
QQ: Nanoscale Timing and Profiling

James Frye+∗ James G. King+∗ Christine J Wilson�∗

Frederick C. Harris, Jr.+∗

+Department of Computer Science and Engineering
∗Brain Computation Lab
�Biomedical Engineering

University of Nevada, Reno NV 89557
{frye, wilsonc,king,fredh}@cs.unr.edu

Abstract

QQ is a tool for timing and memory profiling capable
of nanoscale time resolution. Designed to minimize both
learning curve and impact on the profiled code, it is plat-
form independent and usable with sequential, distributed,
and parallel programs. QQ is invoked via embedded func-
tion calls, and outputs event and timing records in a com-
pact binary format. These records can be analyzed by ex-
ternal software packages. QQ obtains timing information
from the hardware performance monitoring facilities de-
signed into current microprocessors. Our implementation
addresses the IA32 architecture, but the similar facilities of
most modern processors allow QQ to readily be ported to
other platforms.

Keywords: profiling, nanoscale resolution, memory use

1. Introduction

The NeoCortical Simulator (NCS) [7, 8, 9] is a large-
scale biologically realistic simulator of cortical neurons.
On a 128 processor Beowulf cluster with 256 GBytes of
RAM, it has successfully simulated biological neural net-
works with up to 10

6 cells and 10
9 synaptic connections [5].

One goal of our research program has been to run such sim-
ulations at speeds approaching real-time, but they now re-
quire many minutes or hours of cluster time for each simu-
lated second. Since Moore’s Law (processor speeds double
every 18 months) predicts a 15 year wait for the necessary
hardware performance, we have devoted considerable effort
to optimizing the code for both speed and memory utiliza-
tion [1].

An NCS simulation may contain many millions of in-
dividual objects (of several dozen basic types), each mod-
elling some component of a brain cell, and all connected in

a highly nonlinear feedback network. Input stimuli propa-
gating through the network cause the individual objects to
react. At any point in time, only a fraction of objects are
computationally active, but which of them, and what form
their computation takes, varies unpredictably from timestep
to timestep.

Effective optimization requires the ability to accurately
measure changes in the performance of the code being op-
timized. Given the design of NCS, this requires measuring
changes in the performance of single executions of individ-
ual objects. We examined a number of performance moni-
toring packages. Few of them were able to achieve the nec-
essary resolution; those that could would have required ma-
jor changes in our development environment.

A similar situation existed with respect to memory: we
found a number of packages that would monitor program
memory use and help locate conflicts and memory leaks,
but none that would resolve allocations at the scale of indi-
vidual objects.

We therefore developed QQ: a set of tools that can mea-
sure performance to the level of single machine instructions,
and memory use to individual allocations. QQ is used exten-
sively in ongoing NCS optimization, and has been applied
to a number of other programs.

This paper is organized as follows: Section 2 addresses
design considerations, related work, and implementation.
Section 3 covers the analysis routines and defines QQ’s fea-
tures. Section 4 shows examples of QQ’s use in sequential
and parallel programs. Section 5 gives some concluding re-
marks and defines the future work and direction of develop-
ment of QQ.

1.1. Related Work

Before developing QQ, we examined a number of perfor-
mance monitoring packages, but none came close to meet-
ing our needs. Most, like the standard gprof, were simply



not capable of the required accuracy, or added unacceptable
run-time overhead, and so were rejected after superficial ex-
amination.

Two packages deserved further examination: TAU [4]
and SvPablo [6]. Both appeared capable of the required ac-
curacy, but both were ultimately rejected due to our inability
to integrate them into the NCS development environment.

TAU is compact and able to trace individual user-defined
code blocks. However, it uses a pre-compiling step to em-
bed timing commands in the source, and this pre-compiler is
incompatible with the version of C++ used by the gcc com-
piler.

Like QQ, SvPablo utilizes hardware counters for maxi-
mum accuracy, but the graphical interface and meta-meta-
format output imposed what proved to be an unacceptably
steep learning curve.

2. QQ Design

Modern microprocessor architectures implement a vari-
ety of on-chip debugging and performance monitoring fea-
tures, and it is here that we found the key to nanoscale tim-
ing resolution.

