

Practical Educational Uses of the Open Distributed
Network Monitor (ODNM)

Pedrum Minaie, Jacob W. Kallman, Jason Truppi,

Sergiu M. Dascalu, Frederick C. Harris, Jr.

Department of Computer Science and Engineering
University of Nevada, Reno

Reno, NV, 89557 USA

pminaie@ieee.org, jkallman@unr.nevada.edu, jason@physics.unr.edu,
dascalus@cs.unr.edu, fredh@cs.unr.edu

ABSTRACT

As educational institutions grow in size, network
administrators for both K – 12 and higher education are
finding their resources tapped for other purposes, and
their staff sizes inadequate to meet the demands of ever-
growing networks. The ODNM tool is presented which
will allow system administrators to monitor wide area
networks with both speed and convenience. In addition to
this use of ODNM, teachers can also use the tool to teach
their students about computer networks and network
administration. Because of the basic design goals for
ODNM, the tool is scalable enough to fit a wide range of
higher education and school district-sized needs, as well
as individual or small-scale networks. Presented in this
paper are the use cases, user interface examples, and other
system design elements as well as a basic introduction
into the use of ODNM and future work plans.

Keywords: Network Administration, Network
Monitoring, Distributed Computing, Wide-Area
Networks, Education

1. INTRODUCTION

Educational institutions at all levels in the United States,
from elementary education through higher education, are
seeing their enrollment and class sizes grow at a fast rate.
Additionally, the implementation of new technology has
become a necessity to meet this growth in students.
Students in classrooms of all levels now have access to an
unprecedented array of technology with which to enhance
curriculum. The downside of this effect is that while the
class sizes have grown, and the technology
implementations are growing, the staff needed to maintain
this growing array of technology has not. In many
educational institutions and public school districts, the
ratio of computers to maintenance staff exceeds the ratio
found in private companies by more than 5 times, which
leads to unnecessary downtime, data insecurity, and a
reduction of education quality for students [1]. It

becomes clear that an efficient software solution must be
found to increase the efficiency of time spent for the
administrators of educational networks. To help make
maintenance issues less taxing, we present the Open
Distributed Network Monitor (ODNM), which uses a
distributed model to help network administrators and
maintenance staff get up to the minute snapshots of the
status of their network. ODNM was designed with 3
basic goals in mind:

• Portability – Allow the client software to run on

multiple platforms to allow administrators to monitor
their networks from anywhere using their computers or
PDAs.

• Scalability – Allow the server software to monitor any
size network, from small one-building networks to
large wide-area networks.

• Usability – Allow any type of user to get information
about the network, so that assistants and maintenance
staff can use the software with no troubles.

By following these three goals, the design of ODNM is
one such that a small number of network technicians can
keep networks under supervision even across broad
geographical distances. In this way it is ideal for school
district or cross-campus networks.

Additionally, ODNM can be used as an educational tool
itself. As the IT industry continues to expand, a growing
number of people that are new to the industry are taking
networking classes to jump start their careers. Further,
many students in compulsory education are also taking
more network and technology classes in schools. Many of
these classes introduce students to the fundamentals of
networking, such as the basics of TCP/IP, network
devices, and network mediums. They also teach students
how to pass a specific, networking-related test such as
Microsoft’s MCSE, Cisco’s CCNA, or CompTia’s
Network+[2, 3, 4]. What these classes do not usually
teach students are the basics of network administration.
Students many times leave classes without having the
knowledge of how to use simple network administration

and troubleshooting tools or even know about the
existence of such tools. ODNM can be used in the
classroom to teach students the basics of network
administration by allowing students to get hands-on
experience monitoring networks.

These two distinct uses, one for increasing the
effectiveness of maintenance staff and the other as an
educational tool, are examined in this paper. Section 2
outlines the use cases and other low level design of the
software package. Section 3 presents the high level
design of the software, namely user interface examples
and system output. Section 4 outlines the current state of
development and testing. Section 5 discusses the 3 main
paths of future development. Section 6 concludes the
paper.

