
Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003 Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

1

GRAPHICAL PROGRAMMING: A VEHICLE FOR TEACHING COMPUTER
PROBLEM SOLVING

Brian T. Westphal1, Frederick C. Harris, Jr.2, and M. Sami Fadali 3

1 Brian T. Westphal, University of Nevada, Reno, Department of Computer Science, Reno, NV 89557, westphal@cs.unr.edu
2 Frederick C. Harris, Jr., University of Nevada, Reno, Department of Computer Science, Reno, NV 89557, fredh@cs.unr.edu
3 M. Sami Fadali, University of Nevada, Reno, Department of Electrical Engineering, Reno, NV 89557, fadali@ieee.org

Abstract - Translating from a problem description given in a
natural language to a solution expressed in a programming
language requires many complex steps. Though many of
these steps can be done mentally for simple problems, the
process itself is important when dealing with complicated
software. Expressing the process demonstrates not only the
complexity of solving a particular problem but also the
inherent difficulties in forcing beginners to jump from a
problem description to a solution. Our experiences show
that using LabVIEW and Alice as graphical foundations,
with several carefully designed examples, may help students
more quickly learn the process involved in computer-based
problem solving than they would with traditional techniques.

Index Terms – graphical programming, problem solving,
CS1

INTRODUCTION

Introductory programming courses are typically designed to
teach programming using a particular programming
language. Assuming that some process skills will be picked
up along the way, many instructors emphasize objects-first
or syntax-first approaches in their instruction. These
methods are good in that they require students to hit the
ground running forcing them rapidly to start coding
solutions to simple problems. However, with introductory
course retention rates not as high as we would like in our
department, it is clear that such an approach is
overwhelming for many students.

It is generally not until much later that students begin to
formally learn about the process of software design. In fact,
capstone courses (such as Software Engineering, which
leads into a Senior Projects course) tend to provide the only
real emphasis on processes for software design and
organization in an undergraduate computer science student’s
training. Currently at the University of Nevada, all College
of Engineering students (including computer science,
electrical, mechanical, and civil engineering students) are
required to take the first level of introductory computer
science.
 For many of these students, dealing with the syntax and
details of a programming language is a major obstacle to
learning computer problem solving. Many or most of the
students who take the introductory computer science course
are not going to use the language used in the course in their
future work but will instead program using software

packages such as MATLAB™ or MAPLE™. For these
students, teaching the process of solving problems using a
computer is far more important than teaching a specific
programming language. Hence, it is essential to teach
students to transition through levels of abstraction to reach
programming as the end result rather than teaching
programming languages and syntax.

The development of graphical programming systems
makes the teaching of the problem solving process even
more important. In 1963 Ivan Sutherland developed
Sketchpad [12], the first computer graphics application, and
a new world of possibilities was opened to computer
programming. It took twelve years for the next significant
breakthrough in graphical programming. Pygmalion [11], as
developed by David Smith, was the first icon-based
programming system. This was the first system that started
taking the shape of modern graphical programming systems.
From 1975 to the present, work has been done in developing
graphical programming systems.

Sequentially, languages such as ARK, VIPR, Prograph,
Forms/3, and Cube [4] each demonstrated different
possibilities for graphical programming languages
Discussions of these and many more can be found in the
Visual Programming Language Bibliography [14]. In the
parallel and distributed programming arena there are several
graphical programming tools that have been developed to
help advance the programming capabilities of those learning
the field. These range from development systems such as
Code from the University of Texas [7], Pablo from the
University of Illinois [9], to systems such as Paralex [2],
Grade [6], and Trapper [10]. Many of these systems used
similar iconic designs, and others incorporated graphs and
connection-based constructs, leading the way for LabVIEW
[3].

Developed in the late 1980s, National Instruments’
Laboratory Virtual Instrument Engineering Workbench
(LabVIEW) was designed to aid the development of
instruments that could be run in software, rather than in
expensive hardware. In this way, the virtual instrument was
born, allowing scientists and engineers to develop solutions
and products quickly using software and a new graphical
programming language – G [3].

