is given in Figure 1. Two
new variables appear in this parallel code segment:
NUMPROC is the number of processors used for cal-
culations, and p is the distinct number associated
with each processor p=0,.... NUMPROC-1. Because
a SPMD (single program multiple data) programming
structure was used, each processor executed the code
shown on its portion of data. This algorithm was im-

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40

41
42
43

for (k=p;k<n+1;k+=NUMPROC)

for(x=0;x<r;x++)
for(y=0;y<r;y++)
. G[1][k][x][y]=H[k][x][y];
tr=0;
for(1=0; 1<r;l4++)
tr+=G[1][k][1][1];
a[l][k] =-tr;
for(x=0;x<r;x++)
for(y=0;y<r;y++)
R[1][k][x][y]=G[1][k][x][y]
) + a[l][k]*Ident[x][y];
barrier(barrierl, NUMPROC);
for(i=2;i<r+1; i++)

for(k=p;k<n*i+1;k+=NUMPROC)
{
min=k;
if(k>n)
min=n;

for (1=0;ll<min—+1;l14++)

kr=k-1l;
if(kr<=(i-1)*n)
for(x=0;x<r;x++)
for(y=0;y<r;y++)

Gi][k][x][y]=0;

for(1=0;1<r;1++)
Gli][k][x][y]+=H[H][x][1]
*R[i-1][kr][1][y];
}
}
tr=0;

for(1=0; 1<r;l++)
tr-+=GEIKII);
afi][k]=-tr/i;
for(x=0;x<r;x++)
for(y=0;y<r;y++)
R[i][k][x][y]=G[i][k][x][y]
+ali][k]*Ident[x][y];

SYNCHRONIZATION
}

Figure 1: The parallel algorithm.

plemented for both distributed memory and shared
memory machines.

Implementing the program in a shared memory
environment allowed the creation of variables that
could be accessed directly by every process. In the
shared memory environment, the shared memory seg-
ments are created using the shmget() system calls.
Because there is a limit on the number of shared
memory segments that can be created, 2-, 3- and 4-
dimensional matrices are represented as 1-dimensional
arrays. Shared memory segments are attached to the
data segments of the calling process before performing
calculations using shmat() and then are detached af-
ter the computations are completed. In a distributed
memory environment, variables computed by one pro-
cess that are required by another have to be passed
explicitly by the program. MPI was chosen to pro-
vide the functionality required for programming in a
distributed memory environment.

Because most parallelism occurs in the loops, a first
attempt to parallelize any code typically requires look-
ing for independent loops that can be split across mul-
tiple processors. Independent loops can be executed in
any order without affecting the semantics of the pro-
gram. There are several for loops in the sequential
program, but, unfortunately, not all are independent.
Clearly, the large outer i-loop (line 15 in Figure 1)
is not independent. Calculations in the i** iteration
depend on the results of the previous (i — 1) iter-
ation because the it" iteration involves operations on
R;_1 1 (line 31). However, the k-loops are independent
and can be parallelized (lines 1 and 17 in Figure 1).
This parallelization was accomplished by performing
striped partitioning of the matrices across the proces-
sors.

The presence of the dependent loops in the program
created another challenge: synchronization of the pro-
cesses and data. Looking at lines 15 and 17, one can
notice that there are two nested loops, with an in-
dependent loop inside the dependent one. To make
matters worse, the number of inner iterations (l/-loop
on line 22 varies. The dependence on k can be seen
in lines 19-22 Thus there are so-called partially par-
allel loops, i.e., loops whose parallelization requires
synchronization to ensure that iterations are executed
in the correct order and produce the correct output.
Specifically, no process can go on with execution of the
it" iteration until every other process had completed
its (i—1)%¢ iteration. In a shared memory environment,
this synchronization is accomplished by placing a bar-
rier before starting the next iteration of the i-loop (line
42 in Figure 1). Another barrier is placed on line 14

(Figure 1) to synchronize the processes, making sure
that R, is calculated for all values of k before contin-
uing with calculations for ¢ > 1. In a distributed mem-
ory environment, synchronization is as important, but
the data calculated by the processes must also be ex-
plicitly exchanged so it can be used in the next itera-
tion by other processors. This explicit exchange using
MPI communication calls implicitly accomplishes the
process synchronization required. The rest of the pro-
gram is left unchanged from the sequential version.

4 Results

The distributed memory code using MPI was tested
on three different platforms. The first was a network of
SGI 02 workstations. These machines have 180MHz
MIPS R5000 processors with 320MB ram. The sec-
ond platform was a network of Pentium IV worksta-
tions, each with a 1.8 GHz processor and 256MB ram.
Both of these first two platforms have a standard 100
megabit network. The third platform is a cluster of
Pentium IV Xeon processors, each at 2.2 GHz with
2GB of ram. The communication network is Myrinet
2000.

The shared memory code was tested on two differ-
ent platforms. The first platform was an SGI Power
Challenge 10000. This machine is a shared memory
multiprocessor, consisting of 8 MIPS R10000 and 1
GB of ram. The second platform was an SGI Origin
2000. This machine is a shared memory multiproces-
sor, consisting of 16 MIPS R12000 300MHz processors
and 2 GB of ram.