2. LOW LEVEL DESIGN

During specification and design, we used the models and
elements outlined in the Unified Modeling Language
(UML) [5, 6], by following the guidelines for the Unified
Process (UP) [7]. UML’s notations of use-cases have
been used in conjunction with both functional and non-
functional requirements to ensure the application’s
specification requirements are verified. UML has also
been used during the design phase for the tool. While
they are not included in the text, the functional and non-
functional requirements are available upon request.
Further, the use cases presented are only partial use cases,
and full use case diagrams are also available.

ODNM is designed to work using a client-server model
for operation. The server side is designed to run without
user interaction, and is configured using a simple text
configuration file, editable by the administrator, which is
read at invocation. It is written using Java and Perl
currently, with future development ideas moving toward a
C/C++ implementation with some limited Java or Perl
scripting. User interaction with the server is kept very
simple, as shown in Figure 1.

As can be seen from this partial use case diagram in
Figure 1, the user has no direct interaction with the server
while it is running. At each time interval, which is a
value set in the configuration file, the server runs a scan
of the machines on the network, then stores the
information in a database. The machines it scans are also
specified by the administrator in the configuration file.
By dividing up the work amongst multiple ODNM Server
machines (machines running the server program) the
administrator can run multiple scans in parallel, thus
distributing the work and saving time. This allows the
scans to be run much more rapidly, giving the
administrators more up-to-date snapshots of network
performance.

On the other hand, the client software is fully user-driven,
and is the way in which an administrator can query the
server while it is running. It is written solely in Java, with
an eye toward interoperability among desktop operating
systems. The idea was to allow administrators to access a
snapshot of their network wherever they may be, even if
they are not near a desktop machine. As shown in Figure
2, the administrator uses the client interface to interact
with the server while it is running to get network
information and display the status of the network.

Figure 1 Server-side Use Case Diagram (partial).

Figure 2 Client-side Use Case Diagram (partial).

Figure 2 shows that the user can query many types of
information for the server while it is running, without
interrupting the essential server functions such as client
connection management, network scanning, and database
updating, which are all run as separate threads of
execution. This is how ODNM can work in a distributed

fashion, while still giving the administrator full network
status information at-a-glance. The client connects to the
top level server in the ODNM hierarchy, which in turn
updates information from each machine it is connected to
in the hierarchy. This means that the administrator only
has to have one connection in the client profile, but can
get the entire network snapshot from that one server. This
is illustrated in Figure 3.

Figure 3 ODNM Server Hierarchy

Figure 3 illustrates how an administrator could set up a
server hierarchy. Machine A would be the root server,
and would therefore maintain the connection to the
outside world with which the client server would connect.
It would scan directly Machines B and C, but not the
machines below them. Machine B would itself scan the
machines below it, and Machine C would scan the
computers below it. Machine A would then take the three
connection information databases from itself and
Machines A and B, and integrate them into one database
that could be queried by the client software. In this way
the scans are done in parallel, and the database updated on
Machine A. This saves time and allows the client to get
information from one source, instead of having to connect
to all servers in the hierarchy.

By using the distributed model the network can be
scanned in a very rapid fashion, while also adding a high
level of scalability to the software. As the size of the
network grows, more servers can be added to the
hierarchy to increase the distribution of tasks. This will
give administrators flexibility in their scanning routines.
Further, by allowing one point of connection for the
server, we allow the portability of having one server
platform, but having a customizable client interface. This
will be discussed further in Section 5, where we will
discuss the porting of the client software to many
different platforms including web-based interfaces using
J2EE, Palm/PDA platforms, and other operating systems

and environments. These features will make the tool very
usable, and will help ease the strain on administrators.

Furthermore, students can learn about many aspects of
applied computing by experimenting with the tool. First,
by configuring the server, students would get experience
editing scripting files and configuration files, which is an
essential skill for network administrators. Second, by
structuring the server hierarchy, students would get
exposure to network topologies, and distributed
computing. Thirdly, using the client software would get
students experience working with Java applications, and
also connection management. Finally, the entire
experience of using the tool would give them a broad
overview of the importance of system monitoring, without
having to grind through pages of generated log files.