2.1. Hardware Time Stamp Counter

NCS development is presently done on an Intel IA32 ar-
chitecture (Pentium) platform. IA32 performance monitor-
ing support includes a 64-bit processor time stamp counter
which is zeroed when the processor is booted, and incre-
ments every clock cycle. User code can read this counter via
the IA32 assembly language RDTSC instruction. Subtract-
ing two successive reads gives a count of processor clock
cycles, and division by the processor clock frequency gives
an elapsed time that at current CPU speeds is accurate to a
fraction of a nanosecond.

Actual code timings are somewhat less accurate than
this, due to hardware optimization. The processor decodes
each instruction into µops, which are re-ordered and exe-
cuted in parallel by one of several execution units in a man-
ner that depends on the instruction context. In practice we
see granularity on the order of a few tens of clock cycles,
which is some two orders of magnitude better than other
timing methods.

The RDTSC instruction (and its cognates in other archi-
tectures) thus provides a simple means of measuring the
elapsed time between two points in a program. This in it-
self is a useful performance measurement.

2.2. Sequential Profiling

A useful profiling tool requires more than a simple tim-
ing routine. It should be able to time many sections of code,

accumulate the total time spent within repeatedly called sec-
tions, mark the time at which events occur, and so on. QQ
does this by recording named events. Several types of events
are defined. Each consists of an integer key that identifies
the event, and an event time, which is simply the value re-
turned by the RDTSC instruction. Depending on the type, a
value, count or state flag may also be recorded.

It should also require a minimum of overhead in both ex-
ecution time and programmer workload. QQ’s instrumenta-
tion calls are therefore designed to be as non-obtrusive as
possible. They are included in code as simple function calls.
A single compile flag, QQ ENABLE, determines whether
profiling is enabled. If it is not, the definitions in the QQ.h
include file reduce all the calls to no-ops. Thus when profil-
ing is turned off, there is no effect on execution speed, and
only a very small additional memory footprint.

QQ is initialized by calling the QQInit function (see
Section 3). This allocates memory for a user-specified num-
ber of events, initializes the event pointer to the first event,
and sets the base time to the current RDTSC value.

After initialization, one or more of the QQAdd* func-
tions are called to specify events to be recorded. Each func-
tion takes an identifying name, and returns a corresponding
integer key. These keys are variables in the program space,
and are the only trace of QQ that remains in code compiled
with the QQ ENABLE flag off.

In order to minimize the impact of profiling on program
timing, event recording functions are reduced to a mini-
mum. Each checks to see if the allocated event buffer has
overflowed. If not, the key and RDTSC return value are writ-
ten to the buffer (along with any other information defined
for the type of event), and the event pointer is incremented.

During program execution, event recording may be
turned off and on by the QQRecord function, so that only
area of interest need be profiled.

When profiling has finished, the QQOut function is
called to write the saved event information to a file.

2.3. Parallel Profiling

For parallel profiling, QQ takes some additional steps.
First, QQInit does an MPI Barrier call to synchronize,
as nearly as possible, timings on all nodes. Each node has
its own event buffer, which records an independent set of
events. On output, the buffers from all nodes are combined
into a single file, along with information to identify which
event belongs to which node.

2.4. Profiling Memory Allocation

Profiling memory use is more difficult than profiling ex-
ecution time. At this time a completely satisfactory solution



seems impossible, since allocation is often hidden within li-
brary calls and object constructors. However, QQ manages
to gather much useful information.

2.4.1. Gross Memory Allocation On a Linux system, the
number of 4 KByte memory pages currently allocated to
a process can be read from its statm pseudo-file in the
/proc filesystem. This number includes both code and
data space, and may include memory allocated but not cur-
rently in use, so it must be considered an upper boundary
value.

The GetMemoryUsed function uses this method to re-
turn the total memory allocated to the program. By com-
paring values before and after a block of code, one can ob-
tain an idea of the memory allocated by that block. This is a
gross measurement, most useful when the block is allocat-
ing many megabytes.

