
Software Specification of MERTIS: Modifiable,
Extensible Real-Time Interactive Simulation System

Frederick C. Harris, Jr., Leandro Basallo, Ryan Leigh, Regan Snyder, and Sam Talaie

Department of Computer Science and Engineering

University of Nevada,
Reno, NV 89557

{fredh, lbasallo, leigh, rsnyder, talaie}@cs.unr.edu

Abstract

Game and simulation development is a
difficult process because there are many low
level infrastructure concerns that need to be
addressed. This is a barrier to development
for inexperienced programmers and
distracts from pure game (and simulation)
design. MERTIS seeks to ease the
development process by reducing the design
to the important elements, removing
software design from the simulation design.
This is achieved by using an extensible
scripting engine that allows all elements of a
simulation to be specified outside the
operation of the program and dynamically
loaded at run-time. The only foreseen
limitation at this time is that the graphics
used in the script will be two-dimensional.
This paper outlines the motivation for, and
the development of, MERTIS. It further
discusses the specific requirements,
functional and non-functional, with the aid
of the Unified Modeling Language (UML).

Keywords: Software specifications, UML,
Modifiable, Extensible, Real-Time,
Interactive, Simulation.

1. Introduction

MERTIS (Modifiable Extensible Real-
Time Interactive Simulation) is a software
system that will allow the user to design a
simulation based on its 2D engine. The user
will be able to create these simulations by

writing simple XML script files [8] rather
than writing full-scale programs.

What this means is that a MERTIS user
does not have to be an experienced
programmer who has prior knowledge of
developing graphical simulations and
games. If a programmer were to create a
game from scratch, development would
begin at a very basic level before any actual
simulation development took place. A
graphics engine must be created for
rendering. Algorithms such as artificial
intelligence and simulated physics must be
implemented from scratch as well.
Furthermore, this implies that the user must
have strong high-level programming skills.
When creating a game from scratch, the user
must be very familiar with programming
tools and techniques, while keeping in mind
the speed and efficiency of the program.

MERTIS is a tool that will allow the
development of games and simulations as
quickly as possible and as easily as possible.
The users can focus on game design and
development, without concerning them-
selves with the issues of programming an
entire game from scratch. MERTIS is
designed to handle all those issues
internally, and it serves as a palette for
design and creativity, rather than a palette
for technical skill and knowledge.

This paper presents MERTIS and
describes its requirements via the use of the
Unified Modeling Language (UML) through
use case specification. UML is an open,
extensible industry standard visual modeling

language that establishes the notation for
specification, design, and documentation of
component based software systems [1].

We have organized the remainder of the
paper according to the following sections:
Section 2 presents general description of the
software, Section 3 lists the functional and
non-functional requirements, Section 4
includes the Use Case model, Section 5
displays the class diagram and finally,
Section 6 covers the conclusion and future
expansions of MERTIS.

2. General Description

MERTIS is a software application that
runs 2D simulations defined by simple script
files rather than full programs. MERTIS
was designed so that users could create
games without having to deal with the
burden of most of the lower-level aspects of
programming. The scripts that users will
create are simple enough so that simulations
can be created with little effort and basic
programming knowledge, yet they will still
have the power to define any aspect of the
simulation.

The scripts allow the user to define
objects, their behavior, as well as their
interaction with other objects and the
environment. The dynamic behavior of
objects may be user defined with Lua code.
According to [3], Lua is a lightweight
programming language designed for
extending programs.

Aside from Lua, other third party
technologies are employed in MERTIS
including OpenGL [4] and QT [5]. QT is
used primarily for windowing and parsing of
the script files while OpenGL is used for
rendering the graphics. The key feature
offered by these two technologies is that
they are platform independent. This feature
will make MERTIS available to a wider
range of users, thus enabling the creation of

simulations and games that are also platform
independent.

The focus of MERTIS is gaming, so
several higher-level built in functions and
attributes for MERTIS developers will be
included. This is to even further simplify
game development by providing a simple
MERTIS Application Program Interface
(API). With built in functions and
attributes, the user can invoke common
events, access environment variables, and
object properties. Users will also be able to
map keys to objects and define functions for
specific keys.

3. Requirements Specification

MERTIS will offer a relatively easy
scripting language and a user friendly
interface for loading those scripts. The
Functional Requirements list the behavior of
the system; while the Non-functional
Requirements lists a number of specific
properties the software should have [1].

3.1 Functional Requirements

MERTIS will be completed over several
stages. These requirements provide a good
overall picture of what MERTIS will look
like and the functionality it will provide.
For traceability during the software
development process each functional
requirement has a number and is denoted
using the format <R#>.

R1 MERTIS shall read in a script file in

order to load a simulation.
R2 MERTIS shall be able to create

sprites.
R3 MERTIS shall be able to create and

modify a 2D environment that will
contain various user defined objects.