3. HIGH LEVEL DESIGN

ODNM is designed to minimize information presented to
the user, so that they may concentrate on pertinent
information and get that information quickly. For this
reason a graphical client interface was essential. On the
server side, however, the output is confined to a series of
text files, which can be read by the administrator if
desired.

Figure 4 gives an example of some of the information that
the server scans for at each interval or on-demand scan.
The IP address of the machine scanned, hops between
server and scanned machine, speed of connection, open
ports, operating system, and other information gathered
during scanning are displayed, as well as some flags such
as SLOW_NODE, NEW_NODE, and other types of
warnings are stored. The amount of information passed to
the client is configured by the administrator from the
client interface.

Figure 4 ODNM Server Scan Database File (partial).

The server code itself focuses more on the overall
management of the tasks, instead of the scanning. It uses
the Nmap program to do all of the scanning [8]. We

implemented the server in this way because it allowed us
to focus on the management of multi-threaded tasks, as
well as the overall implementation. As discussed in
Section 5, we hope to implement our own scanning
routine in the future, and the code has been modularized
to allow for the Namp scan module to be replaced by our
own code.

The client interface itself is designed to give the
administrator full status information about the network
without cluttering the screen and impeding readability.
As shown in Figure 5, the interface gives a quick snapshot
of the network status, with side fields showing more
detailed information.

Figure 5 ODNM Client Interface Window (partial).

To the left of the screen there is an icon to represent the
different machines on the network. To the right there is a
text box which will display the information for the node
that is clicked on in the left box. The bottom right shows
the last type of scan, and has buttons allowing the user to
initiate new scans or reconnect to servers in the hierarchy.
In this way, the interface can display a lot of information
without overloading the user or cluttering the view. Also
available as tabs on the left hand box are tree view, which
eliminates the icons and just shows a tree structure for the
nodes, or physical view, which will allow an
administrator to view a GPS-enabled physical map of the
network. This is be useful in determining geographical
points of failure in wide-area networks. The GPS feature
is not implemented as yet, and will be discussed in
Section 5.

Overall, ODNM is structured to balance simplicity with
usability. The server side is designed to run as efficient as

possible, without the overhead of a graphical interface.
The client, on the other hand, sacrifices some speed for
usability by giving the user a full-featured graphical
interface. This will give administrators the ability to view
network information at-a-glance, while not overwhelming
non-administrators, or students who are using the tool
from a beginner level. This would also allow students to
experience two different types of program environments,
the graphical user interface environment, and the
command line user interface environment.

4. CURRENT STATE OF DEVELOPMENT AND
TESTING

ODNM is currently fully functional to our initial
requirements. We have tested it on various sized
networks ranging from 5 addresses to 254 addresses (10
machines and 244 empty addresses). These tests were
informal and we have not entered a formal testing phase.
Currently, we are focused on cleaning up and fully
commenting the code, as well as writing user
documentation and instruction files. Once we have what
we feel to be stable, secure, and complete code with good
user documentation and troubleshooting we will enter the
formal testing period.

The tool itself is not ready to be used in an actual live
environment, and much of the work in the coming months
will be focused on authentication protocols and security.
Since the server listens on a port that must be opened to
the outside world so that the client may connect,
authentication of users and connection security must be
implemented before the system can enter a real
environment. Some of these problems could be
simplified by going to a web-based client using the J2EE
platform for web applications [9], however we are
planning to implement authentication and security
features into the current client model.

In the short term, we will also be organizing a more
convenient way to distribute and update new versions of
code. We will be moving to a new website for the
project, on our own domain, and also be organizing
maintenance and development channels within the
ODNM team. This will allow us to update and maintain
code more efficiently, while also giving us a better path to
versioning and program releases.