The complexity of the implemented sequential algo-
rithm is O(n?r5). Thus the run times increase rapidly
as the problem size increases. The problem size can
be increased either by scaling the degree of the poly-
nomial matrix n, the size of the matrix r, or both. We
considered only real-life cases in the field of control
theory, where neither the size of the matrix nor the
degree of the polynomial typically exceeds 25. The
figures in this section illustrate the computation times
of a sequential program under various conditions as
well as computation times obtained on the distributed
and shared memory platforms with various numbers
of processors. For comparison of the platforms, the
sequential run times for the largest problem size are
provided in Table 1.

4.1 Distributed Memory Implementation

The results obtained on the distributed memory
platforms were not as expected. On the first two

Platform Sequential Time (sec)
SGI 02 NOW 2645.30
P IV NOW 29.99
P IV Cluster 18.75
SGI Power Challenge 913.99
SGI Origin 2000 552.95

Table 1: Sequential run times for different platforms
(n =25, r=25).

platforms, the algorithm provided some speedup on
two processors for all problem sizes. However, when
more processors were added, speedup was obtained
only on the larger problem sizes, and the efficiency de-
creased drastically. On the third platform we obtained
speedup across all processors, but the efficiency was
poor for more than two processors. The efficiency of
the parallel algorithm on the third distributed memory
platform is shown in Table 2.

Processors 2 4 8
Efficiency | 89.6% | 68.8% | 49.7%

Table 2: Efficiency, P IV cluster (n = 25, r = 25).

4.2 Shared Memory Implementation

The results obtained on both shared memory plat-
forms were outstanding. Figure 2 represents the aver-
age computation times (in seconds) on the first shared
memory platform for the case when the degree of the
polynomial matrix was fixed (n = 10) and the matrix
size was varied from r = 2 to r = 25. As we saw
earlier, the algorithm is O(n2r%). Figure 3 provides
a computation-time surface showing how the changes
of problem size (n and r) on 8 processors cause the
computation time to increase drastically.

Table 3 presents the average efficiency of our algo-
rithm for n = 25 and r = 25 on both shared memory
platforms.

5 Conclusions and Future Work

The results obtained reflect the major difference be-
tween shared and distributed memory environments.
Excellent performance in the shared memory environ-
ment shows that an efficient parallel algorithm can be

160

140 - -
—&— Sequential

—@— 2 processors
] 4 processors
100 4 —w— 6 processors
8 processors

120

80+

Run time (sec)

60
40 4

204

Size of the matrixrxr

Figure 2: Run times, SGI Power Challenge (n = 10, r
is varied).

Processors 2 3 4
SGI Power Challenge | 99.65% | 98.4% | 98.2
SGI Origin 2000 99.9% | 101.0% | 98.7%
5 6 7 8 16
98.2% | 97.9% | 97.9% | 95.8% n/a
100.5% | 99.0% | 98.7% | 98.2% | 93.8%

Table 3: Efficiency, shared memory platforms (n = 25,
r = 25).

designed for the highly data intensive problem of poly-
nomial matrix inversion. These excellent results are
due to the fact that communication and exchange of
data were handled in the hardware in the fast shared
memory implementation on the SGIs. In the case of
a distributed memory environment, however, the de-
pendencies of the original algorithm required transfer
of large amounts of data between processors after each
iteration, thus emphasizing the weaknesses of that en-
vironment and leading to a minimal speedup.

In the distributed memory environment, three plat-
forms were used. Even with faster CPUs and faster
networks, the efficiency did not improve much. These
poor results were due to the fact that the communica-
tion costs far outweighed the performance gain of mul-
tiple processors. Because the problem sizes were lim-
ited to real-life applications, data sets of much larger

Run time (sec)

Figure 3: Run times, SGI Power Challenge, 8 proces-
sors, varied n and r.

sizes were not considered.

In the shared memory environment, near linear
speedup was achieved on both platforms as can be
seen in Table 3. This speedup means that the algo-
rithm can take full advantage of the distributed com-
puting power in the shared memory environment as
the size of the problem increases. This great speedup
can be attributed to the high degree of parallelism we
were able to extract from the original algorithm as well
as to the elimination of the need for the program to
perform the communication explicitly. The efficiency
over 100% on the Origin 2000 can be attributed to the
architecture design where the processors are 2 CPUs
to a card and the cache is 8 MB per CPU. This design
allows the cache for each CPU to be used by either
processor on the card, and allows one CPU to use the
cache of both when the other CPU is idle. The NUMA
memory architecture, which is tightly coupled to the
CPU cards, also contributes to the behavior.

We have presented a parallel algorithm for com-
puting the inverses of polynomial matrices. We have
performed an exhaustive search of all available algo-
rithms for polynomial matrix inversion and based our
parallel algorithm on the method proposed in [24]. We
have implemented the sequential version as well as two
parallel versions. Based on the shared memory imple-
mentation results, we conclude that this new parallel
algorithm is very efficient but should not be used on
a distributed memory environment for small problem

sizes.