R4 MERTIS shall load images for skins
of objects and images for textures.

R5 MERTIS shall run event-driven
simulations.

R6 MERTIS shall allow the user to bind
keyboard and mouse interaction with
simulation events.

R7 Every object shall have a default (idle)
event.

R8 Objects shall interact with each other
(clip).

R9 Objects shall have alpha blending.
R10 Objects shall have a clipping mask.
R11 MERTIS shall validate XML files.
R12 MERTIS scripts shall be extensible.
R13 MERTIS shall have a manual.
R14 MERTIS shall display the contents of

the script file in a hierarchical tree
structure.

R15 MERTIS shall provide a means of
pausing and restarting a simulation.

R16 MERTIS shall have audio playback
for music and sound effects.

R17 MERTIS can be restarted at any time
R18 MERTIS shall cleanly exit at any time

3.2 Non-functional Requirements

The non-functional requirements for
MERTIS describe many of the technologies
that will be used in its development as well
as some system constraints. Following is
the list of these requirements, denoted using
the format <T#>:

T1 MERTIS shall operate at 30 frames
per second (fps) by default.

T2 MERTIS shall support 32-bit color
palette (true color).

T3 MERTIS shall use OpenGL to render
graphics.

T4 MERTIS shall use XML for saving
and loading simulation data.

T5 MERTIS shall run in the Windows
2000 and Windows XP operating
systems.

T6 MERTIS shall use a 2D graphics
engine.

T7 MERTIS shall be able load BMP,
TIFF, and PPM file formats for
graphics.

T8 MERTIS shall use QT for
Windowing.

T9 MERTIS shall use QT for XML
parsing.

T10 MERTIS shall perform in real-time.
T11 MERTIS needs an input device.
T12 MERTIS shall be implemented in

C++.
T13 MERTIS shall use Lua for event

handling.
T14 MERTIS should be able to load JPEG,

and GIF file formats for graphics.
T15 MERTIS shall load MIDI, WAV file

formats for sound effects and music.
T16 MERTIS should load MP3 file

formats for sound effects and music.

4. UML Specification

Based on the guidelines presented in [1],
system boundaries, actors, and use cases
have been elicited to further supplement the
system requirements. Furthermore, use case
scenarios have been defined for the more
complex use cases in order to demonstrate a
specific path through the use case.

4.1 Use Cases and Scenarios

Use cases are a way of expanding the
functional requirements. They describe a
relationship between actors and the system.
In our project, we have two actors: the user
and time. The Use Case Diagram depicting
these interactions for MERTIS is shown in
Figure 1.

Due to space limitations we present only
two examples of use cases and two sample
scenarios. The detailed use cases describe
how either the user’s interaction with the
system or time’s involvement with the
system begins a certain flow of events. The
scenarios are one path through the use case,
and in these scenarios, are the primary flow
of events in which no exceptions or errors
occur.

Figure 1: MERTIS Use Case Diagram

In Figure 2 we see what happens when

the user chooses to load a script file. Figure
3 shows the flow of events of the system
checking for collisions. Figure 4 presents
the actions performed when updating the
objects, and in Figure 5 we can observe
what happens when the system determines
there is a collision. These are just a sample
of the many use cases we developed for
MERTIS, and hope they have provided an
overview for the remaining use cases.

4.2 Class Diagram

In Figure 6 we find an analysis-level
class diagram showing a high-level
representation of the system architecture. It
shows the abstraction of the various parts of
the system along with most of their essential

Use case: Load Script File
ID: UC1
Actors:
User
Brief Description:
Allows user to select an XML file to open. Then
opens the XML document for parsing and
performs validation and verification processes.
Preconditions:

1. No simulation is currently running.
Flow of Events:

1. User chooses to open script from menu
item or by directly pressing the open
script button on the toolbar.

2. Open dialog box opens
3. User browses directories until desired

file is found.
4. User chooses to open the file.
5. File is opened and sent to QT’s XML

parser.
6. Parser validates script file and either

6.1 Display error
6.2 Generate tree

Postconditions:
1. Based on the validity of the script file

1.1 An error dialog has been
presented to the user

1.2 The structure of the script file
has been loaded into a
hierarchical tree

Figure 2: Use Case: Load Script File

attributes, operations, relationships, and
multiplicity.

5 Future Extensions

There are numerous possible extensions
that could further enhance the usability and
capabilities of MERTIS. Specifically, some
of these enhancements include:
• The support of various types of sound

clips (MP3, WAV, etc.) for different
states of objects or different events.
Events may include collision detection
or user inputs.