2.4.2. Fine Memory Allocation The operating system al-
locates memory to a program in units of pages. The inter-
nal memory allocator, generally the malloc library, then
parcels this memory into smaller units as required. When
the program allocates memory by calling malloc library
functions directly, it is easy to record allocation informa-
tion: a preprocessor macro redefines the library calls in the
program, and the redefined function records information be-
fore passing the operation through to the actual allocation
function.

For example, the malloc function can be redefined as:

#ifdef MEM_STATS
#define malloc(arg) Malloc (KEY, arg)

#endif

Each malloc call in the code now becomes a call to the
Malloc function. The new call contains an additional ar-
gument, a key under which the allocated memory will be
recorded. Each allocation is recorded, indexed by its ad-
dress. The call to free is similarly redefined to remove the
item from the map. In this way, a consistent record of allo-
cated memory is maintained, with the record for each item
containing information on the type of object, what routine
allocated it, and so forth.

2.4.3. Monitoring Object Creation In principle the
above method could be extended to objects by over-
loading the new and delete operators. In practice this is
not easily done, so we use a simpler method. We add
calls to the MEMADDOBJECT and MEMFREEOBJECT
routines to the constructor and destructor of each ob-
ject we want to monitor. With profiling off, these calls
evaluate to empty statements; when it is on, they be-
come calls that pass the object’s this pointer and the
sizeof(this) value to the memory recording func-
tions.

These methods allow monitoring of explicitly allocated
memory and objects defined by the program. Although
memory allocated internally by library functions or stan-
dard C++ objects is not recorded, such memory has not been
a significant factor in NCS development.

3. Analysis Routines

The timing interface for QQ includes many functions for
tracing temporal events. Figure 1 shows the complete appli-
cation programing interface currently available.

The QQ tools were designed by and for programmers
who often prefer to write custom analysis code. The output
format was therefore designed to be flexible, precise and de-
tailed, but still easily accessed.

Each event to be traced is given a key. In the output
file, the number of keys nkeys(int) is followed by the
length of the key name string, keylen (int). Then for
each key, the following information is output, the index
of the key, the key type and its name. Then, the informa-
tion regarding the nodes is output. The number of nodes
nnodes(int) is defined. For each node the following in-
formation is output, the offset or index in file at which the
data for the node starts, the number of entries for the node,
the base tick count for the node and the frequency of the
node in MHz. Once this information has been defined, the
data for each node is output.

During the evaluation of NCS the following two pro-
grams were created and are included as examples:

• Summary statistics is a simple C program which reads
the QQ output file and produces a summary report of
the time spent in each state, the number of times each
event or state, etc.

• Profile viewer is a simple graphical application. Data
is read from the output file, and piped to gnuplot
for display. A simple interface allows the user to select
which nodes, events, and time ranges are displayed.

4. Examples

Now that we have given an overview of QQ, some ex-
amples will help show how it can be used to profile and op-
timize code. In this section we present two examples, a se-
quential piece of code and a large parallel piece of code. The
first will show how the code must be modified to be used
and the second will give a big picture overview of what we
were able to accomplish with QQ.

4.1. Sequential Code: BCS

BCS, the Brain Communication Server, is a companion
program intended to coordinate data flow between NCS and



Prototype Description

void QQInit (int nEvents); Initialize package, specifying a maximum number of events to record.
void QQBaseTime (void); Reset the base time to current time. This is useful when a significant amount

of unprofiled code is executed after the QQInit call.
int QQAddMark (char *); Define a MARK event, which associates the current time with key.
int QQAddState (char *); Define a STATE event, which records the start (state = ON) and end

(state = OFF) of state key.
int QQAddCount (char *); Define a COUNT event, which associates the time and a caller-supplied

integer value with key.
int QQAddValue (char *); Define a VALUE event, which associates the time and a caller-supplied

double value with key.
void QQMark (int key); Record the MARK event corresponding to key.
void QQStateOn (int key); Record the start of STATE key
void QQStateOff (int key); Record the end of STATE key
void QQCount (int key, int count); Record COUNT event key and its associated integer count.
void QQValue (int key, double val); Record COUNT event key and its associated val.
void QQRecord (int flag); Enable or disable event recording during the program, according to the value

of flag.
void QQOut (char *name, int, int); Output the recorded profiling info to file name.