At the University of Nevada, Reno we are
experimenting with the use of several graphical
programming systems that teach beginners the process of
solving a problem from beginning to end. In particular, we

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003 Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

2

are using LabVIEW as a means of demonstrating this
process and thereby reducing the overall level of abstraction
needed in solving problems using the computer. We are also
using Carnegie Mellon University’s Alice software, to help
students transition into using a general-purpose
programming language.

The remainder of this paper is outlined as follows:
Levels of Abstraction in teaching are discussed first. An
overview of LabVIEW and Alice, along with some notes on
using them in a classroom comes next. An overview of our
study is presented next followed by our Conclusions and
Future Work.

LEVELS OF ABSTRACTION

In his book, Tremblay says that in terms of current
knowledge and technique, there are at least five levels of
abstraction involved in “expressing algorithms”[13]. These
are:
• natural languages,
• diagrams,
• flowcharts,
• algorithmic languages (pseudo code), and
• programming languages.

These levels have changed little in the past several decades.

Using only one or two of these tools for anything more
than a trivial example often leads to confusion among
students. Consider the following. Students whose native
language is that of the instructor will have the greatest
chances of understanding the basic parts of a particular
lesson. Those that do not share the language may miss
important details, especially in subjects like computer
science where the language is somewhat beyond common
vocabulary. Thus, reinforcing with diagrams will help to fill
in the gaps created by language barriers. Continuing, each
level of abstraction that one can add on top of natural
language will help clarify both details and principals for all
students.

Many instructors make use of a few of the levels of
abstraction by incorporating an amount of pseudo code into
their teaching. Although this is helpful to some students, it is
likely confusing to many others. Students can easily become
misled by the format of pseudo code, trying to use similarly
structured loose syntax in their later programming
assignments. There are several reasons for this. First,
without use of diagrams or flowcharts, it is difficult for
beginners, even with pseudo code, to communicate the flow
of a program. For example, the next instruction to follow
may not always be obvious from reading pseudo code.
Second, without a system for verifying the correctness of a
student’s pseudo code, a student’s difficulties with correctly
expressing algorithms may go unnoticed. This leads to a
trend of students completing their assignments, without
necessarily caring about the correctness of their solutions.

These students are often frustrated as they realize later in the
course that being able to verify the correctness of a solution
is as important as solving the problem.

USING LABVIEW FOR DEMONSTRATING AND
VERIFYING DIAGRAMS AND FLOWCHARTS

Designed with scientists and engineers in mind,
LabVIEW[3] provides a software development package for
graphically constructing virtual instruments (which may
communicate with physical instruments in many cases).
Students and professionals alike can use it as a tool to create
on-screen oscilloscopes, pressure gauges, potentiometers,
and many other simulations or displays for virtual or
physical devices. By making use of a diagram and
flowchart-like interface, components can be placed together
in a black box fashion, demonstrating some degree of
program flow and interconnection through virtual wires.

The diagramming and flowcharting features of
LabVIEW combined with the ability for students and
instructors to run (and therefore verify) their solutions,
provide an excellent foundation for developing the ideas of
diagramming and flowcharting as intermediate steps of
solving problems with computers. By providing a form of
instant feedback, students have an obligation to correct
problems discovered in their algorithms as they work. A
screenshot of LabVIEW can be seen in Figure 1.

FIGURE 1

SCREENSHOT OF LABVIEW SOFTWARE

 Using LabVIEW as a tool, one can demonstrate the
primary concepts of solving problems using a computer,
allowing students to transition into using variables, arrays,
loops, and other constructs common to programming
languages. As students become familiar with these concepts
in the graphical world that LabVIEW offers, the instructor
can begin writing ideas using pseudo code. They can start
with pseudo code that is highly similar to natural language

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003 Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

3

and work into pseudo code that looks more like a
programming language (with less explanation for each
instruction or idea).

In our experiences, only a moderate amount of time was
needed to introduce and familiarize a group of students with
LabVIEW, a partial-vocabulary of computing, and several of
the major constructs present in introductory computer
programming courses (variables, arrays, loops, and
conditional expressions). After a ten to twenty-minute
tutorial, students were able to use the essential parts of the
software with a moderate level of proficiency.
 As a major part of the research for this paper, we set out
to observe interactions that might take place in a sample
lesson. Using LabVIEW as a diagramming tool, we chose to
solve the problem of sorting a list of 20 random numbers.
LabVIEW makes the diagramming process for this
straightforward.

