
Modeling Aspects of the Dynasty 3-D Game

Frederick C. Harris, Jr., Brent Devaney,
John Kenyon, Charles Robertson, Tchad Rogers

Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557
{fredh, devaney, kenyon, robertso, trogers}@cs.unr.edu

Abstract

This paper presents the motivation as well as
the development for Dynasty, a 3-D game.
Dynasty is a multiplayer 3D first person
shooter game that is based in Ancient China.
Players compete against each other to collect
the majority of chi (energy) in the world and
restore it to order. This document also
discusses the Software Requirements
Specification and Design documents used to
develop Dynasty. The specifications were
created using the Unified Modeling
Language (UML). The implementation of
Dynasty followed a variation of the Unified
Process (UP).

Keywords: UML, UP, 3-D game,
requirements specification, use cases, class
diagram.

1 Introduction

 Dynasty is a multiplayer, 3-D, first person
shooter game. Dynasty was loosely inspired
by Bullfrog Production’s 1996 game Magic
Carpet. Dynasty is not just a clone of Magic
Carpet but is an evolutionary step from its
predecessor. Dynasty will be emphasized as
a multiplayer game; the interactions between
players and the world is the most important
part of our system. Emphasis will be placed
upon the communication between a server
and multiple clients. Due to the limited time

given to implement Dynasty, no single player
option will be given at this time to help us
concentrate on the game aspect of our
program.
 The Application Programming Interfaces
(API) we will be using include: WIN32,
OpenGL, DirectInput, fmod, WinSock 2.1,
and the STL. The Win32 API will be used to
create the main window for the game to run
in. Initially it will also be used to create our
menu system as well, but we hope to create a
unique menu system using OpenGL. Details
of the OpenGL system can be found in [3]
and [6]. OpenGL will be used to display our
world for the client gamers; objects in the
world will either be billboarded or modeled
using MD2 models. DirectInput will be used
to handle client commands for the control of
the character. Fmod will be used to play
music and sound effects. WinSock 2.1 will
be used for the networking side of the game.
We will be using the Unreliable Datagram
Protocol for our data transportation due to its
speed. STL will be used as an easy way to
handle data, especially the vector and string
classes in the STL specifications.
 The novel parts of Dynasty include:
random terrain generation, a reliable client-
server architecture, a multi-layer artificial
intelligence (AI), a predictive physics engine,
and all original models and sounds. The
terrain will be generated based upon a
determined seed that will be sent to all
clients. This is to provide each player with a

unique experience every time they play the
game. The emphasis placed on the
architecture will allow the users to play
without noticing lag (breaks in operations) in
the game. The multi-layer AI is important to
provide users with a reasonable challenge
during the game. A predictive physics
engine will be used on each of the clients to
predict what the server is doing. At set
intervals, the server will make sure each
client is working properly and correcting any
anomalies that appear. We will develop all
original models and sound to further test our
abilities and to avoid any royalty issues that
may come up upon any distribution we may
partake in.
 This paper presents an overview of
Dynasty and the design of Dynasty using the
Unified Modeling Language (UML) [5].
UML is used to specify the use cases,
scenarios, and class diagram. It was helpful
in letting us visualize the design of Dynasty
before implementation.
 We have organized the remainder of the
paper according to the following sections: In
Section 2 we provide a brief overview of
Dynasty. In Section 3 we present the
Requirements Specification. In Section 4 we
have provided the UML specification: use
case diagrams, scenarios, and the class
diagram. In Section 5 we look to the future
and provide some future work for Dynasty.
Finally, in Section 6, we conclude the paper.