Use case: Collision Detection
ID: UC11
Actors:
Time
Brief Description:
It performs an AND operation on collision
masks to check for collisions.
Preconditions:
1. All objects have been updated
Flow of Events:
1. While (Objects haven't been checked)

1.1. Choose an object
1.2. Using Quadtree, select near by objects
1.3. For each nearby object

1.3.1. Get first object's collision mask
and near-by object's collision mask

1.3.2. If masks overlap
1.3.2.1. Find sub region
1.3.2.2. Perform AND operation on

each pixel in subregion
1.3.2.3. If a one is returned, then

send "Collision event" to
both objects

1.3.3. Mark objects having been
checked

Postconditions:
All objects that have collided have received a
"Collision" event

Figure 3: Use Case: Collision Detection

• An optimized resource handler [2] for

better management of objects in
memory. As the number of objects
and the complexity of the simulations
increase so does the need for this
optimization.

• An integrated development
environment for creating and editing
script files. This feature will provide
the users with the ability to edit the
script files while simultaneously
viewing the dynamically updated
object hierarchy tree.

• Visual simulation editor for drag and
drop of objects into the environment.
This would provide a means of
creating the script file without
manually typing it in.

Scenario for use case: Update Objects
ID: UC15
Actors:
Time
Brief Description:
Updates the internal states and attributes of each
object.
Preconditions:
1. Objects have events that need to be

processed
Primary Scenario:
1. Process all waiting events from previous

turn
2. Process AI subroutines
3. Update objects variables

3.1. Change Location
3.2. Change Velocity and Acceleration
3.3. Change Image
3.4. Change other variables

4. Check object condition and rules
5. Send necessary events
Secondary Scenarios:
Destroy Object
Create Object
Postconditions:
All objects reflect changes

Figure 4: Primary Scenario for Use Case:
Update Objects

• Support for object inheritance.

Providing the user with a library of
objects that can be reused and
extended, in effect, creates an API for
the user.

• A library of Lua code for convenient
reuse of common utilities and
functions.

• Cross-platform compatibility so more
users can create and run MERTIS
simulations.

6 Conclusions

In this paper, we have presented the
specification of MERTIS, a system intended
to reduce the complexity of software
involvement in writing games and
simulations. It achieves this by removing

Scenario for use case: Collision Detection
ID: UC11
Actors:
Time
Brief Description:
It performs an AND operation on collision
masks to check for collisions.
Preconditions:
1. All objects have been updated
Primary Scenario:
1. An object is chosen.
2. Nearby objects are chosen using the

Quadtree.
3. The first nearby object’s collision mask

overlaps with the current object’s collision
mask.

4. An event is sent to the event handler,
signifying a collision.

Postconditions:
All objects that have collided have received a
"Collision" event

Figure 5: Primary Scenario for Use Case:

Collision Detection

the responsibilities of texture mapping,
collision detection [6, 7] , physics, and other
such complicated aspects of game
development from the user. In order to
ensure a well designed system we have
adhered to the notations and techniques
defined by the UML standard.

The analysis model of this system has
been organized according to the Unified
Process to ensure a rigorous development of
the software. After the basic functionality of
MERTIS is implemented, further improving
the system according the extensions
previously discussed will provide an
invaluable tool that programmers of all
experience will appreciate and find very
useful.

Acknowledgement

We would like to sincerely thank Dr. Sergiu
Dascalu for his exceptional support and
encouragement. We would also like to
acknowledge the University of Nevada, Reno
and its Computer Science and Engineering
Department for providing us with a fantastic
place to learn and work.

References

[1] Arlow, J. and I. Neustadt, UML and the

Unified Process: Practical Object-Oriented
Analysis & Design, Addison-Wesley, 2002.

[2] Llopis, Noel. C++ for Game Programmers.
Hingham, Massachusetts: Charles River
Media, Inc., 2003.

[3] Matheson, Ash. GameDev.net - An
Introduction to Lua. 30 Apr. 2003.
Gamedev.net. 22 Feb. 2004
<http://www.gamedev.net/reference/articles/
article1932.asp>.

[4] OpenGL Documentation. OpenGL.org. 14
Sept. 2003 <http://www.opengl.org/
documentation/index.html>.

[5] QT Reference Documentation. Trolltech Inc.
15 Feb. 2004 <http://doc.trolltech.com/3.3/
index.html>.

[6] Roberts, Dave. SP95: Collision Detection.
1995. Dr. Dobb's Journal. 22 Feb. 2004
<http://www.ddj.com/documents/s=983/ddj
9513a/>.

[7] TANSTAAFL, GameDev.net - Collision
Detection Algorithm. 17 Sept. 1999.
Gamedev.net. 22 Feb. 2004
<http://www.gamedev.net/reference/articles/
article754.asp>.

[8] XML Programming. Dev Shed. 21 Jan. 2004
<http://www.devshed.com/c/b/XML/>.

Figure 6: MERTIS Analysis Level Class Diagram