On the highest level of diagramming, students can
easily create a system that will:
1. initialize a list of twenty random numbers,
2. sort the list, and
3. display the sorted list on the screen.

Because LabVIEW has many high-level tools such as an
array sorting function, it is useful for this type of high-level
diagramming. This allows students to build their system and
to verify its correctness before moving on with their design.
However, LabVIEW does not allow the instructor to
introduce students to pseudo code. In the next section we
show how this can be accomplished using Alice.

USING ALICE FOR DEMONSTRATING AND
VERIFYING PSEUDO CODE

By expanding on the concrete aspects of the graphical
interface of LabVIEW, students are able to continue their
transition as the instructor introduces pseudo code. Because
pseudo code is inherently flexible in its structure, many
students find it easier to work with at first than a
programming language. This is primarily because students,
before gaining some experience, find it difficult to express
algorithms with sufficient detail. For instance, a student has
the ability to say that a list should be sorted but cannot
always describe the sorting process.

Designed and implemented at Carnegie Mellon
University to teach an objects-first approach to computer
programming, Alice [1] allows programmers to use a pseudo
code-like language to build rich three-dimensional worlds,
exploring the excitement of both computer graphics and
computer programming. The language used in Alice is not as
loosely structured as typical pseudo code. In fact, the
language is specific enough that the code can be interpreted
and run, providing a level of instant feedback.

Because Alice makes use of a drag-and-drop style of
programming, it is impossible for students to cause syntax

errors, resolving much of the frustration for beginning
programmers. The language remains in-line with many of
the pseudo code ideals by leaving highly descriptive
instructions and structure within the code. By using Alice as
an intermediate step in learning computer problem solving,
an instructor is able to transition students into reading and
writing source code, allowing students to focus on
developing the logic and program flow rather than worrying
about syntax. Alice allows building blocks to be introduced
so students begin thinking about functions. The Alice
software installation provides an excellent introductory
tutorial that is sufficient to demonstrate the system’s basic
functionality. The tutorial takes approximately twenty to
forty minutes to run. A screenshot of Alice is shown in
Figure 2.

FIGURE 2

SCREENSHOT OF ALICE SOFTWARE

In the sample lesson using Alice, we asked students first
to go through the tutorial (at their own pace) and then to
complete a simple task: “Build a scene with a helicopter and
a lighthouse. Make the helicopter take-off, fly around the
lighthouse, and land near its starting point.” Students worked
in small groups for this assignment and completed it in less
than ten minutes, most continuing to develop their scenes
further. Though this was a simplistic assignment, the level of
excitement allowed students to learn more than the
assignment required. For instance, some students made their
helicopters crash into the lighthouse and had the lighthouse
tip over when it was hit. Though it may seem more like
amusement, these additions involved many more
complicated ideas than the original assignment did.

NOTES ON USING LABVIEW AND ALICE WHILE

TEACHING

There are several less-than-ideal aspects about the LabVIEW
and Alice software packages that need to be pointed out.

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003 Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

4

Using LabVIEW While Teaching

The students that had less experience with computers in
general were slightly slower to pick up certain elements in
the interface design. For example, the concept of connecting
objects on the screen using a virtual wire could be improved
by providing more direction.

In demonstrating loops, the LabVIEW interface is
unclear for new users in visualizing the structure of a loop.
While the overall ability to demonstrate program flow using
LabVIEW is reasonable, the loop figures are ambiguous and
are not readily apparent.

It is important to point out these design flaws to
students, especially those that will be using programming
languages in the future, because program flow is a key part
of developing logical skills for students.

Using Alice While Teaching

Alice is an excellent system for demonstrating pseudo code
development and verification. However, because it is based
on Java, it can be noticeably sluggish at times. There are
currently many bugs in the software that cause it to crash or
cause erroneous video effects from time to time. Other than
being frustrating in these minor ways, with up-to-date
hardware (especially in way of the video card) the software
runs smoothly most of the time.

DEMOGRAPHICS, SURVEY, AND INTERACTIONS

This research study was conducted with a small sample of
students at the University of Nevada, Reno. Because we
have had so many students enroll in our CS I courses over
the years we have a good understanding of what the typical
student’s attitudes were, so we did not feel the need to
conduct this study with a control group.