5. FUTURE WORK

The future work on ODNM is organized into 3 main
subclasses: Essential Updates, Algorithmic Updates, and
Feature Updates. These reflect the main areas of
application improvements for ODNM.

Essential Updates
This category of future development work reflects
essential program features that must be included before
the next version of ODNM is to be considered complete.
It is perhaps the biggest category of future work, and
included structural and cosmetic upgrades and
improvements. A partial list of the goals under this
category is as follows:

• Refine the database updating routines for the
ODNM server software. Efficiency and
debugging are the main concerns.

• Implement necessary security and authentication
in the server connection management routines.
This includes user authentication and secure
input buffering.

• Complete the user documentation, both in-code
and general information.

• Implement a web interface using J2EE
technology. Implement a simplified web
interface to the server. This may or may not be a
highly-utilized function, but would be useful in
situations where client functionality is not
available.

These are just a sampling, and most of the future work in
this class would be considered basic testing and
debugging to ensure stability and efficiency under all
operating conditions.

Algorithmic Updates
This category of future development deals with new
functional development for ODNM, and is mostly
centered around improving already existing modules of
the code. It is focused on two main areas: True
Distribution and Scanning.

 True Distribution: Currently, ODNM relies on
the system administrator to configure which server scans
which block of IP addresses. In this way it is a user-
defined distribution of tasks. In the future we would like
to implement a more intelligent form of workload
distribution. We would like to have the root node work as
a workload manager and delegate out the scanning to
machines based on true distributed computing algorithms.
This way the system administrator would not have to do
as much work up front, and the ODNM Network would
behave more intelligently. This would most likely also
increase efficiency and reduce scan times, as the
differences in hardware and network resources would be
dealt with.

 Scanning: Currently, ODNM relies on Nmap
and ping to get information about the network. The
problems with this are twofold. First, it increases
interdependence on other applications and restricts
interoperability through the need for system calls and
output parsing. This means, in short, that the system

won’t work in Windows environments without substantial
code rewriting due to differences in directory structures
and program output. Second, the network scans are very
intrusive, and use active pinging and scanning to get
information about the network. This leads to more
network resource usage, and a reduction in both speed and
efficiency. We would like to aim for a new scanning
routine which could get the information we wanted while
remaining platform independent, and also be more passive
than it is currently. We feel that if we write our own
routines, instead of system calling to current routines, we
can gain passiveness and efficiency in our software, while
remaining platform independent on both the client and
server sides. This would lead to faster execution of scans,
more real-time information gathering ability, more
portability, and a better product.

These updates would require a sufficient amount of time
be invested, both in research and in testing. Because of
this, we are pushing them off until the Essential Updates
are complete and we have a product that is ready to be
tested as is. Additionally, we will be looking for
additional people to develop parts of this updates who
have more experience in the realms of distributed
computing and network scanning.

Feature Updates
This category of updates includes features which are not
essential to the software package, but would make the
package more useful. Some of these are as follows:

• GPS-enabled physical mapping, as discussed
before. The groundwork for this feature is
already implemented, both in the server
configuration and client interface, the mechanics
just need to be implemented.

• Automatic software updating ability. This would
allow network administrators to update security
patches, system upgrades, etc., without having to
visit each machine on a network. This is already
a feature of many network administration tools,
and we would like to integrate it into ODNM to
further ease the strain on administrators.

• Scan history logging. Implement a more
extensive log file and scan history capability
with e-mail, instant messaging, and file alerts.
While this is not essential on many systems,
which keep their own logs, it would again
integrate more functionality and give
administrators simplified access to information.

• Client-side portability. Implement versions of
the client software to run on PDAs, and other
types of mobile computing solutions to give
administrators more flexibility and mobility in
monitoring wide-area networks like school
districts.

• Server-side portability. Scale down the server
and increase efficiency so that it can be run on

embedded devices like managed switches and
routers. This would allow ODNM to give more
accurate network topology mapping abilities.

This list is not all inclusive, but is intended to show the
inclusion of more features is consistent with the plan of
making ODNM a portal through which to access a large
amount of network information within the framework of
an easy-to-use, readable interface.