Figure 1. QQ API

external client programs. Such clients make use of NCS in
some way, as for instance the brain of a virtual organism
within a virtual environment, or eventually robotic actuators
maneuvering in the real world. Ideally, this server should
transfer the necessary information securely and accurately,
with minimal impact on the simulation’s execution. There-
fore we used QQ profiling to measure and optimize perfor-
mance.

QQ is easily inserted into the program. Figure 2 shows
the few additional lines needed to to do initialization, time
a code segment, and write the profiling data to a file.

QQInit (1000); // Initialize QQ

QQload = QQAddState ("load"); // define event

QQStateOn (QQload); // Record start time

loadAppList (); // Do work...
loadScriptList ();

QQStateOff (QQload); // Record end time

QQOut ("profile.qq", 0, 1); // Write to file

Figure 2. Basic QQ profiling

To activate profiling, the program is compiled with
QQ ENABLE defined (in gcc this is done by adding
-DQQ ENABLE to the command line). Production code
can be compiled from the same source simply by un-
defining QQ ENABLE. Calls to profiling functions re-

main in the source code, but perform no operations. The
only traces of QQ that remain in the executable are the al-
location of a small amount of memory for the event keys,
and assignments of 0 to each key.

BCS makes use of an object oriented design. The code
in Figure 3 shows how a QQ event can be declared once
in the main routine, but used in a class defined elsewhere.
Declaring the event as a global variable causes the execu-
tion time of all class instances to be recorded under a sin-
gle key. If instead we wished to profile instances separately,
we could call QQAddState in the object constructor, of
course adding some code to create a unique name for ev-
ery instance.

The simple and consistent layout of the QQ output file al-
lows the collected data to be easily extracted, and analyzed
or displayed.

Figure 4 shows an example in which the output from a
BCS profiling run is displayed as a simple table. In the case
of BCS, some of the events take up more time than the simi-
lar ”gather” event. The events in question can be further bro-
ken down to better profile within the code blocks and pin-
point inefficient code.

4.2. Parallel Code: NCS

Here we discuss the use of QQ with NCS, the appli-
cation that led its design and implementation [1]. NCS is
a neocortical neural network simulator which incorporates
laboratory-determined synaptic and membrane parameters
into a large-scale, biologically realistic model of cortical
modules. Results to date have demonstrated biological ac-
curacy in synaptic and membrane dynamics, and suggest



// A QQ event defined as global in the main routine...

#include "QQ.h"

int gatherTime; // global scope

int main (int argc, char *argv [])
{

...
gatherTime = QQAddState ("gather");

...
}

// And used in a class defined in a separate file.

extern int gatherTime; // declared in main file

class A_Class ()
{
QQStateOn (gatherTime); // start timing

... // execute some code
QQStateOff (gatherTime); // stop timing

}

Figure 3. QQ event created and used in sepa-
rate classes.

File profile.qq: 1 nodes

Node 0: 2592.403 MHz, 10 keys, 122 states
ET = 40.671068 sec

State outputs: Counts are millions of cycles

Hits Time Percent Name
1: 2 0.000889 0.002% ’load’
2: 46 0.562092 1.382% ’setpath’
3: 8 0.159862 0.393% ’getdata’
4: 8 0.166010 0.408% ’gettime’
5: 2 0.000241 0.001% ’setpattern’
6: 20 0.953694 2.345% ’launch’
7: 8 0.158786 0.390% ’reportcount’
8: 20 0.385492 0.948% ’mkdir’
9: 8 0.000237 0.001% ’gather’

Figure 4. QQ output displayed by st

that computational models of this scope can produce real-
istic spike encoding of human speech [2, 3]. Models which
reproduce such realistic behaviors typically require the sim-
ulation of 10

4 to 10
6 neurons, and 10

7 to 10
9 synaptic con-

nections. Executing these very large models within a practi-
cal time frame requires extremely efficient parallel process-
ing.

Neurobiology: NCS models the behavior of neurons. Like
all cells, neurons maintain a voltage difference, the mem-
brane potential, between their interior and the external en-
vironment. Unlike most cells, neurons are excitable: stim-
uli can cause voltage spikes in which the membrane poten-
tial changes from its resting potential of about -70 mV to

+20 mV or so within a fraction of a millisecond, then re-
turns to rest over several milliseconds.