2 A brief overview of Dynasty

 Dynasty is a modern 3-D multiplayer
game that is designed to be both simple to
learn and use while simultaneously being
deep and intricate in content. Dynasty is
based on a client-server model, where the
user has the option to easily create their own
Dynasty server, or join a server that is
already up and running. These options, as
well as other settings, are available from the
main-menu, which due to its industry-

standard layout, is very user-friendly and
simply to navigate. This main menu contains
options for Join Game, Create Game,
Options, and Exit. When a server creates a
game, all computers on the Local Area
Network (LAN) will be able to join the game
and begin playing. Play will then continue
until all the monsters in a level are destroyed
or the players decide to quit the game.
 The theme of Dynasty is going to be
Ancient China. We have used [2] for a visual
guide to the models we will be creating for
our game. We will also use [2] for further
ideas for integrating our theme into the game.

3 Requirements

 We have determined the functionality that
we wish to achieve for Dynasty. Our
requirements are separated into three groups:
functional requirements, game requirements,
and non-functional requirements. We have
included the most important requirements
here. The Functional (and Game)
Requirements list the behavior of the system,
while the Non-functional Requirements list a
number of specific properties the software
should have as discussed in [1].

3.1 Functional Requirements

 The functional requirements will provide
Dynasty with a base functionality for the
system. These requirements pertain to user
specific interactions and behaviors. These
are all denoted using the format <R#>.

R01 The system shall render the terrain with

optimizing techniques such as
quadtrees.

R02 The system shall generate the terrain
using a random terrain generator.

R03 The system shall have an object
dedicated to the physics of the game.

R04 The system shall allow a user to exit a
game at any time without disturbing the

game by substituting a bot in their
place.

R05 The system shall provide the user with
a HUD (Heads Up Display) with
information regarding health, chi, radar,
and current spells.

R06 The system shall provide AI for the
monsters and bots.

3.2 Game Requirements

 The game requirements pertain to the
functionality of Dynasty as a game. They
provide constraints on how the system will
interact with the user through the game
world. These are all listed using the format
<G#>.

G01 The radar shall provide the user with

information regarding monster position,
opponent position, and pagoda position.

G02 The player shall choose an element to
follow through the game: earth, water,
fire, metal, or wood.

G03 The player shall use chi to upgrade their
levels.

G04 The player shall respawn 15 seconds
after they are eliminated. They shall
respawn at their pagoda.

3.3 Non-Functional Requirements

 The non-functional requirements place
constraints on how the system will be built.
These are all denoted using the format <N#>.

N01 The system shall be written in C++.
N02 The system shall use a client-server

based communication protocol.
N03 The system shall be created using pure

WIN32 API functions to provide an
optimized interface.

N04 The system shall use OpenGL for the
graphics engine.

N05 The system shall use fmod for the
sound system.

N06 The system shall use Direct Input
(DX8) to manage input from the user.

N07 The system shall use the MD2 format
for the models.

N08 The system shall use the context of
ancient China for the themes associated
with the game.

4 UML Specification

 After laying down the requirements and
specifications for the game, we were able to
complete the UML design. Included are
examples of the use cases and scenarios as
well as an excerpt from our class diagram.

4.1 Use Cases and Scenarios

 Using the UP approach and the UML
notation, we created the use case diagram for
Dynasty. Figure 1 shows the use case
diagram. Figures 2 and 3 are example use
cases. Figures 4 and 5 are two sample
scenarios.

4.2 Class Diagram

 Our class diagram is show in Figure 6.
Due to the extensive span of our class
diagram, it contains only those classes
pertaining directly to the Entity Manager. It
is complete but it gives a good idea about the
complexity of the project.

5 Future Work

 Given the limited amount of time to
complete this project, there are many things
that should be expanded upon before a final
version of this product is made available to
the general public this list includes:

• Greater optimization of data transfer

between clients and server. Support for
multiple screen resolutions.

• Single player campaign

Figure 1: Dynasty: Use Case Diagram

• Changing level of detail support for in
game models and terrains.

• Greater technology tree for leveling and
different character types.

• Varying Artificial Intelligence levels for
computer controlled players.

• Enhanced intelligent behavior for
creatures in the world.