Along with a sample lesson using the tools that have
been proposed above, the study also included a short pre and
post-survey designed to record students’ perceptions of the
ideas presented in the study. Figures 3 and 4 represent the
survey that was conducted both before and after the sample
lesson. Following are highlights from the survey and study
interactions.

Our first set of students was selected at random from the
hall in the College of Engineering. This group was
composed of typical students who had been in Computer
Science I. We were surprised to find that the students were
more enthusiastic toward working with the LabVIEW and
Alice software (this is especially the case for Alice) than
originally anticipated. Several of the students requested that
the software be left on the systems after our sessions so that
they could continue to experiment with them. On a scale
from 0 to 10 (10 being the most enjoying), students rated the
lesson 8.89. The instant feedback and increased use of
senses (including audio in the case of Alice) may have

contributed to this enjoyment rating. This level of
enthusiasm, even over the short term of a single lesson,
demonstrates the level of enthusiasm that students may be
expected to have during a semester.

Many of the students made these or similar remarks,
demonstrating their enthusiasm towards the lesson: “It
opened my eyes in terms of approaching programming
problems and seems like it is a much better method to teach
CS I”, “I like your ideas for changing the CS teaching
methods”, and “my interest has gone up.”

The second group of students that was selected was a
lab section of students currently in a Computer Science I
course. These students were given the same lesson format as
the first group, and the results were amazingly similar. It is
significant to note that all of the students in both groups
stated that this type of learning (either as a pre-cursor to a
Computer Science I type course, or as a replacement) would
be highly beneficial in the overall learning experience for an
engineering student.

1. Age __________________
2. Major __________________
3. Minor __________________
4. Have you taken CS201 (or equivalent) before? YES NO
5. If yes, rate the level of difficulty involved in initially jumping into programming (i.e. how difficult
was it to start with), 0-10 (10 is the hardest): __________________
6. If no, please give the primary reason for which you have not taken CS201.
__
7. Have you heard, from other people, that CS201 is a difficult course? YES NO
8. Rate your level of experience with general computer use, 0-10 (10 being very experienced):

The next two questions are optional but will help correlate the level of difficulty of CS201 across all

levels of students.
9. Optional, if you have taken CS201, what grade did you receive? __________________
10. Optional, what is your current overall GPA? __________________
11. As an engineering student (if applicable), rate your abilities towards general problem solving, 0-
10 (10 being an expert problem solver): __________________
12. As an engineering student (if applicable), rate your abilities towards computer-based problem
solving, including your abilities to find and correct problems with computer hardware and/or
software, as well as to solve problems that require some level of computer programming, 0-10 (10
being an expert problem solver): __________________
13. If possible (if you do not know what is meant by any of the following phrases, please skip the part
of the question), rate the differences you perceive in the following, 0-10 (10 being highly different):
 a. natural language (spoken or written) vs programming language __________________

b. natural language vs diagrams __________________
 c. natural language vs pseudo code __________________
 d. diagrams vs pseudo code __________________
 e. pseudo code vs programming language __________________

FIGURE 3

SURVEY PART I – GIVEN BEFORE THE SAMPLE LESSON

1. Rate your level of enjoyment for the session today, 0-10 (10 being highly enjoyable):

2. Have any of your perceptions of computer science changed?
__
3. If possible (if you do not know what is meant by any of the following phrases, please skip the part
of the question), rate the differences you perceive in the following, 0-10 (10 being highly different):
 a. natural language (spoken or written) vs programming language __________________

b. natural language vs diagrams __________________
 c. natural language vs pseudo code __________________
 d. diagrams vs pseudo code __________________
 e. pseudo code vs programming language __________________
4. If you have not already taken CS201, do you feel less anxiety for taking it after this session?

FIGURE 4

SURVEY PART II – GIVEN AFTER THE SAMPLE LESSON

Session

0-7803-7444-4/03/$17.00 © 2003 IEEE November 5-8, 2003 Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

5

CONCLUSIONS

LabVIEW and Alice provide excellent tools to be used as
stepping-stones in teaching an introductory computer
programming and/or computer-based problem-solving
course. Though these systems are not perfect tools, they are
powerful and exciting to use. Students enjoy using them and,
as a result, may continue to learn above and beyond the
requirements of the classroom and/or lab.