A typical neuron has a cell body, or soma, and a long
axon, which branches to make contacts with other neurons
at synapses. A typical cortical neuron may make several
thousand such contacts. A voltage spike, or action poten-
tial originates at the soma and propagates along the axon
(at a speed which depends on the cell type) until it reaches
the synapses, where it causes the release of neurotransmit-
ters. These alter the membrane potential of the receiving
cell, and, if the sum of the effects of all incoming synapses
is sufficient, trigger a voltage spike in the receiving cell,
which in turn propagates to other cells.

A collection of neurons thus forms an electro-chemical
signaling network. NCS attempts to simulate the behavior
of such networks.

4.2.1. Optimization Targets Four factors affect the per-
formance of NCS: message-passing overhead, load imbal-
ance, synchronization of parallel code, and the sequential
performance of the code executing on each compute node.
All of these areas were addressed in the optimization pro-
cess. This section describes that process and the solutions
that were developed.

Message-Passing Overhead Recall from the discussion of
neurobiology that NCS is simulating the propagation of
action potentials between neurons. The behavior of these
potentials is quite stereotyped: once initiated, a potential
propagates along the axon at a constant speed and ampli-
tude. It thus can be simulated by simply passing a message
from sending to receiving cell. This message-passing mech-
anism, the message bus, in fact forms the core of NCS, and
is responsible for its parallelism.

Profiling of early NCS versions determined that the mes-
sage bus was using a large share of both memory and com-
putation time. More detailed examination disclosed a num-
ber of inefficiencies in the initial implementation. The most
notable was the pre-allocation of messages, with a 60-byte
message object being allocated for every synapse. On a
large (10

9 synapses), model this consumed nearly a quar-
ter of the 256 GBytes of memory on our cluster. Since only
a small fraction of synapses (typically less than 1%) are ac-
tively firing (and thus transmitting a message) during any
particular timestep, most of this memory was actually un-
used at any given time.

Other inefficiencies related to the use of the same com-
municator and message format for distributing stimulus and
report data and the synapse firing messages. This required
the inclusion of a message type field in the message packet,
as well as additional overhead needed to distribute messages
of different kinds to the proper destinations.

An improved message bus separated these three func-
tions. Stimulus messages and reports (excepting real-time



I/O) are now produced locally on each node, which reduces
the traffic on the network and, along with other optimiza-
tions, allows the size of the individual synapse firing mes-
sage to be reduced from 60 to 20 bytes. More importantly
for memory consumption, message packets are allocated
dynamically from a shared pool. This reduces memory use
by an order of magnitude or more.

While these changes improved performance signifi-
cantly, further analysis showed that yet more improve-
ment was possible. The old algorithm passed message
objects through several layers, so that a typical mes-
sage was being read and written perhaps five times or more
in its progress from source to destination.

In the optimized scheme, the message has no existence
as an individual object. It is instead a logical entity within
a packet containing many individual messages. The bulk of
the information in a packet thus needs to be written only
once, when sent, and read once, when it is received at its
destination. Not only does this eliminate much overhead, it
means that the packet size can be chosen to match the most
efficient transfer size of the underlying hardware.

Load Balancing Load balancing is in principle a simple
matter of assigning an equal number of work units to each
node. For many applications, for instance those which oper-
ate over a spatial grid, it can be simple in practice. However,
this is not the case for NCS. NCS contains algorithms which
model many different neural components. These compo-
nents may be combined in different ways to create many
different types of cells, and those cells may be connected in
fairly arbitrary ways.

Even measuring any particular component’s contribution
to the compute load is problematic. There are few if any
points in the code where we can measure the repeated exe-
cution of a single component type, so that an accurate mea-
surement must resolve differences in a single call. Remov-
ing a component to measure the performance contribution is
not possible, since such removal will generally cause a sig-
nificant change the behavior of the system.

Furthermore, much of the computation time is devoted
to modeling individual synapses. Factoring these into the
load-balancing process is complicated by the fact that com-
putation takes place on a particular synapse only when the
synapse is in a firing state. Only a small fraction of synapses
are in this state at any particular timestep, and it is not pos-
sible to predict which synapses will fire, because firing is
determined by the input stimuli.