We see this work continuing in a variety of different
ways. First, there is an algorithm for inverting multi-
variable polynomial matrices [2] that has never been
parallelized. Second, we anticipate evaluating the dis-
tributed memory implementation in order to minimize
message passing, thus improving performance. Third,
larger problem sizes may also be considered in order
to determine when the computation time overtakes the
communication overhead.

References

[1] A. Brameller, M. N. John, and N. R. Scott. Prac-
tical Diakoptics for Electrical Networks. Chapman
and Hall, London, England, 1969.

[2] Bulent Ozgiiler and Ozay Hiiseyin. On the
inversion of multidimensional polynomial matri-
ces. IEEE Trans. on Circuits and Systems, CAS-
27(2):224-226, March 1980.

[3] F. R. Chang, L. S. Shieh, and B. C. Mc In-
nis. Inverse of polynomial matrices in the irre-
ducible form. IEEE Trans. Automat. Control, AC-
32(6):507-509, June 1987.

[4] T. Downs. On the inversion of a matrix of rational
functions. Linear algebra and its applications, 4:1—
10, November 1971.

[5] T. Downs. On the reduction and inversion of the
nodal admittance matrix in rational form. IEEFE
Trans. Clircuits Systems, 21:592-597, November
1974.

[6] T. Downs, E. Emre, O. Hiiseyin, and K. Abdullah.
Comments on “On the inversion of rational matri-
ces”. IEEFE Trans. Circuits Systems., 22:375-376,
April 1975.

[7] E. Emre, K. Abdullah, and O. Hiiseyin. A new
algorithm for the inversion of rational matrices.
Archiv fir Elektronik und Ubertragungstechnik,
28:461-464, 1975.

[8] E. Emre and O. Hiiseyin. Generalization of Lever-
rier’s algorithm to polynomial matrices of arbitrary
degree. IEEE Trans. Automat. Control, 20:136,
1975.

[9] E. Emre, O. Hiiseyin, and K. Abdullah. On the
inversion of rational matrices. IEEE Trans. Circuts
Systems, 21:8-10, 1974.

[10] M.S. Fadali. Stability testing for systems with
polynomial uncertainty. In Proc. 2002-ACC, May
2002. To appear.

[11] D. K. Faddeev and I. S. Sominskii. Sbhornik zadach
po vysshei algebre. Moscow: Gostekhizdat, 2"? edi-
tion, 1949.

[12] G. Fragulis, B. G. Mertzios, and A. I. G. Vardu-
lakis. Computation of the inverse of a polynomial
matrix and evaluation of its Laurent expansion.
Int. J. Control, 53(2):431-443, 1991.

[13] IM. Horowitz. Quantitative Feedback Theory
(QFT). QFT Publications, Boulder, CO, 1992.
[14] Y. Inouye. An algorithm for inverting polynomial
matrices. Int. J. Control, 30(6):989-999, 1979.
[15] T. Kailath. Linear Systems. Prentice-Hall, Inc,

1980.

[16] E. H. Keonig, Y. Tokad, and H. K. Kesavan. Anal-
ysis of Discrete Physical Systems. McGraw-Hill,
New York, 1967.

[17] R. L. Kosut. The determination of the system
transfer function matrix for flight control systems.
IEEE Trans. Automat. Control, AC-13:214, April
1968.

[18] U. J. J. Leverrier. Sur les variationes séculaire des
élementes des orbites pour les sept planétes princi-
pales. Journal de Mathématique, 5(série 1):230 ff,
1840.

[19] C. A. Lin and T. F. Hsieh. Decoupling con-
troller design for linear multivariable plants. IEEE
Trans., 36:485—489, 1991.

[20] C. A. Lin, C. W. Yang, and T. F. Hsieh. Inversion
of polynomial matrices. Systems & Control Letters,
27:47-54, 1996.

[21] J. M. Maciejowski. Multivariable Feedback De-
sign. Addison-Wesley, Reading, MA, 1989.

[22] N. Munro and V. Zakia. Inversion of rational
polynomial matrices. Flectronic Lett., 6(19):629—
630, 17th Sept. 1970.

[23] O. T. Num, Y. Ohta, and T. Matsumoto. Inver-
sion of rational matrices by using FFT algorithm.
Trans. IECE Japan, E-61:732-733, 1978.

[24] M. Buslowicz. Inversion of polynomial matrices.
Int. J. Control, 33(5):977-984, 1980.

[25] R.V. Patel and N. Munro. Multivariable system
theory and design. Pergamon Press, Oxford, 1982.

[26] H. H. Rosenbrock. State-space and Multivariable
Theory. Nelson, London, 2"¢ edition, 1970.

[27] H.H. Rosenbrock. Computer Aided Control Sys-
tem Design. Academic Press, London, 1974.

[28] A. Shuster and P. Hippe. Inversion of polynomial
matrices by interpolation. IEEE Trans. Automat.
Control, 37:363-365, 1992.

[29] W.A. Wolowich. Linear multivariable systems.
Springer-Verlag, 1974.

[30] S. Y. Zhang. Inversion of polynomial matrices by
interpolation. Int. J. control., 46:33-37, 1987.