Instructors of beginning computer science classes need
to develop a plan to allow students to transition into
computer programming, by focusing on computer-based
problem solving. LabVIEW provides the fundamental
support for diagramming and flowcharting that an instructor
can use to ensure that at each stage in the solution design
process, a student is working along the right lines. Unlike
the traditional methods of working with diagrams on paper
or not requiring diagrams at all, LabVIEW allows students
to verify their work as they continue, keeping the motivation
to solve the problem correctly.

As an exciting and dynamic tool for the design of
graphical worlds, Alice helps ease students into
programming by providing a syntax-error-free environment
in which students can work to develop and verify in-depth
pseudo-code-like solutions. This helps to lead the transition
into programming languages, as instructors begin to explain
the differences between pseudo code and actual code.

We look forward to bringing these graphical
programming tools into use at the beginning of the semester
in a CS I course. Our preliminary results have shown that
they should be very beneficial to enhancing the student’s
comprehension. These types of tools should help stimulate
students that are typically uninterested in a traditional
programming course due to the fact that they feel it is not
essential to their job. They will also allow the students to
learn how to start the problem solving that they will need on
the job, no matter what their major.

ACKNOWLEDGMENT

We would like to give special thanks to the instructors and
students that participated in this research study.

REFERENCES

[1] “Alice: Free, Easy, Interactive 3D Graphics for the WWW”, Retrieved
March 10, 2003, from http://www.alice.org/.

[2] Babaoglu, O., Alvisi, L., Amoroso, A., Davoli, R., Giachini, L. A.,

“Paralex: An Environment for Parallel Programming in Distributed
Systems”, Proceedings of the ACM international Conference on
Supercomputing, July, 1992.

[3] Bishop, R. H., LabVIEW Student Edition 6i, Prentice Hall, Upper

Saddle River, NJ, 2001.

[4] Boshernitsan, M., Downes, M., “Visual Programming Languages: A

Survey”, Retrieved March 14, 2003, from
http://www.cs.berkeley.edu/~maratb/cs263/paper/paper.html

[5] Cunningham, S., Shiflet, A. B., “Computer Graphics in Undergraduate

Computational Science Education”, SIGCSE Technical Symposium on
Computer Science Education, pp. 372-375, ACM Press, Reno, NV,
2003.

[6] Kacsuk, P., et al., "A Graphical Development and Debugging

Environment for Parallel Programs”, Parallel Computing, Vol. 22, pp.
1747-1770, 1997.

[7] Newton, P., Browne, J.C., “The CODE 2.0 Graphical Parallel

Programming Language”, Proceedings of the ACM International
Conference on Supercomputing, July, 1992.

[8] Pausch, R., et al., “A Brief Architectural Overview of Alice, a Rapid

Prototyping System for Virtual Reality”, IEEE Computer Graphics
and Applications, 1995.

[9] Reed, D. A., Aydt, R. A., Madhyastha, T. M., Noe, R. J., Shields,

K.A., et al. “An overview of the Pablo performance analysis
environment”, Technical report, University of Illinois, Urbana, Illinois
61801, November 1992.

[10] Scheidler, C., Schafers, L., “TRAPPER: A Graphical Programming

Environment for Industrial High-Performance Applications”,
Proceedings of PARLE'93: Parallel Architectures and Languages
Europe, Munich, Germany, 1993.

[11] Smith, D. C., “PYGMALION: A Creative Programming

Environment”, Ph.D. dissertation, Stanford University, 1975.

[12] Sutherland, I. E., “SKETCHPAD, A Man-Machine Graphical

Communication System”, Proceedings of the Spring Joint Computer
Conference, pp. 329-346, Spartan Books, Baltimore, MD, 1963.

[13] Tremblay, J. P., “Algorithms”, Introduction to Computer Science: An

Algorithmic Approach, pp. 18-23, McGraw-Hill, 1989.

[14] “Visual Programming Languages Bibliography”, Retrieved March 31,

2003, from http://cs.oregonstate.edu/~burnett/vpl.html