Overall, our goal for ODNM is to allow system
administrators to streamline their time spent maintaining
the network. By giving them one-touch access to system
upgrades, administration, and security alerts, we hope that
ODNM will reduce downtime and data corruption. This
would lead to a direct increase not only in administrator
satisfaction, but also the quality of student education.

6. CONCLUSION

As illustrated, ODNM will give system administrators the
power to maintain and upgrades networks on all scales
with ease and thereby reduce the impact of budget and
manpower deficits. However, since ODNM is built to be
easy-to-use, it will allow beginners to learn about network
administration and many aspects of applied computing. It
will allow students to have hands-on experience in
workload distribution, network security monitoring, and
other topics.

ODNM’s main advantage to the students over most
network scanners is its ability to graphically view all the
devices within the entire network. ODNM’s graphical
network map will allow the students to gain a visual
perspective on the scanned network whereas the students
can be overwhelmed, perhaps even confused, by the
output of a text-based network scanner. Using ODNM in
the classroom can further students’ knowledge of
networking when used to accompany assignments that
mimic real-world scenarios. Certainly, curriculum at all
levels can be developed with which ODNM can assist. As
an example, one assignment may be to locate open ports
on specific computers in a network, assess their security
threats, and discuss options that are available to reduce
those security threats. Or, the students may be presented
with a scenario in which a virus is propagating quickly
throughout a multi-subnet network and its distribution
must be stopped immediately. Furthermore, the students
will have to conduct research on the vulnerability, use
network administration tools to locate vulnerable systems,
and take appropriate actions. From these assignments, the
students will be able to gather information for a given
network, investigate the network devices in question,
assess their security vulnerability, and would be able to
convey his or her findings to the proper people within an
organization with the aid of ODNM. These types of
assignments can be expanded into other topics that we
have discussed as well.

ODNM, therefore, would be an asset to any educational
institution, public or private. It would also be useful to
individuals interested in learning more about network
security, or interested in monitoring their private network.

7. REFERENCES

1. Washoe County School District Strategic

Technology Plan, Section 8. July 2003.
2. Microsoft MCP 2004). Available as of April 22,

2004 at: http://www.microsoft.com/mcp
3. Cisco CCNA (2004). Available as of April 22, 2004

at:
http://www.cisco.com/en/US/learning/le3/le2/le0/le9/
learning_certification_type_home.html

4. CompTIA Network+ (2004). Available as of April
22, 2004 at: http://www.comptia.org/certification/
network/default.asp

5. Jacobson, J, Booch, G., Rumbaugh, J.: The Unified
Software Development Process. Addison-Wesley
(1999).

6. OMG’s UML Resource Page (2004). Available as of
April 21, 2004 at: http://www.omg.org/uml

7. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified
Modeling Language: User Guide. Addison-Wesley
(1998).

8. Nmap Security Scanner version 3.50 (2004).
Available as of April 21, 2004 at: http://www
.insecure.org

9. Java 2 Platform, Enterprise Edition (J2EE).
Available as of April 22, 2004 at: http://www.java
.sun.com/j2ee/index.jsp.

10. HP OpenView Network Node Manager 6.4 and
Network Node Manager Extended Topology 2.0
(2004). Available as of April 22, 2004 at:
http://www.openview.hp.com/

11. NetRadar (2004). Available as of April 22, 2004 at:
http://netradar.sourceforge.net/

12. LANSurveyor 8.0 (2004). Available as of April 22,
2004 at: http://www.neon.com

13. Subramanyan, R., Miguel-Alonso, J., Fortes, J.A.: A
Scalable SNMP-based Distributed Monitoring
System for Heterogeneous Network Computing.
Proceedings of the ACM/IEEE Conference on
Supercomputing, Dallas, Texas, USA (2000).

14. Nmap (2002): Remote OS Detection via TCP/IP
Stack Fingerprinting. Available as of April 21, 2004
at http://www.insecure.org