This unpredictability applies to memory usage as well:
the amount of memory needed to construct a brain is the
sum of its components, but a running brain needs signif-
icant additional memory to hold dynamic information for
synapse firing states. The exact amount required is impos-
sible to predict, although in practice the current implemen-
tation seems to require about equal amounts of memory for

static and dynamic data.
By using the nanosecond timing resolution provided by

QQ, we can accurately measure the time required for a sin-
gle execution of any component. These component times
are entered in a weight/cost table, and adding the weights of
all components give a total compute weight for each clus-
ter of cells. These clusters can then be assigned to nodes ac-
cording to some scheme which balances the compute load
according to the computing power available on each proces-
sor.

In order to run the largest models it is necessary to bal-
ance memory use, rather than compute load, and accept
the resulting inefficiency. Distribution follows a similar al-
gorithm, merely substituting the memory footprint of each
component for its compute weight.

Synchronization Most of the computation in NCS is de-
voted to calculating the effects of synapse firings on the re-
ceiving compartments. These firings are essentially unpre-
dictable, being determined by the brain’s reactions to stim-
uli propagating through a highly nonlinear feedback net-
work. Therefore it can be expected that, regardless of how
well the number of synapses is balanced between nodes, the
actual amount of computation will vary both between nodes
and over time.

As a consequence, one node, and probably not the same
node at each timestep, will take the longest amount of time
to finish its computations. If a simple end-of-timestep bar-
rier is used to force all nodes to proceed in lockstep, then all
the other nodes will be idle for some part of the timestep.
Figure 5 shows an example of this idle time. For the dis-
played timesteps, Node 1 has the heaviest load and so shows
little or no idle time (labeled Idle in the figure), while
the others display more, with the amount varying between
nodes and between timesteps.

We used this data to redesign the message bus. The bi-
ological action potential of a firing cell propagates along
its axon at a relatively slow speed, so that the transmission
time between sending and receiving cells typically trans-
lates to several tens of simulation timesteps. Since propaga-
tion is simulated by message passing, a firing cell can dis-
patch its outgoing message immediately. The message re-
mains either in the MPI subsystem, or in a buffer on the re-
ceiving node, until its specified delivery time.

Thus for each node there is an event horizon, which de-
pends on the minimum message propagation time of the
nodes with which it communicates. If this minimum time
is dt, then nothing other nodes do at time T can affect this
node until time T+dt. Therefore, a barrier mechanism con-
structed to utilize this event horizon can allow some of the
end-of-timestep idle time to be used. A node may simply
continue to work until it reaches T+dt. Meanwhile, mes-
sages have continued to arrive from the other nodes, and un-
less the node is consistently under-loaded, these messages



5.05 5.06 5.07 5.08 5.09 5.1
DoCell
DoReport

Idle

Sync

Node 0

DoCell

DoReport

Idle

Sync

Node 1

DoCell

DoReport

Idle

Sync

Node 2

DoCell

DoReport

Idle

Sync

Node 3

Figure 5. Idle Time Due to Load Imbalance.

will containSYNC flags indicating that their nodes have pro-
gressed to another timestep.

Synchronization now becomes a relatively simple mat-
ter. On initialization, a NodeTime array is allocated, with
entries for each node from which the node receives mes-
sages. As SYNC packets are received, these times are up-
dated. When the node reaches the end of each timestep,
these NodeTimes fields are checked. If the other nodes are
within the minimum time difference, then the node can pro-
ceed to the next timestep; if not, it must wait for more pack-
ets to be received and check again.

Sequential Optimization In addition to the algorithmic
improvements described above, detailed profiling led to
many sequential code optimizations. These are too numer-
ous to describe individually.

4.2.2. Results It is difficult if not impossible to define a
simple performance metric for NCS. The time a particular
NCS brain takes to process some input file is only a useful
performance measure for that particular brain design and in-
put. In large part this is because NCS defines many different
components, which the user may include in fairly arbitrary
proportions and connect in a large number of ways. Since
the behavior of the resulting network is highly non-linear,
small changes in design can produce large variations in pro-
cessing time, even for models which might appear superfi-
cially similar.