• Additional player and enemy models,
animations, and skins.

• Model and world deformations
• Dynamic and random ground texturing.
• A particle engine for spell and

environmental effects.
• In-game text-messaging.
• An introduction animation.

Use Case: Change Spell

ID: UC13

Actors:
• player
Preconditions:
• The player is logged in to a server
• The player is alive
Flow of Events:
1. The player presses the key bound to

'change spell'
2. The spells in that category appear above

the current spell
3. If the player presses the 'next spell' button

1. The next spell in the list cycles into
the current spell slot

4. If the player presses the 'previous spell'
button
1. The previous spell in the list cycles

back into the current spell slot
5. If the player presses the 'change spell'

button again
1. The selection system disappears, and

the new spell is selected
Postconditions:
• A new spell has been selected

Figure 2: Dynasty: The Change Spell Use

Case

6 Conclusions

 We have presented in this paper a
computer game, named Dynasty, intended to
be a fun and fully featured form of computer
entertainment. What distinguishes Dynasty
from other available computer games is its
unique game play style and setting; and its
open ended game play due to randomly
generated worlds, AI, and multiplayer mode.

Use Case: Join Game

ID: UC01

Actors:
1. Player
2. Server
Preconditions:
1. The player has launched the game
2. A server on the same network is running
Flow of events:
1. The client moves to the 'join game' menu
2. The client broadcasts a request for all

servers
3. All local servers respond, providing IP

addresses and game information
4. The client lists the active servers for the

player to select from
5. The player selects a server from the list
6. The client connects to the specified

server
7. The server adds the player to the game
Postconditions:
1. The player is in the active game

Figure 3: Dynasty: The Join Game Use Case

 Dynasty was created according to a very
structured and planned manner, leading to a
very structured and organized software
package, which could be easily extended in
the future. The main components of Dynasty
at the specification level have been presented
in this document. Possible extensions to
Dynasty as a game and as a software program
have also been outlined in this document. It
is our belief that we have created a fun and
unique game, with fundamental design
concepts and infrastructure that could lead to
a marketable title with some additional
extension to all areas of the game.

Scenario for Use Case: Entity is killed

ID: UC12

Actors:
1. Server
Primary Scenario:
1. The server game logic detects that a

entity has been destroyed
2. The server awards points to the player

who destroyed the entity
3. The server sends all clients a message to

remove that entity from the world
Secondary Scenario:
1. The server game logic detects that an

entity has been destroyed
2. The entity happens to be a player
3. The server awards points for the kill to

the appropriate player
4. The server tells all client to re-spawn the

player at their pagoda

Figure 4: Dynasty: Entity is Killed Scenario

Scenario for Use Case: Promotion

ID: UC14

Actors:

1. Server
2. Client
Primary Scenario:
1. A player gains enough energy to be given

a promotion
2. The server sends to the player's client the

update
3. The server awards applicable spoils to the

player

Figure 5: Dynasty: Promotion Scenario

Figure 6: Dynasty’s Class Diagram

References

[1] J. Arlow & I. Neustadt. UML and the

Unified Process: Practical Object-
Oriented Analysis & Design. Addison-
Wesley: Great Britain. 2002.

[2] K. Buchanan, C. Fitzgerald, & C. Ronan.
China. Crown Publishers Inc.: New
York. 1980.

[3] J. Foley, A. van Dam, S. Feiner, J.
Hughes, & R. Phillips. Introduction to

Computer Graphics. Addison-Wesley:
Reading, MA. 1997

[4] J. Rumbaugh, I. Jacobson, & G. Booch.
The Unified Modeling Language
Reference Manual. Addison-Wesley.
1998.

[5] OMG’s UML Resource Page, available
at: http://www.omg.org/uml/, accessed
April 15, 2004.

[6] OpenGL – High Performance, available
at: http://www.opengl.org/, Accessed
April 15, 2004.