The approach we take here is to measure the perfor-
mance of particular functional areas, or groups of operations

with similar characteristics. Because the groups share com-
mon performance features, the effect of a change in the area
on the whole program can be estimated. The area’s speed
change can be compared between program revisions. We
then relate the changes to total run time on the same input.

We have tested with many models but due to space
we will only present some of the results from the sim-
ple model 1Column. This model has a single column of
three layers, each having two cell types, excitatory and
inhibitory. Input is from an artificial pulse stimulus,
which causes it to exhibit an unrealistically high cell firing
rate. Figure 6 shows the time usage of the components in
a one simulated second run of the 1Column model just de-
scribed. Note that we have expanded the figure portion for
NCS5 since the optimization was quite successful.

5. Conclusions and Future Work

In conclusion, we have developed and tested an new pro-
filing tool that allows nanoscale timing of code segments,
profiling, and memory usage analysis. Using this tool, we
have decreased NCS run time by nearly two orders of mag-
nitude, and improved memory utilization several-fold. This
optimization is not complete: we have observed remaining
memory access patterns and code bottlenecks whose im-
provement we expect to yield a further order of magnitude
improvement.

Although developed specifically to optimize NCS, QQ
has proven to be of value in the profiling and optimization of



0
50

0
10

00
15

00
20

00

E
xe

cu
tio

n 
T

im
e 

- 
S

ec
on

ds

Synapse
Report
Channel
Base Cell
Overhead

NCS3 vs NCS5

0
10

20
30

40
50

60
70

80
90

10
0

E
xe

cu
tio

n 
T

im
e 

- 
S

ec
on

ds

NCS5 Enlarged

Figure 6. Share of CPU Time Used by Functional Areas, 1Column Model.

a number of other programs. The temporal resolution allows
for fine-grained measurements of specific events or blocks
of code. It can be used on sequential and parallel programs
without modification.

Accessing the hardware time stamp counters of other ar-
chitectures would extend the usability of these tools. Also,
the ability to measure memory at an object or event level
with a small memory and performance footprint, is an area
that deserves additional work. Since our focus is on NCS
development, however, we have implemented only those
features that we actually intend to use. We believe this nar-
row focus has kept QQ both simple and effective.

QQ source, documentation, and examples may be found
at brain.cs.unr.edu/QQ.

References

[1] J. Frye. Parallel optimization of a neocortical simulation pro-
gram. Master’s thesis, University of Nevada, Reno, December
2003.

[2] J. C. Macera, P. H. Goodman, F. C. Harris, Jr., R. Drewes,
and J. Maciokas. Remote-neocortex control of robotic search
and threat identification. Robotics and Autonomous Systems,
46(2):97–110, February 2004.

[3] J. B. Maciokas. Towards an Understanding of the Synergistic
Properties of Cortical Processing: A Neuronal Computational

Modeling Approach. PhD thesis, University of Nevada, Reno,
August 2003.

[4] U. of Oregon. Tau portable profiling.
http://www.cs.uoregon.edu/research/
paracomp/tau/tautools.

[5] M. Ripplinger, C. Wilson, J. King, J. Frye, F. C. Harris, Jr.,
and P. Goodman. Computational model of interacting brain
networks. American Federation of Medical Research Confer-
ence, January 2004.

[6] L. D. Rose, Y. Zhang, and D. A. Reed. SvPablo: A multi-
language performance analysis system. Lecture Notes in Com-
puter Science, 1469, 1998.

[7] E. C. Wilson. Parallel implementation of a large scale biolog-
ically realistic neocortical neural network simulator. Master’s
thesis, University of Nevada, Reno, August 2001.

[8] E. C. Wilson, P. H. Goodman, and F. C. Harris, Jr. Implemen-
tation of a biologically realistic parallel neocortical-neural
network simulator. Proc. of the 10

th SIAM Conf. on Paral-
lel Process. for Sci. Comput., March 2001.

[9] E. C. Wilson, F. C. Harris, Jr., and P. H. Goodman. A large-
scale biologically realistic cortical simulator. Proc. of SC
2001, November 2001.


